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Abstract—A communication setup is considered where a trans-
mitter wishes to simultaneously sense its channel state and
convey a message to a receiver. The state is estimated at the
transmitter by means of generalized feedback, i.e. a strictly causal
channel output that is observed at the transmitter. The scenario is
motivated by a joint radar and communication system where the
radar and data applications share the same frequency band. For
the case of a memoryless channel with i.i.d. state sequences, we
characterize the capacity-distortion tradeoff, defined as the best
achievable rate below which a message can be conveyed reliably
while satisfying some distortion constraint on state sensing. An
iterative algorithm is proposed to optimize the input probability
distribution. Examples demonstrate the benefits of joint sensing
and communication as compared to a separation-based approach.

I. INTRODUCTION

A key enabler of autonomous mobile networks is the ability
to continuously sense and react to a dynamically changing
environment (hereafter called “state”) while letting nodes
exchange information with each other. Many existing systems
consider an approach based on separation such that resources
are divided into either state sensing or data communications.
Unfortunately, such a separation-based approach has limita-
tions; i) it performs poorly in high mobility scenarios and for
a large state dimension; ii) the data rate degrades by dedicating
more resources to state sensing, as no data symbols are sent
during the sensing phase.

These limitations suggest that state sensing and communica-
tion should be designed jointly by sharing the same bandwidth.
A number of recent works have studied a joint approach,
especially in the context of radar and communication systems
operating in-band (see e.g. [1]–[4] and references therein).
These works can be roughly classified into interference avoid-
ance and common waveform design [1], [3], [4]. Although the
latter class considers a joint design, these works mainly apply
communication-oriented waveforms such as OFDM to the
radar estimation or vice versa. Although these works provide
waveform design and analysis/simulation of specific scenarios,
they do not provide a fundamental framework to study the
optimal tradeoff between radar sensing and communication,
irrespective of the assumptions on interference avoidance or
joint waveforms. We provide a first answer to the optimal
tradeoff between state sensing and communication, although
restricting to the simplest memoryless case.

We study the fundamental limits of joint sensing and com-
munication for a point-to-point channel where the transmitter
estimates the channel state via a strictly causal channel output,
while the receiver has perfect state knowledge. To characterize
the tension between sensing quality and communication rate,
the capacity-distortion tradeoff is considered as a performance
metric. This metric was introduced and studied in [5] and
references therein. We remark that the work [5] and the current
work differ in their assumptions and concepts. Namely, in
[5] the transmitter conveys the state to the receiver. In the
current work, the transmitter is ignorant of the state and
wishes to estimate it using the generalized feedback. The main
contributions of the paper are outlined below.

1) We characterize the capacity-distortion tradeoff for the
memoryless channel with an i.i.d. state sequence;

2) we formulate the capacity-distortion tradeoff maximiza-
tion as a convex optimization with respect to the input
distribution and propose an iterative algorithm;

3) we provide examples to demonstrate the benefits of a joint
design as compared to the separation-based one.

This paper is organized as follows. We describe the model for
joint state sensing and communication in Section II. Section
III characterizes the capacity-distortion tradeoff and Section
IV provides numerical methods to calculate the capacity-
distortion tradeoff. We conclude the paper with numerical
examples in Section V.

II. SYSTEM MODEL

Consider the communication setup depicted in Fig. 1. The
channel input, output, feedback output, and state random
variables are Xi, Yi, Zi, and Si that take values in the sets X ,
Y , Z , and S, respectively. The relation between these random
variables is characterized by a memoryless channel with i.i.d.
states. The joint probability distribution of our model is given
by

PWXnSnY nZn(w,x, s,y, z)

= P (w)

n∏
i=1

PS(si)

n∏
i=1

P (xi|wzi−1)PY Z|XS(yizi|xisi).

(1)

The notation emphasizes that PS(·) and PY Z|XS(·) are time-
invariant. A (2nR, n) code for the channel consists of
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Fig. 1. State-dependent channel with generalized feedback

1) a message set W = [1 : 2nR];
2) an encoder that sends a symbol xi = φi(w, z

i−1) for
each message w ∈ W and each delayed feedback output
zi−1 ∈ Zi−1;

3) a decoder that assigns a message estimate ŵ =
g(yn, sn) ∈ W;

4) a state estimator that assigns an estimation sequence ŝn ∈
Ŝn to each feedback output sequence zn ∈ Zn and the
channel input sequence xn ∈ Xn. The set Ŝ denotes the
reconstruction alphabet.

