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Abstract—We consider the problem of determining the zero-error
list-decoding capacity of the q/(q − 1) channel studied by Elias
(1988). The q/(q − 1) channel has input and output alphabet
consisting of q symbols, say, X = {x1, x2, . . . , xq}; when the
channel receives an input x ∈ X , it outputs a symbol other than
x itself. Let n(m, q, ℓ) be the smallest n for which there is a code
C ⊆ Xn of m elements such that for every list w1, w2, . . . , wℓ+1

of distinct code-words from C, there is a coordinate j ∈ [n]
that satisfies {w1[j], w2[j], . . . , wℓ+1[j]} = X . We show that for
ǫ < 1/6, for all large q and large enough m, n(m, q, ǫq ln q) ≥
Ω(exp (q1−6ǫ/8) log2 m).

The lower bound obtained by Fredman and Komlós (1984) for
perfect hashing implies that n(m, q, q − 1) = exp(Ω(q)) log2 m;
similarly, the lower bound obtained by Körner (1986) for nearly-
perfect hashing implies that n(m, q, q) = exp(Ω(q)) log2 m.
These results show that the zero-error list-decoding capacity of
the q/(q− 1) channel with lists of size at most q is exponentially
small. Extending these bounds, Chakraborty et al. (2006) showed
that the capacity remains exponentially small even if the list size
is allowed to be as large as 1.58q. Our result implies that the
zero-error list-decoding capacity of the q/(q−1) channel with list
size ǫq for ǫ < 1/6 is exp (Ω(q1−6ǫ)). This resolves the conjecture
raised by Chakraborty et al. (2006) about the zero-error list-
decoding capcity of the q/(q − 1) channel at larger list sizes.

I. INTRODUCTION

We study the zero-error-list-decoding capacity of the q/(q−1)
channel. The input and output alphabet of this channel are

a set of q symbols, namely X = {x1, x2, . . . , xq}; when the

symbol x ∈ X is input, the output symbol can be anything

other than x itself. We wish to design good error correcting

codes for such a channel. For the q/(q − 1) channel it is

impossible to recover the message without error if the code

has at least two code-words: in fact, no matter how many

letters are used for encoding, for every set of up to (q − 1)
input code-words, one can construct an output word that

is compatible with all of them. It is, however, possible to

design codes where on receiving an output word from the

channel, one can narrow down the input message to a set of

size at most (q − 1)—that is, we can list-decode with lists

of size (q−1). Such codes have rate exponentially small in q.

Definition I.1 (Code, Rate). A code C ⊆ {x1, . . . , xq}n
is an ℓ-list-decoding-code for the q/(q − 1) channel, if

for every output word σ′ ∈ Xn, we have
∣∣{σ ∈ Xn :

the input word σ is compatible with σ′}
∣∣ ≤ ℓ. Let n(m, q, ℓ)

be the smallest n such that there exists an ℓ-list-decoding code

for the q/(q− 1) channel with m code-words. The zero-error-

list-of-ℓ-rate of C, |C| = m, is given by 1
n log2(m/ℓ), and

the list-of-ℓ-capacity of the q/(q − 1) channel, denoted by

cap(q, ℓ), is the least upper bound on the attainable zero-error-

list-of-ℓ-rate across all ℓ-list-decoding-codes.

The list-of-2-capacity of the 3/2 channel was studied by

Elias [1], who showed that 0.08 ≈ log2(3)−1.5 ≤ cap(3, 2) ≤
log2(3) − 1 ≈ 0.58. For the 4/3 channel, Dalai, Guruswami

and Radhakrishnan [2] showed that cap(4, 3) ≤ 6/19 ≈
0.3158, improving slightly on an earlier upper bound of 0.3512

shown by Arikan [3]; it was shown by Körner and Marton [4]

that cap(4, 3) ≥ (1/3) log2(32/29) ≈ 0.0473. For general

q, one can obtain the following upper bound using a routine

probabilistic argument.

Proposition I.1. n(m, q, q − 1) = exp(O(q)) lgm.

This implies that the cap(q, q − 1) = exp(−O(q)). So for

each fixed q we do have codes with positive rate, but the

rate promised by this construction goes to zero exponen-

tially with q. Fredman and Komlós [5] showed that this

exponential deterioration is inevitable; Körner showed that

cap(q, q) = exp(−Ω(q)). On the other hand, it can be

shown that cap(q, ⌈q ln q⌉) = 1/q, and that for all functions

ℓ : Z → Z we have cap(q, ℓ(q)) ≥ 1/q. Thus, the list-of-ℓ-
capacity of the q/(q − 1) channel cannot be better than 1/q
unless ℓ is allowed to grow with m.

