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Abstract—We study the problem of minimizing the time-
average expected Age of Information for status updates sent by an
energy-harvesting source with a finite-capacity battery. In prior
literature, optimal policies were observed to have a threshold
structure under Poisson energy arrivals, for the special case of
a unit-capacity battery. In this paper, we generalize this result
to any (integer) battery capacity, and explicitly characterize the
threshold structure. We obtain tools to derive the optimal policy
for arbitrary energy buffer (i.e. battery) size. One of these results
is the unexpected equivalence of the minimum average AoI and
the optimal threshold for the highest energy state.

Index Terms—Age of Information; age-energy tradeoff; thresh-
old policy; optimal threshold; energy harvesting; battery capacity

I. INTRODUCTION

The Age of Information (AoI) was proposed in [1], [2] as a

performance metric that measures the freshness of information

in status-update systems. For a flow of information updates

sent from a source to a destination, status age is defined as the

time elapsed since the newest update available was generated

at the source. That is, if u(t) is the largest among the time-

stamps of all packets received by time t, status age is defined

as:

∆(t) = t− u(t), (1)

The Age of Information (AoI) usually refers to the time-

average of ∆(t). AoI is a particularly relevant performance

metric for status-update applications that have growing impor-

tance in social networks, remote monitoring [3], [4], machine-

type communication (smart cities, industrial manufacturing,

telerobotics, IoT).

AoI was analyzed under various queueing system models,

service disciplines and queue management policies in recent

literature (e.g., [5]–[12]. The control and optimization of AoI

for an active source that can generate updates at will, was

studied in [13], [14].

The relation of energy and AoI was studied as early as 2015:

The problem of AoI-optimal generation of status updates when

the source is constrained by an arbitrary sequence of energy

arrivals was formulated in [15], resulting in the optimal offline

solution and an online policy. The study in [16] considered the

optimization of AoI under a long-term average rate of energy

harvesting, when update transmissions are subject to random

delays in the network. Both studies observed that AoI-optimal

policies tend to be lazy, in the sense that they may intentionally

impose a waiting time before sending the next update. That

is, for maximum freshness, one may sometimes send updates

at a rate lower than one is allowed to- which may be counter-

intuitive at first sight.

The online problem in [15] was extended to a continuous-

time formulation with Poisson energy arrivals, finite energy

storage (battery) capacity, and random packet errors in the

channel in [17]. An age-optimal threshold policy was proposed

for the unit battery case, and the achievable AoI for arbitrary

battery size was bounded for a channel with a constant error

packet error probability. Optimal threshold policies for the unit

battery and infinite battery capacity cases were found for a

channel with no errors, in the concurrent study in [18]. The

problem of characterizing optimal policies for arbitrary battery

sizes remained open.

In [19], the offline results in [17] were extended considering

fixed non-zero service time and the result is used to obtain

a solution for the two-hop scenario. Another offline problem

under energy harvesting was investigated in [20] where the

transmission delay of an update is controlled by energy

consumed on its transmission.

This paper extends [17], making the following contributions:

• A more general description of the policy space for age-

optimal scheduling, including threshold policies with age-

based thresholds that are monotone in energy state, is

formulated.

• Following the study in [17], it was conjectured that for

any battery size, the optimal threshold on the age for the

highest energy state is actually equal to the minimum

AoI. This conjecture is proved to be correct.

• Optimal thresholds are obtained numerically for integer

battery size up to 5.

II. SYSTEM MODEL

Consider an energy harvesting transmitter that sends update

packets to a destination, as illustrated in Fig 1. Suppose that

the transmitter has a finite battery which is capable of storing

up to B units of energy. Transmission of each update packet

consumes a unit of energy. Let E(t) denote the amount of

energy stored in the battery at time t. The timing of status

updates are controlled by a sampler which can monitor the

battery level E(t) at all time t. We assume that when an update

http://arxiv.org/abs/1802.04724v1


Energy Buffer

Harvested Energy

Channel

Sensor Sampler &

Scheduler

B

Transmitter Receiver

Fig. 1. System Model.

is given to the transmitter, it is instantaneously transmitted 1.

Let NH(t) and NU (t) denote the number of energy units

that have arrived and the number of updates that have sent

out by time t, respectively. We assume that the energy arrival

process is Poisson with a rate µH . Energy arriving while the

battery is full is lost (cannot be stored or used).

The system starts to operate at time t = 0. Let Zk

denote the generation time of the k-th update packet such that

0 = Z0 ≤ Z1 ≤ Z2 ≤ . . .. An update policy is defined by

a sequence of update instants π = (Z0, Z1, Z2, ...). In many

status-update systems (e.g., a sensor reporting temperature []),

the update packets are only sent out sporadically and the

packet size is quite small. Hence, the duration for transmitting

a packet is much smaller than the difference between two

subsequent update times. Motivated by this, we assume that

the packet transmission time can be approximated as zero.

