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Abstract—In this paper, the problem of matching pairs of
correlated random graphs with multi-valued edge attributes is
considered. Graph matching problems of this nature arise in
several settings of practical interest including social network de-
anonymization, study of biological data, web graphs, etc. An
achievable region for successful matching is derived by analyzing
a new matching algorithm that we refer to as typicality matching.
The algorithm operates by investigating the joint typicality of
the adjacency matrices of the two correlated graphs. Our main
result shows that the achievable region depends on the mutual
information between the variables corresponding to the edge
probabilities of the two graphs. The result is based on bounds on
the typicality of permutations of sequences of random variables
that might be of independent interest.

I. Introduction

Graphical models emerge naturally in a wide range of
phenomena including social interactions, database systems,
and biological systems. In many applications such as DNA
sequencing, pattern recognition, and image processing, it is
desirable to find algorithms to match correlated graphs. In
other applications, such as social networks and database sys-
tems, privacy considerations require the network operators to
preclude de-anonymization using graph matching by enforcing
security safeguards. As a result, there is a large body of
work dedicated to characterizing the fundamental limits of
graph matching (i.e. to determine the necessary and sufficient
conditions for reliable matching), as well as the design of
efficient algorithms to achieve these limits.

In the graph matching problem, an agent is given a pair of
correlated graphs: i) an ‘anonymized’ unlabeled graph, and ii)
a ‘de-anonymized’ labeled graph. The agent’s objective is to
recover the correct labeling of the vertices in the anonymized
graph by matching its vertex set to that of the de-anonymized
graph. This is shown in Figure 1. This problem has been con-
sidered under varying assumptions on the joint graph statistics.
Graph isomorphism studied in [1]–[3] is an instance of the
matching problem where the two graphs are identical copies
of one another. Under the Erdös- Rényi graph model tight
necessary and sufficient conditions for graph isomorphism
have been derived [4], [5] and polynomial time algorithms
have been proposed [1]–[3]. The problem of matching non-
identical pairs of correlated Erdös-Rényi graphs have been
studied in [6]–[12]. Furthermore, graphs with community
structure have been considered in [13]–[16]. Seeded versions
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Fig. 1: An instance of the graph matching problem where the
anonymized graph on the right is to be matched to the de-
anonymized graph on the left. The edges take values in the
set [0, 3]. The edges with value 0 are represented by vertex
pairs which are not connected and the edges taking values
{1, 2, 3} are represented by the colored edges.

of the graph matching problem, where the agent has access
to side information in the form of partial labelings of the
unlabeled graph have also been studied in [12], [17]–[20].
While great progress has been made in characterizing the
fundamental limits of graph matching, many of the methods
in the literature are designed for specific graph models such
as pairs of Erdős-Rényi graphs with binary valued edges and
are not extendable to general scenarios.

In this work, we propose a new approach for analyzing
graph matching problems based on the concept of typicality
in information theory [21]. The proposed approach finds a
labeling for the vertices in the anonymized graph which results
in a pair of jointly typical adjacency matrices for the two
graphs, where typicality is defined with respect to the induced
joint statistics of the adjacency matrices. It is shown that if

I(X1; X2) = ω

(
log n

n

)
,

then it is possible to label the vertices in the anonymized graph
such that almost all of the vertices are labeled correctly, where
I(X1; X2) represents the mutual information between the edge
distributions in the two graphs and n is the number of vertices.

The proposed approach is general and leads to a matching
strategy which is applicable under a wide range of statis-
tical models. In addition to yielding sufficient conditions
for matching correlated random graphs with multi-valued
edges, our analysis also includes investigating the typicality
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of permutations of sequences of random variables which is of
independent interest.

The rest of the paper is organized as follows: Section II
contains the problem formulation. Section III develops the
mathematical machinery necessary to analyze the new match-
ing algorithm. Section IV introduces the typicality matching
algorithm and evaluates its performance. Section V concludes
the paper.

II. Problem Formulation

In this section, we provide our formulation of the graph
matching problem. There are two aspects of our formulation
that differ from the ones considered in [6]–[12]. First, we
consider graphs with multi-valued (i.e. not necessarily binary-
valued) edges. Second, we consider a relaxed criteria for
successful matching. In prior works, a matching algorithm
is said to succeed if every vertex in the anonymized graph
is matched correctly to the corresponding vertex in the de-
anonymized graph with vanishing probability of error. In our
formulation, a matching algorithm is successful if a randomly
and uniformly chosen vertex in the graph is matched correctly
with vanishing probability of error. Loosely speaking, this
requires that almost all of the vertices be matched correctly.