We thus have the following situation. The list-of-ℓ-rate of

any code reaches the optimal value of 1/q when the list-

size is about q ln q; however, the list-of-(q − 1) (as well as

list-of-q) rate is exponentially small in q. It is interesting,

therefore, to study the trade-off between the list size and

the rate, and determine how the rate changes from inverse

polynomial in q to exponentially small in q. Chakraborty,

Radhakrishnan, Raghunathan and Sasatte [6] addressed this

question and showed the following.

Theorem I.2. For every ǫ > 0, there is a δ > 0 such that
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for all large q and large enough m, we have n(m, q, (η −
ǫ)q) ≥ exp(δq) log2 m, where η = e/(e − 1) ≈ 1.58. Thus,

cap(q, (η − ǫ)q) = exp(−Ω(q)).

We show the following.

Theorem I.3 (Result). For every ǫ < 1/6,

for all large q and large enough m, we have

n(m, q, ǫq ln q) ≥ Ω(exp (q1−6ǫ/8) log2 m). Thus, for

all ǫ < 1/6, cap(q, ǫq ln q) = exp(−Ω(q1−6ǫ)).

This establishes both parts of the conjecture of Chakraborty

et al. which states the following.

Conjecture I.1. (a) For all constants c > 0, there is a

constant α, such that for all large m, we have n(m, q, cq) ≥
exp (αq) log2 m.

(b) For all functions ℓ(q) = o(q log2 q) and all large m, we

have n(m, q, ℓ(q)) ≥ qω(1) log2 m.

A. Overview of our approach

We extend the approach of Chakraborty et al., which in turn

was based on the approach used by Fredman and Komlós [5]

to obtain lower bounds on the size of families of perfect

hash functions. To describe our adaptation of this approach,

it will be convenient to reformulate the problem using matrix

terminology.

Consider C ⊆ Xn with m code-words. We can build an m×n
matrix C = (cij : i = 1, . . . ,m and j = 1, . . . , n) (we use

the name C both for the code and the associated matrix) by

writing the code-words as rows of the matrix (the order does

not matter): so cij = k iff the j-th component of the i-th code-

word is xk ∈ X . Then, C is an ℓ-list-decoding code iff the

matrix has the following property: for every choice R of ℓ+1
rows, there is a column h such that {crh : r ∈ R} = X . In this

reformulation, n(m, q, ℓ) is the minimum n so that there exists

a matrix with this property. We refer to such a matrix as an

ℓ-list-decoding matrix. Furthermore, instead of writing crh we

write h(r); indeed, in the setting of hash families (originally

considered by Fredman and Komlós), the columns correspond

to hash functions that assign a symbol in X to each row-index

in [m].

We can now describe the approach of Chakraborty et al. Fix a

list-size ℓ = αq. Suppose there is an ℓ-list decoding matrix C
with n = exp(βq) log2 m columns. We wish to show that if

β is small then the matrix cannot have the required property;

that is, we can find a set R of ℓ+ 1 rows for which h(R) is

a proper subset of [q] for every column h. To exhibit such a

set R we will proceed in stages. In the first stage, we pick

a subset R1 of q − 2 rows at random. Consider a column h.

What can we expect? We expect to see a good number of

collisions, where the same symbol appears in column h at

two different rows in R1. In fact, we expect h(R) to contain

only about q(1 − 1/e) elements. By appealing to standard

results (e.g., McDiarmid’s inequality), we may conclude that

with probability exponentially close to 1 (that is, of the form

1 − exp(−γq)), h(R) is unlikely to have significantly more

elements. So we might settle on a choice of R, so that h(R)
deviates significantly (say by ǫq for some small ǫ) for at most

exp(−γq) exp(βq) log2 m columns. If the original β is chosen

to be much smaller than γ, this number is an exponentially

small fraction of log2 m.

The key idea now is to make these exceptional columns

ineffective. We do this by focusing our attention on a reduced

number of rows. For each exceptional column, we pick the

symbol that appears most often in that column, and restrict

attention to those rows that have this symbol in the exceptional

column. This depletes the number of rows by a factor at 1/q
for each exceptional column; after we do this sequentially for

all the exp(−(γ − β)q) log2 m ≪ log2 m rows, we will be

left with m′ rows, where log2 m
′ = Ω(log2 m). We may

now add more rows to our existing list R1. If we choose

these from the set of m′ rows, we are in no danger from

the exceptional columns; in the other columns R1 spans about

q(1− 1/e) symbols, so we can add to R1 about q/e rows R2

(picked from the m′-rows) and still ensure that in no column

h, we are in danger of h(R1 ∪ R2) becoming X . It is clear

that we can carry this approach further, e.g., by picking R2

randomly, expecting a significant number of internal collisions,

making the exceptional columns ineffective, focusing attention

on a smaller but still significant number of rows, etc., then

picking R3 from the rows that survive, and so on. In fact,

Chakraborty et al. derived Theorem I.2 using precisely this

approach.