With this assumption, the age at a status generation is zero,

i.e. ∆(Zk) = 0 for any k, and the age at any time t is:

∆(t) = t− ZNU (t), t ≥ 0. (2)

The battery level before the (k+1)-st update instant is given

by the following:

E(t) = min{(E(Zk)− 1)+ +NH(t)−NH(Zk), B},
t ∈ (Zk, Zk+1], (3)

We first define the set of energy-causal update policies:

Definition 1. A policy π is said to be energy-causal if no

update packet is sent out when the battery is empty, i.e.,

E(Zk) ≥ 1 for all k ≥ 1.

The information available up to some time t is represented

by Ft = σ({(NH(t′), NU (t
′)), 0 ≤ t′ < t}) which is the σ-

field generated by the sequence of energy arrivals and updates,

i.e., {(NH(t′), NU (t
′)), 0 ≤ t′ < t}. The set of online update

policies is defined as follows:

Definition 2. An energy-causal policy is said to be online if

no update instant is determined based on future information,

1This corresponds to an assumption of instantaneous service, i.e, the
duration of packet transmission is ignored. This is an appropriate model
for sporadic transmissions (e.g., a sensor reporting temperature) where the
time between two updates is typically much larger than a packet transmission
duration.

i.e., does not depend on future events, i.e., {Zk ≤ t} ∈ Ft for

all t ≥ 0 and k ≥ 1.

Let Π denote the set of online update policies. The time-

average expected age can be expressed as:

∆̄ = lim sup
tf→∞

1

tf
E

[
∫ tf

0

∆(t)dt

]

. (4)

Let Xk represent the inter-update duration between updates

k − 1 and k, i.e., Xk = Zk − Zk−1. Then, the time-average

expected age in (4) can be equivalently expressed as:

∆̄ = lim sup
tf→∞

1

2tf
E





NU (tf )
∑

k=1

X2
k + (tf − ZNU (tf ))

2



 . (5)

The goal of this paper is to find the optimal update policy for

minimizing the time-average expected age, which is formu-

lated as:
min
π∈Π

∆̄. (6)

III. MAIN RESULTS

We begin with a result guaranteeing the existence of

threshold-type policies that are optimal. We define such poli-

cies as follows:

Definition 3. An online policy is said to be a threshold policy

if:

Zk+1 = inf
{

t ≥ Zk : ∆(t) ≥ τE(t)

}

, (7)

where τℓ denotes the threshold for sending an update when

the battery level is ℓ for ℓ = 1, . . . , B.

Let ΠT ⊂ Π be the set of threshold policies. First, we note

the following:

Theorem 1. There exists a threshold policy π ∈ ΠT that

solves (6).

In our search for an optimal policy, we can reduce the space

of policies further,

Definition 4. A threshold policy is said to be a monotone

threshold policy if τB ≤ . . . ≤ τℓ ≤ τ1.

Let ΠMT be the set of monotone threshold policies. The

following is true:

Theorem 2. There exists a monotone threshold policy π ∈
ΠMT that solves (6).

Theorem 2 implies that in the optimal update policy, update

packets are sent out more frequently when the battery level is

high.

To understand the time evolution of ∆(t) and E(t) for

policies in ΠMT, consider the illustration in Fig. 2. It can

be seen from Fig. 2 that when Z+
k = j, the next update

of a policy π ∈ ΠMT occurs before than some time t′ ∈
[Zk + τm, Zk + τm−1] if and only if there occur m− j energy

arrivals before than t′. Accordingly, for policies in ΠMT,

the cumulative distribution function (CDF) of inter-update
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Fig. 2. An illustration of the state space and transitions for a policy in Π
MT.

durations, Pr(Xk+1 ≤ x | E(Z+
k ) = j) can be expressed

as:

Pr(Xk+1 ≤ x | E(Z+
k ) = j) =











0, if x < τB

Pr(Ym−j ≤ x), if τm ≤ x < τm−1, ∀m ∈ {2, ..., B}
Pr(Y1−j ≤ x), if τ1 ≤ x

(8)

where Yi obeys the Erlang distribution at rate µH with

parameter i, for i ≥ 1, and Yi = 0 for i ≤ 0. From (8),

an expression for the transition probability Pr(E(Z+
k+1) = i |

E(Z+
k ) = j) for i = 0, 1, ...., B − 1 can be derived:

Pr(E(Z+
k+1) = i | E(Z+

k ) = j) =
{

Pr(YB−j ≤ τB−1), if i = B − 1

Pr(Y1+i−j ≤ τi)− Pr(Y2+i−j ≤ τi+1), if i < B − 1
(9)

Hence, energy states sampled at update instants can be

described as a DTMC with the transition probabilities in (9).

