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Abstract—For the model of communication through a discrete
memoryless channel using i.i.d. random block codes, where the
channel is changing slowly from block to block, we propose a
stochastic algorithm for adaptation of the generating distribution
of the code in the process of continuous reliable communication.
The purpose of the algorithm is to match the generating distri-
bution Q(x) to the changing channel P (y |x), so that reliable
communication is maintained at some constant rate R. This is
achieved by a feedback of one bit per transmitted block. The
feedback bit is determined by the joint type of the last transmitted
codeword and the received block, a constant threshold T > R,
and some conditional distribution Φ(x | y). Depending on the
value of the feedback bit, the system parameters Q(x) and
Φ(x | y) are both updated according to the joint type of the last
transmitted and received blocks, or remain unchanged.

We show that, under certain technical conditions, the iterations
of the algorithm lead to a distribution Q(x), which guarantees
reliable communication for all rates below the threshold T , pro-
vided that the discrete memoryless channel capacity of P (y |x)
stays above T .

I. INTRODUCTION

Consider a standard information theoretic scenario of com-

munication through a discrete memoryless channel P (y |x)
using block codes. For this case, information theory provides

optimal solutions in the form of the channel input distribution

Q
∗
(x), achieving the Shannon capacity C, or achieving the

Gallager error exponent E(R) for a given communication

rate R. Suppose, however, that the channel stochastic matrix

P (y |x) is slowly, or rarely, changing with time and we would

like to sustain reliable communication at a constant rate R. For

this purpose, we assume using a single bit of feedback, from

the receiver to the transmitter, per transmitted block. In our

model, we further assume that, given this bit of feedback, the

system parameters are updated using the last transmitted (and

received) block only, i.e. without memory from the previous

blocks. So that, potentially, the system will follow the changes

in the channel more closely. Our goal of sustaining reliable

communication at a constant rate R is legitimate and feasible,

of course, only as long as the capacity of the channel C,

as a function of P (y |x), stays above the rate R. While the

channel capacity may stay well above the rate, the optimal

solution Q
∗
(x) may drift significantly, as a result of the drift

in P (y |x), and render the initial code unreliable.

In this work, the block code is modeled as a random code,

generated i.i.d. with a distribution Q. The reason for modeling

the code as an i.i.d. random code is twofold. First, random

codes achieve capacity. The idea is to fix some intermediate

T > R and, by changing Q, to keep the correct-decoding

random coding exponent [1], [2, eq. 31], determined by Q,

“pinned” to zero at a rate R′ = T , provided that T < C. This

would mean that the corresponding error exponent Er(R
′, Q)

[3, eq. (5.6.28)] is strictly positive for all R′ < T , thus

ensuring, in particular, reliable communication at R.

Secondly, an i.i.d. distribution in a random code, as opposed,

for example, to a uniform distribution over a single type,

results in a certain diversity of the codeword types, which

allows us to invoke a mechanism of natural type selection for

update of the parameter Q. Using this mechanism iteratively,

we successively update the codebook distribution Q so that

eventually the correct-decoding exponent, associated with Q,

decreases to zero at T , thus achieving our goal.

The mechanism of natural type selection (NTS) has been

originally observed and studied in the lossy source coding

setting [4], [5]. In that setting, a discrete memoryless source

is mapped into a reproduction codebook, generated i.i.d.

according to a distribution Q. In the encoding process, a

linear search is performed through the codebook, until the

first reproduction sequence is found, which is close enough

to the source sequence. Since various types are inherently

present in the i.i.d. codebook, the empirical distribution of the

winning reproduction sequence, in general, is different than

Q, and is used for generation of the next codebook. This

results in a decrease in the compression rate, which, after

repeated iterations, converges to the optimum, given by the

rate-distortion function. This last property is guaranteed by the

fact that both the conditional type, given the source sequence,

and the marginal type, of the winning sequence, with high

probability, evolve along two analogous steps of the Blahut

algorithm for rate-distortion function computation [6].