In this paper, we follow the approach outlined above but

implement the idea more precisely. Before we describe our

contribution it will be useful to pin-point where the calcu-

lations in Chakraborty et al. were sub-optimal. We argued

above that after R1 is picked, we expect to span only about

q(1 − 1/e) symbols in a given column h. What about after

R2 is picked? R1 ∪ R2 contains a total of q + q/e rows: if

all symbols in column h appeared with the same frequency

(and continued to do so in the m′ rows after the exceptional

columns were eliminated), then we should expect h(R1 ∪R2)
to span about (q + q/e)(1 − exp(1 + 1/e)) symbols. Notice

that this is roughly the expected number of distinct coupons

collected in the classical coupon collector problem after q+q/e
attempts. Unfortunately, there are technical difficulties that

arise in claiming that this number will be reflected in our

process because (i) R1 and R2 are not picked independently,

and (ii) even if the symbols appeared with the same frequency

initially, they may not do so after we focus on a depleted

set of rows. Faced with these difficulties, Chakraborty et al.

settled for less. Instead of matching the bound suggested by

the coupon collector problem, when analysing the expected

size of h(R1 ∪ R2), they estimated h(R2) separately and

bounded |h(R1∪R2)| by |h(R1)|+ |h(R2)|, thereby ignoring

h(R1 ∩ R2). The loss in precision resulting from the use of

this union bound increases as the number of phases increases.

Indeed, when the coupon collector process is carried in phases

by picking sets R1, R2, . . . , Rt for a large t, progress in

collecting coupons is retarded more by collisions across sets



(because for some i 6= j, h(Ri) and h(Rj) have elements in

common) than by collisions within some h(Ri). By neglecting

collisions across phases, and by failing to track the coupon

collector process closely, the argument in Chakraborty et al.

were unable to push the list size in Theorem I.2 beyond

e/(e− 1).

What is new?: We attempt to track the progress of the coupon

collector faithfully. Instead of the set R1 of size q−2 that was

picked earlier, we pick an ensemble (a collection of sets) R1

of sets of size q− 2. Similarly, in the later steps we will pick

ensembles R2,R3, . . .. However, in the end we pick one set

Ri from each of the ensembles Ri respectively, and assemble

our list of rows: R1∪R2 ∪· · ·∪Rt. That this process is more

effective in bounding |h(R1∪R2∪ . . .∪Rt)| will be formally

verified in later sections. For now, let us qualitatively see how

it helps in bounding |h(R1 ∪ R2)|. We pick R1 at random:

if the number of sets in the ensemble is large enough (we

will set it to be exp(Θ(q))), then it should reflect a random

set of rows that was obtained by picking rows independently

(q−2)-times from the set of all rows. Fix a choice for R2, the

set to be picked at the second stage. Consider X = |h(R1 ∪
R2)| where R1 is picked uniformly from the ensemble R1;

let Y = |h(R1 ∪ R2)|, where R1 is picked uniformly from

the set of all rows. Then, we expect X and Y to have similar

distribution. So, we proceed as follows. We pick an ensemble

R1 at random. If for a certain column h, the ensemble R1

fails to deliver a good sample, we will need to make that

column ineffective as before. Further, if some set in R1 spans

a significantly larger number of symbols in some column, we

will again make that column ineffective. After this, we pick R2

from the remaining rows. We expect it to not only have a good

number of internal collisions but also be such that |h(R1 ∪
R2)| and |h(R1∪R2)| (where the set R2 is chosen uniformly

from the available rows) are similar in expectation. Now, since

we ensured that the ensemble R1 was good for column h, a

random choice of R1 from the ensemble will deliver a value

of |h(R1 ∪ R2)| that, with high probability, can be bounded

by the number of distinct coupons picked up at the same stage

by the coupon collector; in particular, it accounts for symbols

common to h(R1) and h(R2). The outline above illustrates

the advantages of picking an ensemble instead of committing

to just one randomly chosen set. However, a large ensemble

comes with its drawbacks. We need to ensure that no set in the

ensemble spans too many elements in any column, or rather,

we need to eliminate any column where some set spans many

elements. This forces a more drastic reduction in the number

of rows than before (that is, now m′ when compared with

m is much smaller than in the calculation in [6]). Thus, it is

important to keep the sizes of the ensembles small. The trade-

off between these opposing concerns needs to be handled with

some care. The argument is presented in detail below.

II. PROOF OF THE RESULT

In what follows we assume that q is a large natural number

and m → ∞.

We will need the following concentration result due to McDi-

armid (1989).