We consider graphs whose edges take multiple values.
Graphs with multi-valued edges appear naturally in various
applications where relationships among entities have attributes
such as social network de-anonymization, study of biological
data, web graphs, etc. An edge which has an attribute as-
signment is called a marked edge. The following defines an
unlabeled graph whose edges take l different values where
l ≥ 2.

Definition 1. An (n, l)-unlabeled graph g is a structure
(Vn,En), where n ∈ N and l ≥ 2. The set Vn =

{vn,1, vn,2, · · · , vn,n} is called the vertex set, and the set En ⊂

{(x, vn,i, vn, j)|x ∈ [0, l − 1], i ∈ [1, n], j ∈ [1, n]} is called the
marked edge set of the graph. For the marked edge (x, vn,i, vn, j)
the variable ‘x’ represents the value assigned to the edge
(vn,i, vn, j) between vertices vn,i and vn, j.

Without loss of generality, we assume that for any arbitrary
pair of vertices (vn,i, vn, j), there exists a unique x ∈ [0, l − 1]
such that (x, vn,i, vn, j) ∈ En. As an example, for graphs with
binary valued edges if the pair vn,i and vn,i are not connected,
we write (0, vn,i, vn, j) ∈ En, otherwise (1, vn,i, vn, j) ∈ En.

Definition 2. For an (n, l)-unlabeled graph g = (Vn,En), a
labeling is defined as a bijective function σ : Vn → [1, n].
The structure g̃ = (g, σ) is called an (n, l)-labeled graph.
For the labeled graph g̃ the adjacency matrix is defined as
G̃σ = [G̃σ,i, j]i, j∈[1,n] where G̃σ,i, j is the unique value such
that (G̃σ,i, j, σ

−1(i), σ−1( j)) ∈ En. The upper triangle (UT)
corresponding to g̃ is the structure G̃UT

σ = [G̃σ,i, j]i< j.

Any pair of labelings are related through a permutation as
described below.

Definition 3. For two labelings σ and σ′, the (σ,σ′)-
permutation is defined as the bijection π(σ,σ′), where:

π(σ,σ′)(i) = j, if σ′−1( j) = σ−1(i),∀i, j ∈ [1, n].

Proposition 1 given bellow follows from Definition 3.

Proposition 1. Given an (n, l)-unlabeled graph g = (Vn,En)
and a pair of arbitrary permutations σ,σ′ ∈ S n, the adjacency
matrices corresponding to g̃ = (g, σ) and g̃′ = (g, σ′) satisfy
the following equality:

G̃σ,i, j = G̃σ′,π(σ,σ′ )(i),π(σ,σ′)( j).

We write G̃σ′ = Π(σ,σ′)(G̃σ), where Π(σ,σ′) is an n2-length
permutation. Similarly, we write G̃′

UT
σ = ΠUT

(σ,σ′)(G̃
UT
σ ).

Definition 4. Let the random variable X be defined on the
probability space (X, PX), where X = [0, l − 1]. A marked
Erdös-Rényi (MER) graph gn,PX is a randomly generated (n, l)-
unlabeled graph with vertex set Vn and edge set En, such that

Pr((x, vn,i, vn, j) ∈ En) = PX(x),∀x ∈ [1, l − 1], vn,i, vn, j ∈ Vn,

and edges between different vertices are mutually independent.

We consider families of correlated pairs of marked labeled
Erdös-Rényi graphs g

n,Pn,X1 ,X2

= (g̃1
n,PX1

, g̃2
n,PX2

).

Definition 5. Let the pair of random variables (X1, X2) be
defined on the probability space (X × X, Pn,X1,X2 ), where
X = [0, l−1]. A correlated pair of marked labeled Erdös-Renyi
graphs (CMER) g̃

n,PX1 ,X2

= (g̃1
n,PX1

, g̃2
n,pX2

) is characterized by: i)

the pair of marked Erdös-Renyi graphs gi
n,PXi

, i ∈ {1, 2}, ii) the
pair of labelings σi for the unlabeled graphs gi

n,PXi
, i ∈ {1, 2},

and iii) the probability distribution PX1,X2 (x1, x2), (x1, x2) ∈
X × X, such that:
1)The pair gi

n,PXi
, i ∈ {1, 2} have the same set of vertices

Vn = V1
n = V2

n.
2) For any two marked edges ei = (xi, vi

n,s1
, vi

n,s2
), i ∈

{1, 2}, x1, x2 ∈ [0, l − 1], we have

Pr
(
e1 ∈ E1

n, e
2 ∈ E2

n

)
=PX1,X2 (x1, x2), if σ1(v1

n,s j
) = σ2(v2

n,s j
), j ∈ {1, 2}

PX1 (x1)PX2 (x2), Otherwise
.