In our previous attempt to find a parallel NTS phenomenon

in channel coding [7] we looked for a stochastic counterpart of
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the Arimoto algorithm for random coding exponent computa-

tion [1]. One of a number of difficulties there remains setting

a slope ρ of the exponent, which is a constant parameter in the

Arimoto algorithm. A viable alternative to this could be some

kind of a “variable slope” version of the Arimoto algorithm,

as in the case of the Blahut algorithm for source coding.

In the current paper, we abandon the exact steps of the

Arimoto algorithm, retaining nominally its two components –

the channel input distribution, denoted here as Q(x), and a

conditional distribution Φ(x | y). In the stochastic algorithm,

proposed here, Q(x) becomes updated by the type of a “good”

transmitted sequence x, and Φ(x | y) is updated by the con-

ditional type of x, given the corresponding received sequence

y. The “goodness” of the transmitted sequence is determined

at the decoder by its joint type with the received sequence, a

threshold T , and using Φ(x | y). The channel P (y |x) itself

is changing slowly/rarely and is assumed constant during

iterations.

The details of the proposed scheme are given in Section II.

Section III serves as a bridge between the stochastic procedure

and the underlying non-stochastic algorithm. Section IV con-

tains our main result, stating convergence of the iterations. In

Section V we discuss the convergence result and assumptions

we have to make.

II. ADAPTATION SCHEME

Let P (y |x) be a discrete memoryless channel with finite

input and output alphabets X and Y , respectively, and suppose

we use a random codebook of blocklength n and size enR,

generated i.i.d. according to a distribution Q(x), for commu-

nication through this channel. We assume that the rate R is

sufficiently lower than the mutual information I(X ;Y ) ≡
I
(
Q(x) · P (y |x)

)
≡ I(Q ◦ P ), so that the decoding error

exponent1 [3]:

Er(R,Q) = min
U(x, y)

{

D(Ux, y ‖Q ◦ P )

+
∣
∣D(Ux, y ‖Q× Uy)−R

∣
∣
+
}

(1)

is sufficiently high for our purposes.

With high probability, the decoder guesses the sent code-

word correctly. Let r(x, y) denote the joint type of the trans-

mitted and the received blocks of length n, both of which

are available at the decoder after correct decoding, so that the

estimated joint type at the decoder is r̂(x, y) = r(x, y). The

decoder then sends reliably a bit of feedback, F = 0 or 1, to

the transmitter, according to the following rule:

∑

x, y

r̂(x, y) log
Φ(x | y)

r̂(x)
≥ T ⇐⇒ F = 1, (2)

where r̂(x) =
∑

y r̂(x, y) represents the estimated type of the

sent codeword, Φ(x | y) is some fixed conditional distribution,

known at the decoder side, and T is a real number (Fig. 1).

1Expressed here in a common framework with our results [2, eq. 28].
Throughout the paper, we use notations U(x, y) and Ux, y interchangeably,
also for the marginal and conditional distributions, e.g. U(x) and Ux. The
notation D(·‖·) stands for the information divergence.

Encoder

Q
x

P (y |x)
y

Decoder

Q, Φ

∑
r̂(x, y) log Φ(x | y)

r̂(x) ≷ T
0/1

Fig. 1. Channel with a 1-bit feedback.

In case F = 1, which is a rare event for a large enough

threshold T , the system parameters are updated: a new code-

book is adopted by both the encoder and the decoder, gener-

ated according to a new distribution Q′(x) = r(x) = r̂(x) ,

known at both sides, and the decoder chooses the conditional

type r̂(x | y) as its new stochastic matrix Φ′(x | y). If the type

of the received block is r̂(y) = 0 on some letter y ∈ Y , then

the corresponding conditional distribution given this letter,

Φ(x | y), remains unchanged. In case the feedback F = 0, both

system parameters Q and Φ remain unchanged. To summarize:

Feedback Encoder Decoder

F = 1 Q(x) ← r(x) Q(x) ← r̂(x)
Φ(x | y) ← r̂(x | y)