When thresholds are finite, this DTMC is ergodic as any

energy state is reachable from any other energy state with

positive probability in B − 1 steps.

Next, we show the main structural result satisfied by the

thresholds of any optimal policy in ΠMT.

Theorem 3. An optimal policy for solving (6) is a monotone

threshold policy π∗ = (τ∗1 , . . . , τ
∗
B) that satisfies the following

property: The threshold τ∗B for sending an update packet

when the battery is full is equal to the minimum time-average

expected age, i.e.,

τ∗B = ∆̄π∗ = min
π∈Π

∆̄π . (10)

This follows from the following two results:

Lemma 1. Consider non-negative random variable X , if:

Pr(X ≤ x) =










0 ; x < τB ,

Fi(x) ; τi ≤ x < τi−1, ∀i ∈ {2, ..., B},
F1(x) ; τ1 ≤ x,

where τB ≤ ... ≤ τ2 ≤ τ1 and Fi(x) is the CDF of a non-

negative random variable for every i ∈ {1, ..., B}, then:

∂

∂τi
E
[

X2
]

= 2τi
∂

∂τi
E [X ] .

Corollary 1. The inter-update intervals, X , for any π ∈ ΠMT

satisfy the following:

∂

∂τi
E
[

X2 | j
]

= 2τi
∂

∂τi
E [X | j] , ∀(i, j) ∈ {1, 2, ..., B}2.

(11)

Note that the transition probabilities (9) do not depend on

τB hence the steady-state probabilities obtained from (9) also

do not depend on τB . This leads to a property of τB which is

shown in Theorem 3. The unit-battery case , i.e., B = 1 case

was solved in [18] and [17], hence we skip the case B = 1
and continue with the case B = 2 where we can show the

result below:

Theorem 4. When B = 2, the average age ∆̄ can be expressed

as:

∆̄ =
α2
2
2
+e−α2[α2+1+ρ1(α

2
2+2α2+2)]−e−α1[α1+1+ρ1(α

2
1+α1+1)]

µH (α2+e−α2 [1+ρ1(α2+1)]−e−α1 [1+ρ1α1])
(12)

where

ρ1 =
e−α1

1− e−α1α1
,

and

α1 = µHτ1, α2 = µHτ2.

IV. NUMERICAL RESULTS

For battery sizes B = 1, 2, 3, 4, 5, the policies in ΠMT are

numerically optimized giving AoI versus energy arrival rate

(Poisson) curves in Fig 3.
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Fig. 3. AoI versus energy arrival rate (Poisson) for different battery sizes
B = 1, 2, 3, 4, 5.

V. CONCLUSION

This paper explored the age-energy tradeoff for status

updates sent by a finite-battery source that is charged intermit-

tently by Poisson energy arrivals. The objective was to design

a policy for the source to send updates to minimizing average

status age using the given energy harvests, known and used



TABLE I
OPTIMAL THRESHOLDS FOR DIFFERENT BATTERY SIZES FOR µ = 1

τ1 τ2 τ3 τ4 τ5 ∆̄π∗

B = 1 0.90 - - - - 0.90

B = 2 1.5 0.72 - - - 0.72

B = 3 1.5 1.2 0.64 - - 0.64

B = 4 1.5 1.2 0.96 0.604 - 0.604

B = 5 1.5 1.2 0.96 0.9 0.582 0.582

in an online manner. A threshold policy is one that transmits

when age exceeds a particular threshold for any battery state. It

is shown that there is an online energy-causal threshold policy

with monotone thresholds that optimally solves the problem.

In particular, the smallest of the thresholds, the one used when

the battery is full, has a value that matches the optimal average

age.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Sensor, Mesh and Ad Hoc

Communications and Networks (SECON), 2011 8th Annual IEEE Com-

munications Society Conference on, June 2011, pp. 350–358.
[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?” in INFOCOM 2012, pp. 2731–2735.
[3] R. Zviedris, A. Elsts, G. Strazdins, A. Mednis, and L. Selavo, “Lynxnet:

Wild animal monitoring using sensor networks,” in REALWSN 2010,
2010, pp. 170–173.

[4] K. R. Chevli, P. Kim, A. Kagel, D. Moy, R. Pattay, R. Nichols, and A. D.
Goldfinger, “Blue force tracking network modeling and simulation,” in
MILCOM 2006, Oct 2006, pp. 1–7.