Lemma II.1 (McDiarmid). Let X1, X2, . . . , Xn be indepen-

dent random variables where each Xk takes values in a finite

set A. Let f : An → R be such that |f(x)− f(y)| ≤ c
whenever x and y differ in only one coordinate. Let Y =
f(X1, X2, . . . , Xn); then, for all t > 0,

Pr[E[Y ]− Y ≥ t],Pr[Y − E[Y ] ≥ t] ≤ exp

(−2t2

nc2

)
.

Let C be an ℓ-list-decoding-code for the q/(q−1) channel with

ℓ < q ln q/6. As mentioned in the introduction, we will view

C as an m×n matrix with entries from [q]. In other words, the

rows are indexed by code-words and the columns are indexed

by hash functions. Let wt be a function from [q] to {0, 1};

for A ⊆ [q], let wt(A) :=
∑

a∈A wt(a). Let R be a random

variable taking values in P([m]). Sometimes we use R to also

refer to the distribution of this random variable.

Following the idea mentioned in the introduction, we intend to

keep an ensemble R of sets of rows such that when we pick

a new set of rows R2 from a depleted number of rows m′,

we not only observe the correct number of internal collisions

within R2 but also observe the correct number of collision

between members of R and R2. This motivates the following

definition.

Definition II.1 (Sampler). We say that an ensemble R =
(R1, R2, . . . , RL), where each Ri ⊆ [m], is a (γ, δ)-
sampler for R wrt column h if (A1, A2, . . . , AL) :=
(h(R1), h(R2), . . . , h(RL)) satisfies ∀wt : [q] → {0, 1}

Pr
j∈u[L]

[∣∣∣wt(Aj)− E

[
wt(h(R))

]∣∣∣ ≥ γq

]
≤ exp (−δq).

The definition makes provision for all functions wt, because

it tries to anticipate the appropriate internal collisions (see

Lemma II.2) with very little advance knowledge of what the

distribution on [q] looks like in column h after a large number

of rows have been discarded.

Let π : S → [0, 1] be a probability mass function on a

finite set S. Let k ≥ 1, and let X1, X2, . . . , Xk be inde-

pendent random variables each distributed according to π.

Then, let π{k} denote the probability mass function of the

set {X1, X2, . . . , Xk}.

For distributions A and B on P([m]), let A ∨ B be the

distribution of S ∪ T where S ∼ A and T ∼ B, with S
and T chosen independently. The following lemma will be

the main workhorse for our argument.

Lemma II.2 (Ensemble Composition Lemma). Let R be

a distribution on P([m]) and let D be a distribution on

[m]. Let R be a (γ, δ)-sampler for R wrt a column h; let



(R1, R2, . . . , Rs) be obtained by taking s independent samples

from the ensemble R. Similarly, let R′ = (R′
1, R

′
2, . . . , R

′
s) be

obtained by taking s independent samples according to R
′ ∼

D{tq} where t < 1. Let γ′, δ′ > 0 be such that δ ≤ 2(γ′)2/t
and δ > δ′ Let s = exp(δ−δ′)q, γ̃ = γ+γ′, δ̃ = δ−δ′. Then,

with probability 1 − 12 exp (−δ′q) over the random choices,

the composed ensemble

R̃ :=
(
R1 ∪R′

1, R2 ∪R′
2, . . . , Rs ∪R′

s)

of cardinality s, is a (γ̃, δ̃)-sampler for R∨R
′ wrt the column

h, and furthermore ∀i ∈ [s],
∣∣∣
∣∣h(Ri ∪R′

i)
∣∣− E

[∣∣h(R ∨R
′)
∣∣
]∣∣∣ ≤ γ̃q. (1)

Note that this ensemble is generated according to the product

distribution (R∨R
′)
s
.

Proof. Fix f : [q] → {0, 1} and let µf := E
[
f(h(R ∪R

′))
]
;

similarly, for R′ ⊆ [m] let µf (R
′) := ER

[
f(h(R ∪R′))

]
.

First, we bound the probability that when R′ is chosen

according to R
′, it fails to have µf (R

′) close to µf . Using

McDiarmid’s inequality over the tq primitive choices for R′,

we have

Pr
R′∼R′

[
|µf (R

′)− µf | ≥ γ′q
]
≤ 2 exp

(−2(γ′)2q2

tq

)

= 2 exp

(−2(γ′)2q

t

)
. (2)

Now, let wt : [q] → 0, 1 be defined by wt(x) = f(x) if

x 6∈ h(R′) and wt(x) = 0 otherwise. Then, for R ⊆ [m], we

have, f(h(R ∪R′)) = f(h(R′)) +wt(h(R)). Therefore (note

here R′ is fixed and R varies randomly in R),

Pr
R∈uR

[∣∣∣f(h(R ∪R′))− µf (R
′)
∣∣∣ ≥ γq

]

= Pr
R∈uR

[∣∣∣wt(h(R))− E
[
wt(h(R))

]∣∣∣ ≥ γq

]

and since R is a (γ, δ)-sampler wrt R, we have

Pr
R∈uR

[∣∣∣wt(h(R))− E
[
wt(h(R))

]∣∣∣ ≥ γq

]
≤ exp(−δq).