F = 0 − −

III. CONVERGENCE OF A TYPE

The joint type r̂(x, y) is related, of course, to the exponent

in the probability of the event {F = 1}, the update exponent:

Proposition 1: Given the event {F = 1}, as the blocklength

n increases, with high probability r̂(x, y) = r(x, y), and this

type converges in probability to a distribution U
∗
(x, y), which

is the unique solution of the minimum

Ê(T,Q,Φ) , min
U(x, y):

∑
x, y U(x, y) log

Φ(x | y)
U(x) ≥ T

D(Ux, y ‖Q◦P ). (3)

Provided that the error exponent of the decoder2, e.g. (1), is

higher than (3).

Proof: Observe that (3) is in fact the exponent of the event,

pertaining to the true type r(x, y), regardless of the decoding

success: {
∑

x, y

r(x, y) log
Φ(x | y)

r(x)
≥ T

}

.

If the decoding error exponent is higher than (3), then the

analogous event for r̂(x, y) has also the exponent given by

(3). The convergence of the type in probability can be shown

using Sanov’s theorem [8]. �
Although unnecessary here, it can be checked that the

update exponent (3) is an upper bound on the correct-decoding

2The decoding error exponent may be lower than (1), depending on the
specific decoder/sequence of decoders as a function of n, which we use.



exponent, associated with Q, [2, eq. 32] at R′ = T . Moreover,

(3) coincides with the optimal correct-decoding exponent for

the optimal Q and Φ of the Arimoto algorithm [1].

In what follows, we disregard completely the stochastic

nature of the type r̂(x, y) (i.e. assume that the blocklength n
is large enough) and the possibility that the update exponent

(3) exceeds the decoding error exponent, e.g. (1). We assume

simply that r̂(x, y) = r(x, y) = U
∗
(x, y), and examine

convergence properties of the sequence of iterative solutions

U
∗
l (x, y), l = 0, 1, 2, ... , of (3).

IV. CONVERGENCE OF ITERATIONS

Lemma 1: Let the exponent (3) be finite for some T , Q = Q0

and Φ = Φ0 . An iterative update of the parameters Q and Φ
in (3) by the corresponding solution U

∗
(x, y):

Ql+1(x) ← U
∗
l (x), (4)

Φl+1(x | y) ←

{
U

∗
l (x | y), if U

∗
l (y) > 0

Φl(x | y), if U
∗
l (y) = 0

(5)

results in a monotonically non-increasing sequence
{
Ê(T,Ql,Φl)

}+∞

l=0
of (3).

Proof: Observe that the divergence in (3) can be broken

up into two terms: the exponent of the codeword type –

D
(
U(x) ‖Q(x)

)
, and the conditional exponent, given the

distribution U(x). The second term can be minimized over

U(y |x) separately for each distribution U(x), and the inter-

esting property is that the resulting conditional exponent given

U(x) has no dependence on Q. Therefore, we can reduce the

first term D
(
U

∗
(x) ‖Q(x)

)
in the minimum independently

(to zero) by replacing Q(x) with U∗(x). The second term

in the minimum, which is the conditional exponent given

U
∗
(x), will stay the same given the same U

∗
(x), and can

only be reduced further (given U∗(x)) by replacing Φ(x | y)
in the minimization condition with U

∗
(x | y), simply because

the previous achieving joint distribution U
∗
(x, y) will satisfy

the new condition as well. Minimizing both terms over U(x)
again, we further reduce the result. Formally:

Ê(T,Q,Φ)

= min
U(x, y):

∑
x, y U(x, y) log Φ(x | y)

U(x)
≥ T

{

D(Ux ‖Q) +D(Ux, y ‖Ux ◦ P )
}

= D
(
U

∗
x ‖Q

)

︸ ︷︷ ︸

≥ 0

+D(U
∗
x, y ‖U

∗
x ◦ P )

(a)

≥ min
U(y | x):

∑
x, y U∗(x)U(y | x) log U∗(x | y)

U∗(x)

≥
∑

x, y
U∗(x, y) log U∗(x | y)