[5] C. Kam, S. Kompella, and A. Ephremides, “Age of information under
random updates,” in IEEE ISIT, July 2013, pp. 66–70.

[6] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in IEEE ISIT, June 2014, pp. 1583–1587.

[7] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in IEEE ISIT, June 2015, pp. 1681–1685.

[8] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,
“Age of information of multiple sources with queue management,” in
2015 ICC, June 2015, pp. 5935–5940.

[9] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of
message transmission path diversity on status age,” IEEE Transactions
on Information Theory, vol. 62, no. 3, pp. 1360–1374, March 2016.

[10] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in IEEE ISIT, July 2016, pp. 2574–2578.

[11] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” CoRR, vol. abs/1608.08622, 2016.
[Online]. Available: http://arxiv.org/abs/1608.08622

[12] E. Najm, R. Yates, and E. Soljanin, “Status updates through m/g/1/1
queues with harq,” in 2017 IEEE International Symposium on Informa-

tion Theory (ISIT), June 2017, pp. 131–135.
[13] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B. Shroff,

“Update or wait: How to keep your data fresh,” in IEEE INFOCOM

2016, April 2016, pp. 1–9.
[14] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,

“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov 2017.

[15] T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information
under energy replenishment constraints,” in Proc. Info. Theory and Appl.

Workshop, Feb. 2015.
[16] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting

source,” 2015.
[17] T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to

minimize age of information with an energy harvesting sensor,” in
Proc.International Symp. on Info. Theory (ISIT), Jun. 2017.

[18] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information
minimization with an energy harvesting source,” IEEE Transactions on
Green Communications and Networking, vol. PP, no. 99, pp. 1–1, 2017.

[19] A. Arafa and S. Ulukus, “Age-minimal transmission in energy harvesting
two-hop networks,” Apr 2017.

[20] ——, “Age minimization in energy harvesting communications: Energy-
controlled delays,” Dec 2017.

[21] G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Prob-

lems, ser. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel,
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APPENDIX

A. The Proof of Theorem 1

Consider the problem in below for some h < ∞:

min
π∈Π

E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

. (13)

In order to solve (13), let us define a cost function Jh;w,Fw

for some time w ≥ z which is defined as:

J∗
h;w,Fw

:=

min
π∈Π

E

[

∫ Zk+1+h

w

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 ≥ w,Fw

]

, NU (w
−) = k.

(14)

This represents the minimum cumulative age in [w,w + h]
that is achievable by online policies given Fw. In fact,

Lemma 2. The cost function J∗
h;w,Fw

depends only on ∆(w)
and E(w) , i.e., J∗

h;w,Fw
= J∗

h;w′,Fw′
if and only if ∆(w) =

∆(w′) and E(w) = E(w′).

Proof. This is due to the following facts that , for any Zk+1 ≥
w, (1) given ∆(w) the cumulative age in [w,Zk+1 + h], i.e.
∫ Zk+1+h

w
∆(t)dt depends only the information on the updates

in [w,Zk+1 + h] and (2) given E(w), the evolution of the

battery state in [w,Zk+1+h] is determined only by the updates

and energy arrivals in [w,Zk+1 + h] and the distribution of

energy arrivals is identical for any [w,Zk+1 + h].

Hence, we can use the notation J∗
h(a, ℓ) := J∗

h;w,Fw
where

a = ∆(w+) and ℓ = E(w+). Now, considering the case

Zk+1 = w, define the following function:

Jh :=

min
π∈Π

E

[

∫ Zk+1+h

w

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 = w,Fw

]

, NU (w
−) = k.

(15)

Notice that ∆(w+) = 0 as w = Zk+1, accordingly, by

Lemma 2, Jh is only a function of E(w+), i.e., Jh = Jh(ℓ)
where ℓ = E(w+). Notice also,

E

[

∫ Zk+1+h

Zk+1

∆(t)dt

∣

∣

∣

∣

∣

Zk+1,FZk+1

]

≥ Jh(E(Zk+1)− 1),

(16)

for any Zk+1 of a policy π ∈ Π and the equality is achieved

for the policies that solve (13).

http://arxiv.org/abs/1608.08622


Accordingly, Zk+1 of the policy solving (13) is the optimal

stopping time of the following stopping problem for a given

z, h and Fz:

max
w∈Mz

E [Gw | Zk = z,Fz] , (17)

where Mz is the family of stopping times such that Mz =
{w ≥ z : {w ≤ t} ∈ Ft, ∀t ≥ z} and G = (Gt)t≥z is a

stochastic process having the following definition:

Gt =

−min
π∈Π

E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 = t, E(t)

]

. (18)

or alternatively,

Gt = −1

2
(t− z)2 − Jh(E(t)− 1), (19)

where Jh(−1) := ∞.