Definition 6. For a given joint distribution PX1,X2 , a correlated
pair of marked partially labeled Erdös-Renyi graphs (CMPER)
g

n,PX1 ,X2

= (g̃1
n,PX1

, g2
n,PX2

) is characterized by: i) the pair of

marked Erdös-Renyi graphs gi
n,PXi

, i ∈ {1, 2}, ii) a labeling σ1

for the unlabeled graph g1
n,pX1

, and iii) a probability distribu-
tion PX1,X2 (x1, x2), (x1, x2) ∈ X × X, such that there exists a
labeling σ2 for the graph g2

n,PX2
for which (g̃1

n,PX1
, g̃2

n,PX2
) is a

CMER, where g̃2
n,PX2
, (g2

n,PX2
, σ2).

The following defines a matching algorithm:



Definition 7. A matching algorithm for the family of CMPERs
g

n,Pn,X1 ,X2

= (g̃1
n,Pn,X1

, g2
n,Pn,X2

), n ∈ N is a sequence of functions

fn : g
n,Pn,X1 ,X2

7→ σ̂2
n such that P

(
σ2

n(v2
n,J) = σ̂2

n(v2
n,J)

)
→ 1

as n → ∞, where the random variable J is uniformly
distributed over [1, n] and σ2

n is the labeling for the graph
g2

n,Pn,X2
for which (g̃1

n,Pn,X1
, g̃2

n,Pn,X2
) is a CMER, where g̃2

n,Pn,X2
,

(g2
n,Pn,X2

, σ2
n).

Note that in the above definition, for fn to be a matching
algorithm, the fraction of vertices whose labels are matched
incorrectly must vanish as n approaches infinity. This is a
relaxation of the criteria considered in [6]–[12] where all of the
vertices are required to be matched correctly simultaneously
with vanishing probability of error as n→ ∞.

The following defines an achievable region for the graph
matching problem.

Definition 8. For the graph matching problem, a family of
sets of distributions P̃ = (Pn)n∈N is said to be in the achievable
region if for every sequence of distributions Pn,X1,X2 ∈ Pn, n ∈
N, there exists a matching algorithm.

III. Permutations of Typical Sequences

In this section, we develop the mathematical tools necessary
to analyze the performance of the typicality matching strategy.
In summary, the typicality matching strategy operates as
follows. Given a CMPER g

n,Pn,X1 ,X2

the strategy finds a labeling

σ̂2 such that the pair of adjacency matrices (G̃1
σ1 , G̃2

σ̂2 ) are
jointly typical with respect to Pn,X1,X2 , where joint typicality is
defined in Section IV. Each labeling σ̂2 gives a permutation of
the adjacency matrix G̃2

σ2 . Hence, analyzing the performance
of the typicality matching strategy requires bounds on the
probability of typicality of permutations of correlated pairs
of sequences of random variables. The necessary bounds are
derived in this section. The details of typicality matching and
its performance are described in Section IV.

Definition 9. Let the pair of random variables (X,Y) be
defined on the probability space (X×Y, PX,Y ), where X and Y
are finite alphabets. The ε-typical set of sequences of length
n with respect to PX,Y is defined as:

An
ε (X,Y) ={

(xn, yn) :
∣∣∣∣1n N(α, β|xn, yn) − PX,Y (α, β)

∣∣∣∣ ≤ ε,∀(α, β) ∈ X × Y
}
,

where ε > 0, n ∈ N, and N(α, β|xn, yn) =∑n
i=1 1 ((xi, yi) = (α, β)).

We follow the notation used in [22] in our study of permu-
tation groups.

Definition 10. A permutation on the set of numbers [1, n] is
a bijection π : [1, n] → [1, n]. The set of all permutations on
the set of numbers [1, n] is denoted by S n.