Thus,

Pr
R∈uR,R′∼R′

[∣∣f(h(R ∪R′))− µf

∣∣ ≥ (γ + γ′)q
]
≤

Pr
R∈uR,R′∼R′

[
|µf − µf (R

′)| ≥ γ′q
]
+

Pr
R∈uR,R′∼R′

[∣∣µf (R
′)− f(h(R ∪R′))

∣∣ ≥ γq
]

≤
[
2 exp

(−2(γ′)2q

t

)
+ exp

(
−δq

)]
≤ 3 exp(−δq). (3)

(We used δ ≤ 2(γ′)2/t to justify the last inequality.) Let ∆ :=
3 exp(−δq), the quantity on the right in (3). By taking f to be

the all-1’s function, we conclude from (3) that for each i with

probability at least 1−∆,

∣∣∣
∣∣h(Ri∪R′

i)
∣∣−E

[
|h(R ∨R

′)|
]∣∣∣ ≤

(γ + γ′)q.

Now, f(h(Ri ∪ R′
i)) =

∣∣h(Ri) ∪ h(R′
i)
∣∣, and µf =

E
[
|h(R ∨R

′)|
]
. Now, by a union bound over the s choices

for i, we obtain

Pr
R̃

[
∃i ∈ [s],

∣∣∣
∣∣h(Ri ∪R′

i)
∣∣− E

[∣∣h(R ∨R
′)
∣∣]
∣∣∣ ≥ (γ + γ′)q

]

≤ ∆s ≤ 3 exp(−δ′q). (4)

This establishes (1).

It remains to establish our first claim that whp the ensemble

picked according to (R∨R
′)s is a (γ̃, δ̃)-sampler for R∨R

′.

Fix f : [q] → {0, 1}. Now, (3) implies that for each i ∈
[s], the probability that |f(h(Ri ∪ R′

i)) − µf | ≥ (γ + γ′)q
is exponentially small in q. Then, the tail probabilities for

Y :=
∑s

i=1 I
[
|f(h(Ri ∪ R′

i)) − µf | ≥ (γ + γ′)q
]

can be

bounded by considering Bin(s,∆). Therefore,

Pr
R̃

[Y > exp (−δ̃q)s]

≤
(

s

exp (−δ̃q)s

)
(∆)exp (−δ̃q)s

≤ (e exp (δ̃q)∆)exp (−δ̃q)s

≤ 9 exp (−δ′q). (5)

(We need to take a union bound against the 2q possible

functions f : [q] → {0, 1}: by changing s to qs we may

easily establsih this.) By (4) and (5), the probability that our

ensemble fails to be a (γ̃, δ̃)-sampler, with γ̃ = γ + γ′ and

δ̃ = δ− δ′, or fails to satisfy (1) is at most 12 exp (−δ′q).

Let us recall the template of our argument. At any stage we

will have an ensemble of sets of rows, say R, and a universe

U ⊆ [m] to choose sets of rows from to add to R. We will

add a specific number of randomly chosen sets of rows of a

particular size from U and then declare those columns bad

where the modified R deviates from its expected behaviour.

Consider a set R ∈ R: we want to say that the coupon-

collector process at |R| probes into [q] is the gold standard for

good behaviour, i.e., no set in R will have expansion more

than the coupon-collector at the same stage. The expected

number of elements that the coupon-collector process picks

up after a i.i.d. uniform probes into [q] is approximately

q (1− exp(−a/q)): we will denote this as µcc
q (a). So, we need

the following lemma, which is proved in the appendix.

Lemma II.3 (Phased Coupon Collector). Let a1, a2, . . . , ak
be positive integers; let a = a1 + a2 + · · · + ak,

and let π1, π2, . . . , πk be probability mass functions. Let

A1,A2, . . . ,Ak be independent random variables taking val-

ues in P([q]), where Ai ∼ π
{ai}
i . Suppose a ≤ ǫq ln q and

k ≤ eqǫ for some ǫ < 1/3, then,

E[|A1 ∪A2 ∪ · · · ∪Ak|] ≤ q (1− exp(−a/q)) + o(q1−ǫ)

= µcc
q (a) + o(q1−ǫ).