If exists, the optimal stopping time w∗ for (17) is given by

the following stopping rule [21, Theorem 2.2.]:

w∗ = inf{w ≥ z : Gw = Sw}, (20)

where S is the Snell envelope [21] for G:

Sw = ess sup
w′∈Mw

E [Gw′ | Fw] . (21)

Notice that the Snell envelope can be written by substituting

(18) in (21) as follows:

Sw =

ess sup
w′∈Mw

(

−min
π∈Π

E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 = w′,Fw

])

.

(22)

hence,

Sw =

−min
π∈Π

E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 ≥ w,Fw

]

. (23)

Accordingly, using the definition of J∗
h(a, ℓ), we can write:

Sw = −1

2
(w − z)2 − J∗

h(w − z, E(w)). (24)

Therefore, the optimal stopping rule in (20) is equivalent

to:

w∗ = inf{w ≥ z : Jh(E(w)− 1) = J∗
h(∆(w), E(w))}, (25)

Next, we show that the stopping rule in (25) is a threshold

rule in age. In order to show this, let us define the function

ρh(·) : {−1, 0, 1, ..., B} → [0,∞) such that:

ρh(ℓ) = inf{a ≥ 0 : Jh(ℓ− 1) = J∗
h(a, ℓ)}.

Consider J∗
h(a

′, ℓ) for some a′ ≥ ρh(ℓ) which is larger than

or equal to J∗
h(a, ℓ) as J∗

h(a, ℓ) is non-decreasing in a. On the

other hand, J∗
h(a

′, ℓ) is smaller than or equal to Jh(ℓ− 1) for

any a ≥ 0 as:

J∗
h(a

′, ℓ)

≤ min
π∈Π

E

[

∫ Zk+1+h

w

∆(t)dt

∣

∣

∣

∣

∣

Zk+1 = w,E(w) = ℓ

]

= Jh(ℓ− 1),

where the inequality is true as the expectation is conditioned

on policies with Zk+1 = w.

Accordingly, J∗
h(a

′, ℓ) = Jh(ℓ − 1) for any ℓ ∈
{0, 1, 2, .., B} and a′ ≥ ρh(ℓ). Therefore, the stopping rule

in (25) is equivalent to:

w∗ = inf{w ≥ z : ∆(w) ≥ ρh(E(w))}, (26)

for ℓ ∈ {0, 1, 2, .., B}.

We showed that the stopping rule in (26) gives the optimal

stopping time w∗ which equals to Zk+1 of a policy solving

(13) for any finite h. Now, we show that the optimal stopping

rule with the same structure also gives a solution to (6).

First, consider:

Lemma 3. The function ρh(ℓ) is uniformly bounded such that:

ρmax = sup
h≥0,ℓ>0

ρh(ℓ). (27)

We will show that this lemma implies Pr(Xk ≥ x) ∈
O(e−µHx) when Zk+1 = w∗. This follows from the fact

that, when Zk+1 = w∗, Xk ≥ ρmax + xd for some xd > 0
is possible if and only if, for some time t, E(t) = 0 and

∆(t) = ρmax + xd, which occurs when there is no energy

arrival during ρmax + xd units of time. This also shows that

Pr(Zk+1 < ∞ | Zk = z) = 1.

Next, we show that:

Lemma 4. When Zk+1 = w∗ ,

lim
h→∞

1

h
E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

= lim
h→∞

1

h
E

[

∫ h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

, (28)

Proof. This equality can be shown considering: (i) the case

(≤) and (ii) the case (≥):



(i) For the case (≤), consider:

E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk

]

= E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk
, Zk+1 < hα

]

Pr(Zk+1 < hα)

+ E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk
, Zk+1 ≥ hα

]

Pr(Zk+1 ≥ hα)

≤ E

[

∫ h(α+1)

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk
, Zk+1 < hα

]

Pr(Zk+1 < hα)

+ E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk
, Zk+1 ≥ hα

]

Pr(Zk+1 ≥ hα),

where hα = αh for some α ∈ (0, 1).
The term for the condition Zk+1 ≥ hα vanishes as h → ∞,

in order to see this consider:

E

[

∫ Zk+1+h

Zk

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk
, Zk+1 ≥ hα

]

Pr(Zk+1 ≥ hα)

≤ 1

2

(

E
[

X2
k | Xk ≥ hα − z

]

+ h2
)

Pr(Xk ≥ hα − z).

For Zk+1 = w∗, the upper bound goes to zero when h →
∞ as Pr(Xk ≥ hα − z) ∈ O(e−µHhα) and consequently

E
[

X2
k | Xk ≥ hα − z

]

∈ O(h2
α).