Definition 11. A permutation π ∈ S n, n ∈ N is called a cycle
if there exists m ∈ [1, n] and α1, α2, · · · , αm ∈ [1, n] such that
i) π(αi) = αi+1, i ∈ [1,m − 1], ii) π(αn) = α1, and iii) π(β) = β

if β , αi,∀i ∈ [1,m]. The variable m is called the length of the
cycle. The element α is called a fixed point of the permutation
if π(α) = α. We write π = (α1, α2, · · · , αm). The permutation π
is called a non-trivial cycle if m ≥ 2.

Lemma 1. [22] Every permutation π ∈ S n, n ∈ N has
a unique representation as a product of disjoint non-trivial
cycles.

Definition 12. For a given sequence yn ∈ Rn and permutation
π ∈ S n, the sequence zn = π(yn) is defined as zn = (yπ(i))i∈[1,n].1

For a correlated pair of independent and identically dis-
tributed (i.i.d) sequences (Xn,Yn) and an arbitrary permuta-
tion π ∈ S n, we are interested in bounding the probability
P((Xn, π(Yn)) ∈ An

ε (X,Y)). As an intermediate step, we first
find a suitable permutation π′ for which P((Xn, π(Yn)) ∈
An
ε (X,Y)) ≤ P((Xn, π′(Yn)) ∈ An

ε (X,Y)). In our analysis, we
make extensive use of the standard permutations defined
below.

Definition 13. For a given n,m, c ∈ N, and 1 ≤ i1 ≤ i2 ≤
· · · ≤ ic ≤ n such that n =

∑c
j=1 i j + m, an (m, c, i1, i2, · · · , ic)-

permutation is a permutation in S n which has m fixed points
and c disjoint cycles with lengths i1, i2, · · · , ic, respectively.

The (m, c, i1, i2, · · · , ic)-standard permutation is defined as
the (m, c, i1, i2, · · · , ic)-permutation consisting of the cycles
(
∑k−1

j=1 i j + 1,
∑k−1

j=1 i j + 2, · · · ,
∑k

j=1 i j), k ∈ [1, c]. Alternatively,
the (m, c, i1, i2, · · · , ic)-standard permutation is defined as:

π = (1, 2, · · · , i1)(i1 + 1, i1 + 2, · · · , i1 + i2) · · ·

(
c−1∑
j=1

i j + 1,
c−1∑
j=1

i j + 2, · · · ,
c∑

j=1

i j)(n − m + 1)(n − m + 2) · · · (n).

Example 1. The (2, 2, 3, 2)-standard permutation is a per-
mutation which has m = 2 fixed points and c = 2 cycles.
The first cycle has length i1 = 3 and the second cycle has
length i2 = 2. It is a permutation on sequences of length
n =

∑c
j=1 i j + m = 3 + 2 + 2 = 7. The permutation is

given by π = (123)(45)(6)(7). For an arbitrary sequence
α = (α1, α2, · · · , αn), we have:

π(α) = (α3, α1, α2, α5, α4, α6, α7).

Proposition 2. Let (Xn,Yn) be a pair of i.i.d sequences defined
on finite alphabets. We have:
i) For an arbitrary permutation π ∈ S n,

P((π(Xn), π(Yn)) ∈ An
ε (X,Y)) = P((Xn,Yn) ∈ An

ε (X,Y)).

ii) let n,m, c, i1, i2, · · · , ic ∈ N be numbers as described
in Definition 13. Let π1 be an arbitrary (m, c, i1, i2, · · · , ic)-
permutation and let π2 be the (m, c, i1, i2, · · · , ic)-standard
permutation. Then,

P((Xn, π1(Yn)) ∈ An
ε (X,Y)) = P((Xn, π2(Yn)) ∈ An

ε (X,Y)).

1Note that in Definitions 10 and 12 we have used π to denote both a scalar
function which operates on the set [1, n] as well as a function which operates
on the vector space Rn.



Proof. The proof of part i) follows from the fact that permut-
ing both Xn and Yn by the same permutation does not change
their joint type. For part ii), it is straightforward to show that
there exists a permutation π such that π(π1) = π2(π) [22]. Then
the statement follows from part i):

P
(
(Xn, π1 (Yn)) ∈ An

ε (X,Y)
)

= P
(
(π (Xn) , π (π1 (Yn))) ∈ An

ε (X,Y)
)

= P
(
(π (Xn) , π2 (π (Yn))) ∈ An

ε (X,Y)
)

(a)
= P

((
X̃n, π2

(
Ỹn

))
∈ An

ε (X,Y)
)

(b)
= P

(
(Xn, π2 (Yn)) ∈ An

ε (X,Y)
)
,

where in (a) we have defined (X̃n, Ỹn) = (π(Xn), π(Yn)). and (b)
holds since (X̃n, Ỹn) has the same distribution as (Xn,Yn). �

For a given permutation π ∈ S n, and sequences (Xn,Yn),
define Un

(π) = π(Yn). Furthermore, define ZA
(π),i = 1((Xi,U(π),i) ∈

A), A ⊆ X × Y. Define PXPY (A) =
∑

(x,y)∈A PX(x)PY (y) and
PX,Y (A) =

∑
(x,y)∈A PX,Y (x, y).