The state estimate is measured by the expected distortion

E[d(Sn, Ŝn)] = 1

n

n∑
i=1

E[d(Si, Ŝi)]

where d : S × Ŝ 7→ [0,∞) is a distortion function.
A rate distortion pair (R,D) is said to be achievable if
there exist (2nR, n) codes with limn→∞ P (Ŵ 6= W ) = 0
and lim supn→∞E[d(Sn, Ŝn)] ≤ D. The capacity-distortion
tradeoff C(D) is defined as the supremum of R such that
(R,D) is achievable.

From the well-known result on a memoryless channel with
i.i.d. random states where the state is available only at the
decoder [6, Sec. 7.4], the capacity for the case of unconstrained
distortion is

C(D =∞) = max
PX

I(X;Y, S) = max
PX

I(X;Y |S), (2)

where the maximum is over the input distribution PX . This
capacity is achieved by ignoring the feedback.

III. CAPACITY-DISTORTION TRADEOFF

This section characterizes the capacity-distortion tradeoff
C(D). We provide some useful lemmas and then the converse
and achievability proofs.

Theorem 1. The capacity-distortion tradeoff of the state-
dependent memoryless channel with the i.i.d. states is given
by

C(D) = max I(X;Y |S) (3)

where the maximum is over all PX satisfying E[d(S, Ŝ)] ≤
D and the joint distribution of SXY ZŜ is given by
PX(x)PS(s)PY Z|XS(yz|xs)PŜ|XZ(ŝ|xz).

To prove Theorem 1, we first provide useful properties of
C(D) and the state estimator.

Lemma 1. C(D) is a nondecreasing concave function of D
for D ≥ Dmin

∆
= minE[d(S, Ŝ)] where the minimum is over

all PX and PŜ|XS .

Lemma 2. We can choose without loss of generality a deter-
ministic estimator given by

ŝ = ŝ(x, z) = arg min
s′∈S

∑
s∈S

PS|XZ(s|x, z)d(s, s′) (4)

for all x, z.

Proof.

E[d(S, Ŝ)] = E
[
E[d(S, Ŝ)|X,Z]

]
(a)
=
∑
x,z

PXZ(xz)
∑
ŝ∈S

PŜ|XZ(ŝ|xz)
∑
s

PS|XZ(s|xz)d(s, ŝ)

≥
∑
x,z

PXZ(xz)min
ŝ∈S

∑
s

PS|XZ(s|xz)d(s, ŝ)

(b)
=
∑
x,z

PXZ(xz)
∑
s

PS|XZ(s|xz)d(s, ŝ(x, z))

= E[d(S, ŝ(X,Z))] (5)

where (a) follows from the Markov chain Ŝ −XZ − S, and
(b) follows by choosing (4).

A. Converse

From Fano’s inequality we have

nR ≤ I(W ;Y n, Sn) + nεn

= I(W ;Y n|Sn) + nεn

=

n∑
i=1

H(Yi|Y i−1Sn)−H(Yi|W,Y i−1Sn) + nεn

(a)

≤
n∑
i=1

H(Yi|Si)−H(Yi|Xi, Y
i−1,W, Sn) + nεn

(b)
=

n∑
i=1

H(Yi|Si)−H(Yi|Xi, Si) + nεn

=

n∑
i=1

I(Xi;Yi|Si) + nεn (6)

where (a) follows by removing the conditioning on
{Sl}l 6=i, Y i−1 in the first term and adding the condi-
tioning on Xi in the second term; (b) follows because
(W,Y i−1, {Sl}l 6=i) − (Si, Xi) − Yi forms a Markov chain.
We also have

R ≤ 1

n

n∑
i=1

I(Xi;Yi|Si) + εn

(a)

≤ 1

n

n∑
i=1

C
(
E[d(Si, Ŝi)]

)
+ εn

(b)

≤ C

(
1

n

n∑
i=1

E[d(Si, Ŝi)]
)

+ εn

(c)

≤ C(D) (7)



where (a) follows from the definition of C(D); (b) follows
from the concavity property of Lemma 1; (c) follows from the
nondecreasing property of Lemma 1.