Accordingly,

lim
h→∞

1

h
E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

≤ lim
h→∞

1

h
E

[

∫ h(α+1)

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

, α ∈ (0, 1).

(29)

As the inequality is true for any α ∈ (0, 1):

lim
h→∞

1

h
E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

≤ lim
h→∞

1

h
E

[

∫ h

z

∆(t)dt | Zk = z,Fz

]

. (30)

(ii) For the case (≥), it can be seen that:

lim
h→∞

1

h
E

[

∫ Zk+1+h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

≥ lim
h→∞

1

h
E

[

∫ h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

.

Therefore, (28) is true and by (28) and (26), a solution to

the following problem,

min
π∈Π

lim
h→∞

1

h
E

[

∫ h

z

∆(t)dt

∣

∣

∣

∣

∣

Zk = z,Fz

]

, (31)

satisfies:

Zk+1 = inf{w ≥ z : ∆(w) ≥ ρ(E(w))}, (32)

where ρ(ℓ) := limh→∞ ρh(ℓ).

Notice that:

E

[
∫ tf

0

∆(t)dt

]

= E

[

E

[

∫ Zk

0

∆(t)dt

∣

∣

∣

∣

∣

Zk,FZk

]

+ E

[
∫ tf

Zk

∆(t)

∣

∣

∣

∣

Zk,FZk

]

]

.

Therefore, conditioned on Zk and FZk
, minimizing ∆̄ =

lim suptf→∞
1
tf
E

[
∫ tf

0

∆(t)dt

]

corresponds to solving (31),

which means a threshold policy solves (6) as (32) (where

ρ(ℓ) = τℓ) is satisfied by a solution to (31).

B. The Proof of Theorem 2

Theorem 2 follows from the proof of Theorem 1 and the

following lemma:

Lemma 5. Jh(ℓ) − J∗
h(a, ℓ + 1) is non-increasing in ℓ ∈

{0, 1, ..., B − 1} for any a ≥ 0 and h ≥ 0.

Proof. First, consider the problem in below for some ℓ ∈
{0, 1, ..., B − 1} and and h ≥ 0:

min
V

EV

[

min
π∈Π

E

[

∫ Zk+1+h

Zk+1

∆(t)dt

∣

∣

∣

∣

∣

Zk+1, E(Zk+1) = ℓ+ V

]]

(33)

s.t. E[V ] = 1. (34)

where V is a discrete r.v. that takes values in {0, 1, ..., B −
ℓ− 1}.

The problem in (33) is solved when Pr(V = 1) = 1 as

this case maximizes the prior knowledge on V . Accordingly,

considering the case Pr(V = 0) = Pr(V = 2) = 1
2 which

is suboptimal in (33), it can be seen that Jh(ℓ) constitutes a

convex series in ℓ:

Jh(ℓ+ 1) ≤ 1

2
(Jh(ℓ) + Jh(ℓ + 2)), (35)

for any ℓ ∈ {0, 1, ..., B − 1} and h ≥ 0.

Now, consider the alternative formulation of J∗
h(a, ℓ+1) in

below:

J∗
h(a, ℓ + 1) = min

Zk+1∈Mw

∞
∑

σ=0

∫ ∞

w

K(w′, σ)×
[

(z′ − w)(a +
z′ − w

2
) + Jh(min{ℓ+ σ,B − 1})

]

dz′,

(36)

where K(w′, σ) = Pr(Zk+1 = z′, NH(z′)−NH(w) = σ).



Similarly,

J∗
h(a, ℓ+ 2) = min

Zk+1∈Mw

∞
∑

σ=0

∫ ∞

w

K(w′, σ)×
[

(z′ − w)(a +
z′ − w

2
) + Jh(min{ℓ+ 1 + σ,B − 1})

]

dz′.

(37)

Now, let K∗(w′, σ) be the distribution corresponding to the

update time Zk+1 ∈ Mw that is optimal in (37), which means:

J∗
h(a, ℓ+ 2) =

∞
∑

σ=0

∫ ∞

w

K∗(w′, σ)×
[

(z′ − w)(a +
z′ − w

2
) + Jh(min{ℓ+ 1 + σ,B − 1})

]

dz′.