Theorem 1. Let (Xn,Yn) be a pair of i.i.d sequences defined
on finite alphabets X and Y, respectively. There exists ζ > 0
such that for any (m, c, i1, i2, · · · , ic)-permutation π, and 0 <
ε < I(X;Y)

|X||Y|
:

P((Xn, π(Yn)) ∈ An
ε (X,Y)) ≤ 2−ζn(I(X;Y)−|X||Y|ε),

where n,m, c, i1, i2, · · · , ic ∈ N such that i1 ≥ i2 ≥ · · · ≥ ic, and
m <

√
n.

The proof is provided in the Appendix.

IV. The TypicalityMatching Strategy

In this section, we describe the typicality matching algo-
rithm and characterize its achievable region. Given a CMPER
g

n,Pn,X1 ,X2

= (g̃1
n,Pn,X1

, g2
n,Pn,X2

), the typicality matching algorithm

operates as follows. The algorithm finds a labeling σ̂2, for
which the pair of UT’s G̃1,UT

σ1 and G̃2,UT
σ̂2 are jointly typical

with respect to Pn,X1,X2 when viewed as vectors of length n(n−1)
2 .

Specifically, it returns a randomly picked element σ̂2 from the
set:

Σ̂ = {σ̂2|(G̃1,UT
σ1 , G̃2,UT

σ̂2 ) ∈ A
n(n−1)

2
ε },

where ε = ω( 1
n ), and declares σ̂2 as the correct labeling. Note

that the set Σ̂ may have more than one element. We will show
that under certain conditions on the joint graph statistics, all of
the elements of Σ̂ satisfy the criteria for successful matching
given in Definition 7. In other words, for all of the elements
of Σ̂ the probability of incorrect labeling for any given vertex
is arbitrarily small for large n.

Theorem 2. For the typicality matching algorithm, a given
family of sets of distributions P̃ = (Pn)n∈N is achievable, if for
every sequence of distributions Pn,X1,X2 ∈ Pn, n ∈ N:

I(X1; X2) = ω(
log n

n
), (1)

provided that Pn,X1,X2 is bounded away from 0 as n→ ∞.

The proof is provided in the Appendix.

Remark 1. For graphs with binary valued edges, Theorem
2 provides bounds on the condition for successful matching
which improve upon the bound given in ( [10] Theorem 1).
It should be noted that a stronger definition for successful
matching is used in [10].

V. Conclusion

We have introduced the typicality matching algorithm for
matching pairs of correlated graphs. The probability of typi-
cality of permutations of sequences of random variables has
been investigated. An achievable region for the typicality
matching algorithm has been derived. The region characterizes
the conditions for successful matching both for graphs with
binary valued edges as well graphs with finite-valued edges.

Appendix

A. Proof of Theorem 1

The proof builds upon some of the results in [25]. Fix an
integer t ≥ 2. We provide an outline of the proof when m = 0
and i1 ≤ t. Let A = {(x, y) ∈ X × X

∣∣∣PXPY (x, y) < PX,Y (x, y)}
and ε ∈ [0,min(x,y)∈X×X(|PX,Y (x, y) − PXPY (x, y)|)]. Note that

Pr((Xn, π(Yn)) ∈ An
ε (X,Y)) ≤

Pr
(( ⋂

(x,y)∈A

{1
n

n∑
i=1

Z{(x,y)}
(π),i > PX,Y (x, y) − ε

})⋂
( ⋂

(x,y)∈Ac

{1
n

n∑
i=1

Z{(x,y)}
(π),i < PX,Y (x, y) − ε

}))
For brevity let αx,y = 1

n
∑n

i=1 Z{(x,y)}
(π),i , x, y ∈ X and let

T (x,y)
j =

1
n

i j∑
k=1

Z{(x,y)}
(π),k , j ∈ [1, c].