B. Achievability

We prove Theorem 1 when the distortion function d(·) is
bounded by dmax = max(s,ŝ)∈S×Ŝ d(s, ŝ) < ∞. The proof
can be extended, as usual, to d(·) for which there is a letter
s∗ such that E[d(S, s∗)] ≤ dmax.

a) Codebook generation: Fix PX(·) and functions
ŝ(x, z) that achieve C(D/(1+ε)), where D is the desired dis-
tortion. Randomly and independently generate 2nR sequences
xn(w) for each w ∈ [1 : 2nR]. This defines the codebook C
which is revealed to the encoder and the decoder.

b) Encoding: To send a message w ∈ W , the encoder
chooses and transmits xn(w).

c) Decoding: The decoder finds a unique index ŵ such
that (yn, sn, xn(ŵ)) is jointly typical, i.e.

(yn, sn, xn(ŵ)) ∈ T (n)
ε (8)

d) Estimation: The encoder computes the reconstruction
sequence as ŝn = ŝ(xn(w), zn).

e) Analysis of Expected Distortion: In order to bound the
distortion averaged over a random choice of the codebooks C,
we define the decoding error event. The decoder makes an
error if and only if one or both of the following events occur.

E1 = {(yn, sn, xn(1)) /∈ T (n)
ε } (9)

E2 = {(yn, sn, xn(ŵ)) ∈ T (n)
ε for some w 6= 1} (10)

where we assume without loss of generality that w = 1 is
sent. By the union bound, we have

Pe = P (E1 ∪ E2) ≤ P (E1) + P (E2).

The first term goes to zero as n → ∞ by the law of large
numbers. The second term also tends to zero as n → ∞ if
R < I(X;Y |S) by the independence of the codebooks and
the packing lemma [6, Lemma 3.1]. Therefore, Pe tends to
zero as n→∞ if R < I(X;Y |S).

If there is no decoding error, we have

(Y n, Sn, Xn(1)) ∈ T (n)
ε . (11)

The expected distortion averaged over the random codebook,
encoding and decoding, is upper bounded as

lim sup
n→∞

E[d(Sn, Ŝn)]
(a)

≤ lim sup
n→∞

(
Pedmax + (1 + ε)(1− Pe)E[d(S, Ŝ)]

)
(b)

≤ lim sup
n→∞

(Pedmax + (1 + ε)(1− Pe)D)

(c)
= (1 + ε)D (12)

where (a) follows by applying the upper bound on the
distortion function to the decoding error event and the typical
average lemma [6, Ch. 2.4] to the successful decoding event;

(b) follows from the assumption on PX and ŝ(x, z) that satisfy
E[d(S, Ŝ)] ≤ D; (c) follows because lim supn→∞ Pe → 0 if
R < I(X;Y |S) = C( D

1+ε ), which proves the achievability of
the pair (C( D

1+ε ), D). Finally, by the continuity of C(D) in
D, C(D) is achieved as ε→ 0.

IV. NUMERICAL METHOD FOR OPTIMIZATION

Suppose the channel input is subject to a cost constraint
B in addition to the distortion constraint D. That is, we
consider a cost function b(Xn) = 1

n

∑n
i=1 b(Xi) such that

lim supn→∞E[b(Xn)] ≤ B. Following similar steps above,
one can show that the capacity-distortion-cost tradeoff is

C(D,B) = max I(X;Y |S)

where the maximum is over PX satisfying both the distortion
and cost constraints. We formulate the above maximization as
a convex optimization with respect to the input distribution
and propose a modified Blahut-Arimoto algorithm.

A. Problem Formulation

The optimization problem can be stated as

maximize I(X;Y |S) (13a)
subject to E[b(X)] ≤ B (13b)

E[d(S, Ŝ)] ≤ D. (13c)

For the joint distribution PXPSPY Z|XSPŜ|XZ , the estimator
ŝ(x, z) given in Lemma 2 can be computed a priori. At this
point, the original problem (13) can be rewritten explicitly in
terms of PX

maximize I(PX , PY |XS |PS) (14a)

subject to
∑
x

b(x)PX(x) ≤ B (14b)∑
x

c(x)PX(x) ≤ D (14c)∑
x

PX(x) = 1 (14d)

where we define the mutual information functional

I(PX , PY |XS |PS)

=
∑
s

PS(s)
∑
x

∑
y

PX(x)PY |XS(y|xs) log
PY |XS(y|xs)
PY |S(y|s)

. (15)