(38)

Combining (39) and (36) gives:

J∗
h(a, ℓ+ 1)− J∗

h(a, ℓ+ 2) ≤
∞
∑

σ=0

∫ ∞

w

K∗(w′, σ)×

[Jh(min{ℓ+ σ,B − 1})−Jh(min{ℓ+ 1 + σ,B − 1})]dz′.
(39)

As σ ≥ 0, the below inequality holds due to (35):

Jh(min{ℓ+ σ,B − 1})− Jh(min{ℓ+ 1 + σ,B − 1}) ≤
Jh(ℓ)− Jh(ℓ + 1). (40)

Hence,

J∗
h(a, ℓ+ 1)− J∗

h(a, ℓ+ 2) ≤ Jh(ℓ)− Jh(ℓ+ 1), (41)

which means:

Jh(ℓ+ 1)− J∗
h(a, ℓ+ 2) ≤ Jh(ℓ)− J∗

h(a, ℓ+ 1). (42)

This lemma shows that ρh(ℓ) is non-increasing in ℓ for any

h ≥ 0 as:

0 = Jh(ℓ− 1)− J∗
h(ρh(ℓ), ℓ) ≤ Jh(ℓ− 2)− J∗

h(ρh(ℓ), ℓ− 1),

hence ρh(ℓ− 1) ≥ ρh(ℓ).
As τℓ = limh→∞ ρh(ℓ) for an optimal policy and ρh(ℓ) is

non-increasing, thus a policy with τB ≤ . . . ≤ τℓ ≤ τ1 solves

(6).

C. The proof of Lemma 1

Taking τB+1 = 0 and τ0 = ∞, consider:

∂

∂τi
E
[

X2
]

=
∂

∂τi

∫ ∞

0

Pr(X2 ≥ x)dx

=
∂

∂τi

B
∑

i=0

∫ τ2
i

τ2
i+1

Pr(X ≥
√
x)dx

=
∂

∂τi
[

∫ τ2
i

τ2
i+1

Pr(X ≥
√
x)dx

+

∫ τ2
i−1

τ2
i

Pr(X ≥
√
x)dx],

for any i = 0, 1, ..., B.

Similarly,

∂

∂τi
E [X ] =

∂

∂τi
[

∫ τi

τi+1

Pr(X ≥ x)dx

+

∫ τi−1

τi

Pr(X ≥ x)dx].

for i = 0, 1, ..., B.

Let F̃i(x) = 1− Fi(x) and F̃ I
i (x) =

∫ x

0 F̃i(x
′)dx′. Then,

∫ τ2
i

τ2
i+1

Pr(X ≥
√
x)dx+

∫ τ2
i−1

τ2
i

Pr(X ≥
√
x)dx =

= 2τiF̃
I
i (τi)−Qi(τ

2
i )− 2τi+1F̃

I
i (τi+1) +Qi(τ

2
i+1)+

+ 2τi−1F̃
I
i−1(τi−1)−Qi−1(τ

2
i−1)− 2τiF̃

I
i−1(τi) +Qi−1(τ

2
i ),

where Qi(x) =
∫ x

0
F̃ I

i (
√
x′)√

x′
dx.

Accordingly,

∂

∂τi
E
[

X2
]

= 2τiF̃i(τi) + 2F̃ I
i (τi)−

F̃ I
i (τi)

τi
(2τi)

− 2τiF̃i−1(τi)− 2F̃ I
i−1(τi) +

F̃ I
i−1(τi)

τi
(2τi)

= 2τi(F̃i(τi)− F̃i−1(τi))

= 2τi
∂

∂τi
E [X ] .

for i = 0, 1, ..., B.

Lemma 6. The DTMC with the transition probabilities in (9)

is ergodic for monotonic threshold policy where τ1 is finite.

D. The Proof of Lemma 6

Consider an energy state j in [0, B − 1]. We will show

that any other energy state i is reachable from j in at most

B − 1 steps with a positive probability. For i ≥ j, the higher

energy state i is reachable from j in one step with a positive

probability as for i = B − 1, Pr(YB−j ≤ τB−1) is strictly

positive and for j ≤ i < B − 1:

Pr(Y1+i−j ≤ τi)− Pr(Y2+i−j ≤ τi+1) ≥
Pr(Y1+i−j ≤ τi+1)− Pr(Y2+i−j ≤ τi+1) > 0,

as τi+1 ≤ τi and i− j ≥ 0.

Similarly, the energy state i = j − 1 for j = 1, ...., B − 1
can be reached from j with a probability 1 − Pr(Y1 ≤ τj)
which is stricly positive as τj is finite. This means that any

state i < j can be reached from j in at most B− 1 steps with

a positive probability.

Lemma 7. For monotonic threshold policies with finite τ1, the

following is true:

lim
n→+∞

1

n

n
∑

k=0

Xk =

B−1
∑

j=0

E [X | j] Pr(E = j) w.p.1. (43)

lim
n→+∞

1

2n

n
∑

k=0

E[X2
k ] =

1

2

B−1
∑

j=0

E
[

X2 | j
]

Pr(E = j), (44)



where Pr(E = j) is the steady-state probability for energy

state j, E [X | j] , E [Xk | E(Zk) = j] and E
[

X2 | j
]

,

E
[

X2
k | E(Zk) = j

]

.