Also, define c̄ = n
t and tx,y = loge

PX,Y (x,y)
PX (x)PY (y) . Then,

P
(( ⋂

(x,y)∈A

{
c̄αx,y > c̄PX,Y (x, y) − ε

})⋂
( ⋂

(x,y)∈Ac

{
c̄αx,y < c̄PX,Y (x, y) − ε

}))
= P

( ⋂
(x,y)∈X×Y

{
ec̄tx,yαx,y > ec̄tx,yPX,Y (x,y)−ε}),

where we have used the fact that by construction:tx,y > 0 if (x, y) ∈ A
tx,y < 0 if (x, y) ∈ Ac.

(2)



So,

P
(( ⋂

(x,y)∈A

{
c̄αx,y > c̄PX,Y (x, y) − ε

})⋂
( ⋂

(x,y)∈Ac

{
c̄αx,y < c̄PX,Y (x, y) − ε

}))
(a)
≤ P

( ∏
(x,y)∈X×Y

ec̄tx,yαx,y >
∏

(x,y)∈X×Y

ec̄tx,yPX,Y (x,y)−ε
)

(3)

(b)
≤ e−

∑
x,y c̄tx,yPX,Y (x,y)−εE(

∏
x,y

ec̄tx,yαx,y ) (4)

= e−
∑

x,y c̄tx,yPX,Y (x,y)−εE(e
c̄
n
∑c

j=1
∑

x,y tx,yT (x,y)
j )

(c)
= e−

∑
x,y c̄tx,yPX,Y (x,y)−ε

c∏
j=1

E(e
1
t
∑

x,y tx,yT {(x,y)}
j ), (5)

where in (a) we have used the fact that the exponential
function is increasing and positive, (b) follows from the
Markov inequality and (c) follows from the independence
of T {(x,y)}

j and T {(x,y)}
i when i , j for arbitrary (x, y) and

(x′, y′). Next, we investigate the term E(e
1
t
∑

x,y tx,yT {(x,y)}
j ). Note

that by Definition,
∑

x,y∈X T {(x,y)}
j = i j,∀ j ∈ [1, c]. Define

S {(x,y)}
j = 1

t T {(x,y)}
j , j ∈ [1, c]. Let B = {(s{(x,y)}

j ) j∈[1,c],x,y∈X :∑
x,y∈X s{(x,y)}

j =
i j

t ,∀ j ∈ [1, c]} be the set of possible values
taken by (S {(x,y)}

j ) j∈[1,c],x,y∈X. Note that:

E(e
∑

x,y tx,yS {(x,y)}
j )

=
∑

(s{(x,y)}
j )i∈[1,n],x,y∈X∈β

P((s{(x,y)}
j ) j∈[1,c],x,y∈X)e

∑
x,y tx,y s{(x,y)}

j . (6)

For a fixed vector (s{(x,y)}
j ) j∈[1,c],x,y∈X ∈ β, let V(x,y) be defined as

the random variable for which P(V = t(x,y)) = s{(x,y)}
j , x, y ∈ X

and P(V = 0) = 1 − i j

t (note that PV is a valid probability
distribution). From Equation (6), we have:

E(e
∑

x,y tx,yS {(x,y)}
j ) =

∑
(s{(x,y)}

j ) j∈[1,c],x,y∈X∈β

P((s{(x,y)}
j ) j∈[1,c],x,y∈X)eE(Vx,y)

≤
∑

(s{(x,y)}
j ) j∈[1,c],x,y∈X∈β

P((s{(x,y)}
j ) j∈[1,c],x,y∈X)E(eVx,y )

=
∑

(s{(x,y)}
j ) j∈[1,c],x,y∈X∈β

P((s{(x,y)}
j ) j∈[1,c],x,y∈X)(1 −

i j

t
+

∑
x,y

s{(x,y)}
j etx,y )

= (1 −
i j

t
+

∑
x,y

E(S {(x,y)}
(π),i )etx,y )

= (1 −
i j

n
+

∑
x,y

i j

t
PX(x)PY (y)etx,y ). (7)

We replace tx,y, x, y ∈ X×Y with loge
PX,Y (x,y)

PX (x)PY (y) . From Equation

(7), we conclude that E(e
∑

x,y tx,yS {(x,y)}
j ) = 1. From Equation (5),

we have:

P
(( ⋂

(x,y)∈A

{
αx,y > nPX,Y (x, y) − ε

})⋂
( ⋂

(x,y)∈Ac

{
αx,y < nPX,Y (x, y) − ε

}))
= e−

n
t
∑

x,y(PX,Y (x,y) loge
PX,Y (x,y)

PX (x)PY (y)−ε)

= e−
n
t (I(X;Y)−|X||Y|ε).