We define an additional cost function

c(x) =
∑
z∈Z

PZ|X(z|x)
∑
s∈S

PS|XZ(s|xz)d(s, ŝ(x, z)). (16)

Two remarks are in order. First, the problem (14) has two cost
functions that must simultaneously satisfy their corresponding
average constraints. By letting F(B,D) denote a feasible
set of PX satisfying constraints (14b) and (14c), F(B,D)
might be empty for some values of (B,D). For simplicity, we
assume that F(B,D) is not empty and therefore F(B,D)
is a convex compact set (the constraints are both linear).
Second, the solution of (14) does not generally satisfy both



constraints (14b) and (14c) with equality. Thus, it is reasonable
to consider a parametric form of the optimization problem
by incorporating one cost function as a penalty term in the
objective function and focusing on the other cost function.
The new problem is to maximize

I(PX , PY |XS |PS)− µ
∑
x

c(x)PX(x) (17)

subject to the constraints (14b) and (14d), where µ ≥ 0 is a
fixed parameter.

We proceed as in the derivation of the standard Blahut-
Arimoto algorithm [7] that computes the capacity-cost func-
tion. In particular, let QX|Y S denote a general conditional pmf
of X given Y, S and consider the function

J(PX , PY |XS , QX|Y S |PS)

=
∑
s

PS(s)
∑
x

∑
y

PX(x)PY |XS(y|xs) log
QX|Y S(x|ys)

PX(x)
.

We then have the following result.

Theorem 2. Let P(B) denote the set of pmfs PX satisfying
(14b). The following statements hold:
a) Letting L(B,D) denote the optimal value of (17), we have

L(B,D) = max
PX∈P(B)

min
QX|Y S

J(PX , PY |XS , QX|Y S |PS)

−µ
∑
x

c(x)PX(x). (18)

b) For fixed PX ∈ P(B), the function J − µ
∑
x c(x)PX(x)

is maximized over QX|Y S by

Q?X|Y S(x|ys) =
PX(x)PY |XS(y|xs)∑
x′ PX(x′)PY |XS(y|x′s)

. (19)

c) For fixed QX|Y S , the function J − µ
∑
x c(x)PX(x) is

maximized over PX ∈ P(B) by

P ?X(x) =
eg(x)∑
x′ eg(x

′)
(20)

where

g(x) =
∑
s

∑
y

PS(s)PY |XS(y|xs) logQX|Y S(x|ys)−λb(x)−µc(x)

(21)
and λ ≥ 0 is chosen so that (14b) holds with equality. �

The proof follows by a standard alternating optimization
technique (see [8, Chapter 13.8]) and is omitted due to space
limitations.

B. Modified Blahut-Arimoto Algorithm

Based on a general result on alternating optimization [8,
Chapter 13.8], we propose the following algorithm:
• Initialization:

Fix µ ≥ 0, and let P (0)
X (x) = 1

|X | ,∀x ∈ X .
• For k = 1, 2, 3, . . . do:

1) Let

Q
(k)

X|Y S(x|ys) =
P

(k−1)
X (x)PY |XS(y|xs)∑

x′ P
(k−1)
X (x′)PY |XS(y|x′s)

. (22)

2) Choose λ(0) > 0 and, for ` = 1, 2, . . ., repeat:
a) compute primal variables: p(`)(x) = eg

(`)(x)∑
x′ eg

(`)(x′)

with

g(`)(x) =
∑
s,y

PS(s)PY |XS(y|xs) logQ(k)

X|Y S(x|ys)

−λ(`−1)b(x)− µc(x) (23)

b) update dual variables:

λ(`) =

[
λ(`−1) + α`

(∑
x

b(x)p(`)(x)−B

)]
+

(24)

where α` is the gradient adaptation step. Let
P

(k)
X (x) = lim`→∞ p(`)(x).

The above algorithm yields for any fixed input cost B a
pair of capacity-distortion values (Cµ(B), Dµ(B)). By letting
P∞X denote the convergent input distribution produced by the
algorithm, we have

Cµ(B) = I(P (∞)
X , PY |XS |PS) (25a)

Dµ(B) =
∑
x

c(x)P
(∞)
X (x). (25b)

By varying µ, we obtain a capacity-distortion tradeoff for
fixed input cost B. Note that for µ = 0 we obtain the
standard capacity-cost function of the channel (disregarding
the distortion), while as µ → ∞ the problem becomes a
distortion minimization for a given input cost B.