Our next target is to understand the number of iterations we

wish to perform, i.e., the number of times we need to enlarge



the sizes of the sets surviving the ensemble R so that the list

size hits the target of ǫq ln q, where ǫ < 1/6. At the first stage

we will pick up sets of rows of size about ℓ1 = q, and expect

the image size to be close to µcc
q (ℓ1); we then prune out the

exceptional columns. In the next stage, we pick sets of size

about ℓ2 = q − µcc
q (ℓ1) and expect the combined image size

to be close to µcc
q (ℓ1 + ℓ2). Hence, in the third iteration we

pick sets of size close to ℓ3 = q − µcc
q (ℓ1 + ℓ2), and so on

for the subsequent iterations. We are interested in the list size

after k iterations, i.e, ℓ≤k :=
∑k

i=1 ℓi. We have the following

proposition, which is proved in the appendix.

Proposition II.4. Let ℓ1 = q, and for i ≥ 1 let ℓi+1 = q −
µcc
q (
∑i

j=1 ℓj). Suppose k = eqǫ for some ǫ < 1, then, ℓ≤k ≥
ǫq ln q.

Proof. (The series {ℓ≤k} tends to q ln q.)

Finally, we need a lemma where we glue all the steps men-

tioned in the introduction. At each iteration k, we maintain an

ensemble Rk satisfying the requisite properties.

We call a distribution D on P([m]) a (g1, . . . , gk)-phased

coupon collector distribution if D = D
{g1}
1 ∨D{g2}

2 . . .∨D{gk}
k

where each Di is a probability mass function on [m]. The

following lemma tracks how the parameters change with each

iteration.

Lemma II.5 (Iteration Lemma). Let k ≤ qǫ for some

ǫ < 1/5. Let γ = γ′ = q−2ǫ/2 and δ′ = q−5ǫ/4. Assume

n ≤ exp (δ′q) log2 m/(48 · qǫ log2 q). Then, there exists a

partition H1(k) ⊔ H2(k) of the columns of C, a universe of

rows Uk ⊆ [m], an ensemble Rk = (R1, R2, . . . RLk
), inte-

gers (g1, . . . , gk) and a (g1, . . . , gk)-phased coupon collector

distribution Dk such that:

a g1 = q − 2, and gi+1 = q − µcc
q (gi)− (i+ 1)γq − 2

b ∀i ∈ [Lk], |Ri| = g≤k ≥ ℓ≤k − 2k − k2γq/2

c ∀h ∈ H2(k), ∀i ∈ [Lk], |h(Ri ∪ Uk)| ≤ q − 1

d ∀h ∈ H1(k), Rk is a ((k + 1)γ, γ2 − kδ′)-sampler for

Dk wrt h

e ∀h ∈ H1(k), ∀i ∈ [Lk]
∣∣|h(Ri)| − E [h(Dk)]

∣∣ ≤ (k +
1)γq

f log2 |Uk| ≥ log2 m− k log2 q · 24 exp (−δ′q)n.

Proof. We will use induction on k. For k = 1 we have g1 =
q − 2. We use Lemma II.2 with R being the constant ∅, and

R = {∅}. Clearly, R is a (γ, γ2)-sampler for R. Let D be the

uniform distribution over [m] and let R′ = (R′
1, R

′
2, . . . , R

′
s)

be obtained by taking s = exp ((γ2 − δ′)q) independent

samples according to R
′ ∼ D{q−2}. So, D1 = D{q−2}. For

a fixed column h we have the following: with probability

1 − 12 exp (−δ′q) over the random choices, the composed

ensemble

R̃ =
(
R′

1, R
′
2, . . . , R

′
s)

is good wrt h, i.e., R̃ is a (2γ, γ2 − δ′)-sampler for R
′ wrt

the column h, and furthermore ∀i ∈ [s],
∣∣∣
∣∣h(R′

i)
∣∣− E

[∣∣h(R′)
∣∣
]∣∣∣ ≤ 2γq.

Hence, on expectation only 12 exp (−δ′q)n columns are bad.

Therefore, with probability at least 1/2 at most 24 exp (−δ′q)n
columns are bad. Also, the probability of an R′

i ∈ R′ having

size less than q−2 (because some two of our q−2 choices of

rows picked the same row) is at most q2/m. Thus, by the union

bound the probability of (b) not holding is at most s · q2/m
which is less than 1/2. Therefore, there is choice of R̃, which

we call R1, such that at most 24 exp (−δ′q)n columns are bad

and (b) holds. The set of bad columns is H2(1) and the set of

good columns is H1(1). Then, clearly (d) and (e) are true.

Let H2(1) = {h1, . . . , hb} where b ≤ 24 exp (−δ′q)n and

WLOG assume that 1 is the most frequent symbol in h1.