In the next step, we prove the theorem when i1 > t and m = 0.
The proof is similar to the previous case. Following the steps
above, we get:

Pr((Xn, π(Yn)) ∈ An
ε (X,Y)) = Pr(V(PX,Y , P̂) ≤ ε)

(c)
= e−

∑
x,y c̄tx,yPX,Y (x,y)−ε

c∏
j=1

E(e
1
t
∑

x,y tx,yT {(x,y)}
j )

Assume that i1 > t, then we ‘break’ the cycle into smaller
cycles as follows:

E(e
1
t
∑

x,y tx,yT {(x,y)}
1 ) =

EXt (E(e
1
t
∑

x,y tx,yT {(x,y)}
1 )|Xt)

= EXt (E(e
1
t
∑

x,y tx,yT
′{(x,y)}
1 |Xt)E(e

1
t
∑

x,y tx,yT
′′{(x,y)}
1 )|Xt),

where, T
′{(x,y)}
1 = 1

n
∑t

k=1 ZA
(π),k and T

′′{(x,y)}
1 = 1

n
∑i1

k=t+1 ZA
(π),k.

We investigate E(e
1
t
∑

x,y tx,yT
′{(x,y)}
1 |Xt). Define, S

′{(x,y)}
1 = 1

t T
′{(x,y)}
1 .

Then,

E(e
∑

x,y tx,yS
′{(x,y)}
j |Xt)

= (1 −
i j

n
+

∑
x,y

(
i j − 1

t
PX(x)PY (y) +

1
t

PX(x)PY |X(y|Xt))etx,y )

= 1.

The theorem is proved by the repetitive application of the
above arguments.

B. Proof of Theorem 2

First, note that

P((G̃1,UT
σ1 , G̃2,UT

σ2 ) ∈ A
n(n−1)

2
ε )→ 1 as n→ ∞.

So, P(̂Σ = φ) → 0 as n → ∞ since the correct labeling is a
member of the set Σ̂. Let (λn)n∈N be an arbitrary sequence of
numbers such that λn = Θ(n). We will show that the probability
that a labeling in Σ̂ labels λn vertices incorrectly goes to 0 as
n→ ∞. Define the following:

E = {σ′2
∣∣∣∣||σ2 − σ′2||1 ≥ λn},

where || · ||1 is the L1-norm. The set E is the set of all labelings
which match more than λn vertices incorrectly.

We show the following:

P(E ∩ Σ̂ , φ)→ 0, as n→ ∞.



Note that:

P(E ∩ Σ̂ , φ) = P(
⋃

σ′2:||σ2−σ′2 ||1≥λn

{σ′2 ∈ Σ̂})

(a)
≤

n∑
i=λn

∑
σ′2:||σ2−σ′2 ||1=i

P(σ′2 ∈ Σ̂)

(b)
=

n∑
i=λn

∑
σ′2:||σ2−σ′2 ||1=i

P((G̃1,UT
σ1 ,Πσ2,σ′2 (G̃2,UT

σ2 )) ∈ A
n(n−1)

2
ε )

(c)
≤

n∑
i=λn

∑
σ′2:||σ2−σ′2 ||1=i

2−( n(n−1)
2 −

λn(λn−1)
2 )(I(X1;X2)−|X||Y|ε)

(d)
=

n∑
i=λn

(
n
i

)
(!i)2−Θ(n2)(I(X1;X2)− ε

2 )

≤ nne−Θ(n2)(I(X1;X2)−|X||Y|ε)

≤ 2−Θ(n2)(I(X1;X2)−|X||Y|ε)−Θ( log n
n )),

where (a) follows from the union bound, (b) follows from
the definition of Σ̂ and Proposition 1, in (c) we have used
Theorem 1 and the fact that ||σ2 − σ′2||1 means that Πσ2,σ′2

has λn(λn−1)
2 fixed points, in (d) we have denoted the number

of derangement of sequences of length i by !i. Note that the
right hand side in the last inequality approaches 0 as n → ∞
as long as (1) holds since ε = O( log n

n ).

References

[1] L. Babai, P. Erdos, and S. M Selkow. Random graph isomorphism.
SIaM Journal on computing, 9(3):628–635, 1980.

[2] B. Bollobás. Random graphs. 2001. Cambridge Stud. Adv. Math, 2001.
[3] T. Czajka and G. Pandurangan. Improved random graph isomorphism.