Proof. Consider:

1

n

n
∑

k=0

Xk =
1

n

B−1
∑

j=0

∑

k∈[0,n]
E(Zk)=j

Xk =
1

n

B−1
∑

j=0

Lj
∑

ℓ=0

Xℓ;j,

where Lj is the number of ks in [0, n] such that E(Zk) = j

and Xℓ;j is a r.v. with the CDF Pr(Xℓ;j ≤ x) = Pr(Xℓ ≤ x |
E(Zℓ) = j).

Note that the sequence X0;j , X1;j, ..., XLj;j is i.i.d. for any

j and their mean is bounded as all thresholds are finite, hence:

lim
Lj→∞

1

Lj

Lj
∑

ℓ=0

Xℓ;j = E [X | j] , w.p.1.

Due to the ergoditicity of E(Zk)s (Lemma 6):

lim
n→∞

Lj

n
= Pr(E = j), w.p.1.

Therefore,

lim
n→∞

1

n

n
∑

k=0

Xk = lim
n→∞

B−1
∑

j=0

Lj

n
(
1

Lj

Lj
∑

ℓ=0

Xℓ;j),

=
B−1
∑

j=0

E [X | j] Pr(E = j), w.p.1.

Similarly,

lim
n→∞

1

n

n
∑

k=0

E[X2
k ] = lim

n→∞

B−1
∑

j=0

Lj

n
(
1

Lj

Lj
∑

ℓ=0

X2
ℓ;j)

=

B−1
∑

j=0

E
[

X2 | j
]

Pr(E = j), w.p.1.

E. The proof of Theorem 3

By Lemma 8 and Lemma 7, the average age can be written

as follows:

∆̄ =

∑B−1
j=0 E

[

X2 | j
]

Pr(E = j)

2
∑B−1

j=0 E [X | j] Pr(E = j)
.

Define D(τ) as in below:

D(τ) =

B−1
∑

j=0

(E
[

X2 | j
]

− 2∆̄M
B E [X | j]) Pr(E = j),

where ∆̄M
B = min

π∈Π
∆̄.

By Lemma 1:

∂

∂τB
E
[

X2 | j
]

= 2τB
∂

∂τB
E [X | j] .

Accordingly, as ∂
∂τB

Pr(E = j) = 0,

∂

∂τB
D(τ) = 2(τB − ∆̄M

B )

B−1
∑

j=0

∂

∂τB
E [X | j] Pr(E = j),

∂
∂τB

D(τ) can be also written as:

∂

∂τB
D(τ) = 2(τB − ∆̄M

B )
∂X̄

∂τB
,

where X̄ =

B−1
∑

j=0

E [X | j] Pr(E = j).

It can be seen that ∂X̄
∂τB

≥ 0 for any τB ≥ 0 which means
∂

∂τB
D(τ) can only change its sign around τB = ∆̄M

B . As

D(τ) ≥ 0 and D(argminτB :π∈ΠMT ∆̄) = 0 by its definition,

for τ that achieves ∆̄M
B , τB = ∆̄M

B .

F. The Proof of Theorem 4

By Lemma 8 and Lemma 7, ∆̄ for B = 2 is the following:

∆̄ =
1

2

E
[

X2 | j = 0
]

Pr(E = 0) + E
[

X2 | j = 1
]

Pr(E = 1)

E [X | j = 0]Pr(E = 0) + E [X | j = 1]Pr(E = 1)
.

(45)

The probability of being in E = 1, i.e. Pr(E = 1) can be

solved using:

Pr(E = 1) =

1
∑

j=0

Pr(E(Zk+1) = 1 | E(Zk) = j) Pr(E = j).

(46)

Combining (46) and (8),

Pr(E = 1) =
e−µHτ1

1− e−µHτ1µHτ1
. (47)

Now, we can obtain E
[

X2 | j
]

, E [X | j] using (8). Combin-

ing these with (47) and substituting in (45) gives (4).

Lemma 8. For a threshold policy where τ1 is finite, the

average age ∆̄ is finite (w.p.1.) and given by the following

expression.

∆̄ =
limn→+∞

1
2n

∑n
k=0 E[X

2
k ]

limn→+∞
1
n

∑n
k=0 Xk

w.p.1. (48)

Proof. The proof is a generalization of Theorem 5.4.5 in [22]

for the case where Xks are non-i.i.d. but the limits still exist

(w.p.1.). When Xks are i.i.d. with E[Xk] < ∞ and E[X2
k ] <

∞, the convergence (w.p.1.) of the limits is guaranteed.
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