Retain only those rows in U that correspond to the symbol

1 in h1. Call this pruned universe U ′: we have ensured that so

long as we add rows to Ri ∈ R1 only from U ′, the image size

in h1 is at most h1(R) + 1 ≤ q − 1. Thus, by taking a multi-

plicative hit of at most 1/q we have rendered h1 ineffective.

Iterating this over H2(1) we take a multiplicative hit of
(

1
q

)b
.

Hence, we obtain a universe U ′, which will be U1, such that

log2 |U ′| = log2 |U1| ≥ log2 m − 24 exp (−δ′q)n log2 q. This

establishes (c) and (f). This establishes the claims for k = 1;

the induction step in general is similar.

Now, as our IH let us assume that for (k − 1) we have

the partition H1(k − 1) ⊔ H2(k − 1), Uk−1 ⊆ [m], Rk−1,

integers (g1, . . . , gk−1) and Dk−1 such that (a) through (f)

are satisfied. Then, we repeat the above argument. We have

gk = q − µcc
q (gk−1) − kγq − 2. We use Lemma II.2 for

h ∈ H1(k − 1) with R being Dk−1, and R = Rk−1

which is a (kγ, γ2 − (k − 1)δ′)-sampler for Dk−1 wrt h. Let

(R1, . . . , Rs) be obtained by s = exp (γ2 − kδ′) independent

samples from Rk−1. Let D be the uniform distribution over

Uk−1 and let R′ = (R′
1, R

′
2, . . . , R

′
s) be obtained by taking

s independent samples according to R
′ ∼ D{gk}. We let

Dk = Dk−1 ∨ D{gk}. For a fixed column h we have the

following: wp 1−12 exp (−δ′q) over the random choices, the

composed ensemble

R̃ =
(
R1 ∪R′

1, R2 ∪R′
2, . . . , Rs ∪R′

s)

is good wrt h, i.e., R̃ is a ((k + 1)γ, γ2 − kδ′)-sampler for

Dk wrt h, and furthermore ∀i ∈ [s],
∣∣∣
∣∣h(Ri ∪R′

i)
∣∣− E

[∣∣h(Dk)
∣∣
]∣∣∣ ≤ (k + 1)γq.

Hence, on expectation only 12 exp (−δ′q)n columns of

H1(k − 1) are bad. Therefore, with probability at least 1/2
at most 24 exp (−δ′q)n columns of H1(k − 1) are bad. Also,

the probability of an Ri ∪ R′
i ∈ R̃ having size less than g≤k

(because some two of our q−µcc
q (gk−1)−kγq− 2 choices of

rows for R′
i picked the same row of collided with some row in



Ri) is at most (q ln q)2/|Uk−1|. Thus, by the union bound the

probability of (b) not holding is at most s · (q ln q)2/|Uk−1|
which is less than 1/2. Therefore, there is choice of R̃, which

we call Rk , such that at most 24 exp (−δ′q)n columns of

H1(k−1) are bad and (b) holds. Combining these bad columns

with H2(k−1) we obtain H2(k) and the columns not in H2(k)
form the set H1(k) = H2(k). Then, clearly (d) and (e) are

true.

Let H2(k) \ H2(k − 1) = {h1, . . . , hb} where b ≤
24 exp (−δ′q)n and WLOG assume that 1 is the most frequent

symbol in h1. Retain only those rows in Uk−1 that correspond

to the symbol 1 in h1. Call this pruned universe U ′: this

pruning ensures that so long as we add rows to Ri ∈ Rk

only from U ′, the image size in h1 is at most q− 1. Thus, by

taking a multiplicative hit of at most 1/q we have rendered h1

ineffective. Iterating this over H2(k) we take a multiplicative

hit of
(

1
q

)b
. Hence, we obtain a universe U ′, which will

be Uk, such that log2 |U ′| = log2 |Uk| ≥ log2 |Uk−1| −
24 exp (−δ′q)n log2 q ≥ log2 m − k log2 q · 24 exp (−δ′q)n.

Together with property (c) of Uk−1 this establishes (c) and

(f). This completes the induction step.

Proof of Theorem I.3 (main result of the paper). Fix an ǫ′ <
1/6 and let C be an ǫ′q ln q-list-decoding-code for the q/(q−1)
channel. Choose λ ≪ ǫ′ and let ǫ = ǫ′+λ. Let q be sufficiently

large so that k = qǫ ≥ eqǫ
′+λ/2. We will appeal to Lemma II.5

(with k and ǫ) and assume that n ≤ exp (δ′q) log2 m/(48 ·
qǫ log2 q). Then, by choosing a set of rows R in the ensem-

ble Rk and using (b) and Proposition II.4 we obtain that

|R| ≥ ǫ′q ln q. However, using (c) we have that for all columns

h ∈ H2(k), |h(R)| ≤ q − 1. Also, using (e) and Lemma II.3

we obtain that for all h ∈ H1(k), |h(R)| < q. This is a contra-

diction and hence n > exp (δ′q) log2 m/(48 · qǫ log2 q) or for

sufficiently large q we have n > Ω(exp (q1−6ǫ′/8) log2 m).