V. EXAMPLES

We provide two examples to illustrate the gain of our
proposed joint scheme with respect to the separation-based
approach.

Definition 1. A separation-based approach refers to a scheme
whose resources are divided into either state sensing with
generalized feedback or data communication without feedback.

For simplicity, the generalized feedback is assumed to be
perfect Z = Y .

A. Binary Channel with Multiplicative Bernoulli State

Consider a binary channel Y = SX where the state S is
Bernoulli distributed such that PS(1)

∆
= q ∈ [0, 1/2], and the

multiplication is binary such that y = 0 if either s or x is 0
while y = 1 if x = s = 1. We use the Hamming distortion
measure d(s, ŝ) = s⊕ ŝ. We characterize the input distribution
PX(0)

∆
= p ∈ [0, 1/2] that maximizes C(D). The two extreme

points on the capacity-distortion tradeoff are as follows.
1) If p = 0 (by sending always X = 1), the minimum

distortion Dmin = 0 is achieved, but we have C(D) = 0.
2) If p = 1/2, then we have C(Dmax) = q for Dmax = q/2.

More generally, we have the following result.

Proposition 1. The capacity-distortion tradeoff of the binary
channel with the multiplicative Bernoulli state is given by

C(p) = qH2(p), D(p) = qp (26)



where H2(p) denotes the binary entropy function.

Proof. Because Y is deterministic given S,X , the capacity
can be expressed as a function of p, q as follows:

C(p) = H(Y |S)

= −
∑
s

PS(s)
∑
y

PY |S(y|s) logPY |S(y|s) = qH2(p)

where the last equality follows by PY |S(0|0) = 1 and
PY |S(1|1) = p. To calculate the distortion, we first determine
the estimator ŝ(x, y) and the resulting cost function c(x). From
Lemma 2, we have

ŝ(x, 0) = 0, ∀x, ŝ(x, 1) = 1, ∀x. (27)

In fact, since y = 1 cannot be generated from the input x =
0, the value of ŝ(0, 1) is irrelevant. Using (16) and and the
conditional pmf, we have

PS|XY =


1− q if (x, y, s) = (0, 0, 0)

q if (x, y, s) = (0, 0, 1)

1 if (x, y, s) = (1, 0, 0) or (1, 1, 1)
0 else

(28)

and we obtain the cost function c(1) = 0 and c(0) = q. This
yields the desired distortion.

Fig. 2 plots C(D) for the case q = 0.4. Observe
that the joint approach yields a significant gain over the
separation-based approach that achieves a time-sharing be-
tween (D,C) = (0, 0) and (q, q). Note that the distortion q is
achieved by considering a fixed estimator ŝ = 0 independent
of feedback.

B. Real Gaussian Channel with Rayleigh Fading

Next we consider the real Gaussian channel with Rayleigh
fading. The output is given by

Yi = SiXi +Ni (29)

where Xi is the channel input satisfying 1
n

∑
iE[|Xi|2] ≤ P ,

and both Ni and Si are i.i.d. Gaussian distributed with zero
mean and unit variance. We let P = 10 dB. Focusing on the
quadratic distortion measure, we consider two extreme cases.

1) If we relax the distortion constraint, a Gaussian in-
put maximizes the capacity. The unconstrained capacity,
denoted by Cmax, is 1

2E[log(1 + |S|2P )] = 1.213
[bit/channel use] by averaging over all possible fad-
ing states. The corresponding expected distortion is
E[ 1

1+|X|2 ] where the expectation is with respect to the
Gaussian distributed X .

2) The minimum distortion Dmin is achieved by 2-ary pulse
amplitude modulation (PAM) and is equal to 1

1+P =
0.091. The corresponding capacity of 2-PAM is 0.733
[bit/channel use].

Fig. 3 shows the capacity-distortion tradeoff calculated by ap-
plying the modified Blahut-Arimoto algorithm to the quantized
real AWGN channel and M -ary PAM. The separation-based
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Fig. 2. Capacity-distortion tradeoff of binary channel with q = 0.4.
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Fig. 3. Capacity-distortion tradeoff of fading AWGN channel P = 10 dB.

approach achieves two corner points, namely (Dmin, 0) by
dedicating full resources to state estimation and (Dmax, Cmax)

with Dmax
∆
= var[S] = 1, by ignoring feeback and sending

data with Gaussian distribution.
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