Journal of Discrete Algorithms, 6(1):85–92, 2008.
[4] P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.
[5] E. M Wright. Graphs on unlabelled nodes with a given number of edges.

Acta Mathematica, 126(1):1–9, 1971.
[6] E. Kazemi. Network alignment: Theory, algorithms, and applications.

2016.
[7] L. Yartseva and M. Grossglauser. On the performance of percolation

graph matching. In Proceedings of the first ACM conference on Online
social networks, pages 119–130. ACM, 2013.

[8] P. Pedarsani, D. R Figueiredo, and M. Grossglauser. A bayesian method
for matching two similar graphs without seeds. In Communication, Con-
trol, and Computing (Allerton), 2013 51st Annual Allerton Conference
on, pages 1598–1607. IEEE, 2013.

[9] S. Ji, W. Li, M. Srivatsa, and R. Beyah. Structural data de-
anonymization: Quantification, practice, and implications. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1040–1053. ACM, 2014.

[10] D. Cullina and N. Kiyavash. Exact alignment recovery for correlated
erdos renyi graphs. arXiv preprint arXiv:1711.06783, 2017.

[11] V. Lyzinski. Information recovery in shuffled graphs via graph matching.
arXiv preprint arXiv:1605.02315, 2016.

[12] F. Shirani, S. Garg, and E. Erkip. Seeded graph matching: Efficient
algorithms and theoretical guarantees. In 2017 51st Asilomar Conference
on Signals, Systems and Computers - Pacific Grove, CA, United States,,
Oct. 2017, https : //wp.nyu.edu/ f arhad_shirani/asilomar/.

[13] X. Fu, Z. Hu, Z. Xu, L. Fu, and X. Wang. De-anonymization of social
networks with communities: When quantifications meet algorithms.
arXiv preprint arXiv:1703.09028, 2017.

[14] D. Cullina and N. Kiyavash. Improved achievability and converse
bounds for erdos-renyi graph matching. SIGMETRICS Perform. Eval.
Rev., 44(1):63–72, June 2016.

[15] E. Onaran, S. Garg, and E. Erkip. Optimal de-anonymization in random
graphs with community structure. In Signals, Systems and Computers,
2016 50th Asilomar Conference on,, pages 709–713. IEEE, 2016.

[16] E. Kazemi, L. Yartseva, and M. Grossglauser. When can two unlabeled
networks be aligned under partial overlap? In 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pages 33–42, Sept 2015.

[17] E. Kazemi, H. Hassani, and M. Grossglauser. Growing a graph matching
from a handful of seeds. Proceedings of the VLDB Endowment,
8(10):1010–1021, 2015.

[18] C. Chiasserini, M. Garetto, and E. Leonardi. Social network de-
anonymization under scale-free user relations. IEEE/ACM Transactions
on Networking, 24(6):3756–3769, 2016.

[19] V. Lyzinski, D. E Fishkind, and C. E Priebe. Seeded graph matching for
correlated erdös-rényi graphs. Journal of Machine Learning Research,
15(1):3513–3540, 2014.

[20] M. Fiori, P. Sprechmann, J. Vogelstein, P. Musé, and Guillermo Sapiro.
Robust multimodal graph matching: Sparse coding meets graph match-
ing. In Advances in Neural Information Processing Systems, pages 127–
135, 2013.

[21] I. Csiszár and J. Korner. Information Theory: Coding Theorems for
Discrete Memoryless Systems. Academic Press Inc. Ltd., 1981.

[22] I. Martin Isaacs. Algebra: a graduate course, volume 100. American
Mathematical Soc., 1994.

[23] I. Csiszár. Large-scale typicality of Markov sample paths and con-
sistency of mdl order estimators. IEEE Transactions on Information
Theory, 48(6):1616–1628, 2002.

[24] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association, 58(301):13–
30, 1963.

[25] Xinjia Chen. Concentration inequalities for bounded random vectors.
arXiv preprint arXiv:1309.0003, 2013.

http://arxiv.org/abs/1711.06783
http://arxiv.org/abs/1605.02315
http://arxiv.org/abs/1703.09028
http://arxiv.org/abs/1309.0003

	I Introduction
	II Problem Formulation
	III Permutations of Typical Sequences
	IV The Typicality Matching Strategy
	V Conclusion
	Appendix
	A Proof of Theorem ??
	B Proof of Theorem ??

	References