We note that it is possible by a more careful analy-

sis to improve the bound of Ω(exp (q1−6ǫ′/8) log2 m) to

Ω(exp (q1−4ǫ′/8) log2 m) in which case we may apply the

bound till a list size of q ln q/4. This bound is obtained by

modifying Lemma II.5 to accommodate γ′ and δ′ which vary

across the induction steps and being more scrupulous about

the argument in the preceding paragraph.

ACKNOWLEDGEMENTS

We are grateful to Prahladh Harsha for the numerous detailed

discussions that led to the result reported in this paper, and also

for proof-reading it. We also thank Ramprasad Saptharishi for

his help with Lemma II.3.

REFERENCES

[1] P. Elias, “Zero error capacity under list decoding,” IEEE Transactions on

Information Theory, vol. 34, no. 5, pp. 1070–1074, Sep 1988.

[2] M. Dalai, V. Guruswami, and J. Radhakrishnan, “An improved bound on
the zero-error list-decoding capacity of the 4/3 channel,” in 2017 IEEE

International Symposium on Information Theory, ISIT 2017, Aachen,

Germany, June 25-30, 2017, 2017, pp. 1658–1662. [Online]. Available:
https://doi.org/10.1109/ISIT.2017.8006811

[3] E. Arikan, “An upper bound on the zero-error list-coding capacity,” IEEE

Transactions on Information Theory, vol. 40, no. 4, pp. 1237–1240, Jul
1994.

[4] J. Korner and K. Marton, “New bounds for perfect hashing
via information theory,” European Journal of Combinatorics,
vol. 9, no. 6, pp. 523 – 530, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0195669888800489

[5] M. L. Fredman and J. Komlós, “On the size of separating systems
and families of perfect hash functions,” SIAM Journal on Algebraic

Discrete Methods, vol. 5, no. 1, pp. 61–68, 1984. [Online]. Available:
https://doi.org/10.1137/0605009

[6] S. Chakraborty, J. Radhakrishnan, N. Raghunathan, and P. Sasatte,
“Zero error list-decoding capacity of the q/(q-1) channel,” in FSTTCS

2006: Foundations of Software Technology and Theoretical Computer
Science, 26th International Conference, Kolkata, India, December

13-15, 2006, Proceedings, 2006, pp. 129–138. [Online]. Available:
https://doi.org/10.1007/11944836_14

APPENDIX

Proof of Lemma II.3. Consider a constant λ ≪ ǫ. For i =
1, 2, . . . , k, let Bi be the set of q1−2ǫ−λ elements of [q] taking

the topmost values in πi. Let B = B1 ∪B2 ∪ · · · ∪Bk; note

that |B| ≤ kq1−2ǫ−λ = o(q1−ǫ). Then, E[|A1 ∪A2 ∪ . . .Ak|]
is at most

|B|+
∑

x 6∈B

(
1−

k∏

i=1

(1 − πi(x))
ai

)
.

Now, for x 6∈ B, we have πi(x) ≤ 1/q1−2ǫ−λ, and

1− πi(x) ≥ exp
(
−πi(x)/

(
1− πi(x)

))

≥ exp
(
−πi(x)

(
1 + 2/q1−2ǫ−λ

))
.

Then, by the AM-GM inequality we have the upper-bound

|B|+ q − q exp


−(1 + 2/q1−2ǫ−λ)(1/q)

∑

i,x

aiπi(x)


 .

Our claim follows from this because

exp
(
−(1 + 2/

√
q)(1/q)

∑
i,x aiπi(x)

)
≥ exp(−a/q) −

o(1/q1−2ǫ) ≥ exp (−a/q)− o(q1−ǫ)/q.

Proof of Proposition II.4. Suppose ℓ≤i ∈ [jq, (j + 1)q] for

some j ≥ 0, then, ℓi+1 ≥ q/ej+1. Therefore, the number of i’s
for which ℓ≤i ∈ [jq, (j+1)q] ≤ ej+1. Suppose ℓ≤k < ǫq ln q,

then as a contradiction we have

k < e+ e2 + · · ·+ eǫ ln q ≤ eqǫ.

https://doi.org/10.1109/ISIT.2017.8006811
http://www.sciencedirect.com/science/article/pii/S0195669888800489
https://doi.org/10.1137/0605009
https://doi.org/10.1007/11944836_14

	I Introduction
	I-A Overview of our approach

	II Proof of the Result
	References
	Appendix