U∗(x)

D
(
U

∗
x ◦ Uy | x ‖U

∗
x ◦ P

)

= min
U(y | x):

∑
x, y U∗(x)U(y | x) log U∗(x | y)

U∗(x)

≥
∑

x, y
U∗(x, y) log Φ(x | y)

U∗(x)

+
∑

x, y U∗(x, y) log U∗(x | y)
Φ(x | y)

D
(
U

∗
x ◦ Uy | x ‖U

∗
x ◦ P

)

(b)

≥ min
U(y | x):

∑
x, y

U∗(x)U(y | x) log U∗(x | y)
U∗(x)

≥
∑

x, y
U∗(x, y) log Φ(x | y)

U∗(x)

D
(
U

∗
x ◦ Uy | x ‖U

∗
x ◦ P

)

(c)

≥ min
U(y | x):

∑
x, y U∗(x)U(y | x) log

U∗(x | y)
U∗(x)

≥ T

D
(
U

∗
x ◦ Uy | x ‖U

∗
x ◦ P

)

(d)

≥ min
U(x, y):

∑
x, y

U(x, y) log U∗(x | y)
U(x)

≥ T

{

D(Ux, y ‖U
∗
x ◦ P )

}

= Ê
(
T, U

∗
x, U

∗
x | y

)
,

where U
∗
(x | y) can be considered as a stochastic matrix

defined only for {y : U∗(y) > 0}, or, alternatively, as defined

arbitrarily or extended with Φ(x | y) for {y : U
∗
(y) = 0};

(a) holds because U
∗
(y |x) satisfies the condition under min;

(b) holds because
∑

x, y U
∗
(x, y) log U∗(x | y)

Φ(x | y) ≥ 0;

(c) holds because
∑

x, y U
∗
(x, y) log Φ(x | y)

U∗(x) ≥ T ;

(d) holds because of the further minimization over U(x). �

We conclude from Lemma 1, that, given Ê(T,Q0,Φ0) <

∞, the sequence
{
Ê(T,Ql,Φl)

}+∞

l=0
converges. Now, it is

desirable to know – when this sequence converges all the

way to zero, and when it is stuck at some positive level. We

distinguish between two cases by comparing the threshold T
to the channel capacity C.

Proposition 2: If T > C, then the sequence
{
Ê(T,Ql,Φl)

}+∞

l=0
cannot decrease to zero.

Proof: Observe from (3), that Ê(T,Q,Φ) is a non-

decreasing function of T , positive for T greater than

T 0 =
∑

x, y

Q(x)P (y |x) log
Φ(x | y)

Q(x)
(6)

≤
∑

x, y

Q(x)P (y |x) log
(Q ◦ P )(x | y)

Q(x)
= I(Q ◦ P ) ≤ C.

�
For the case T ≤ C we need two lemmas first.

Lemma 2: Let
{
(Qli

, Φli
)
}+∞

i=1
be a converging subse-

quence:

Qli
(x)

i→∞
−→ Q(x), Φli

(x | y)
i→∞
−→ Φ(x | y).

Then also

Qli +1(x)
i→∞
−→ Q(x), Φli +1(x | y)

i→∞
−→ Φ(x | y). (7)

Proof: From the proof of the previous lemma, it is clear

that at each iteration the minimum Ê(T,Ql,Φl) decreases by

at least the amount D(Ql+1 ‖Ql):

Ê(T,Ql,Φl)− Ê(T,Ql+1,Φl+1) ≥ D(Ql+1 ‖Ql)
l→∞
−→ 0.

Therefore Qli +1 converges to the same limit as Qli
.



Similarly for Φl+1 . Observe that if strict inequality holds:

∑

x, y

U
∗
l (x, y) log

U
∗
l (x | y)

U
∗
l (x)

>
∑

x, y

U
∗
l (x, y) log

Φl(x | y)

U
∗
l (x)

≥ T,

then, in case the divergence in the minimum (3), with Φl,

is positive for U
∗
l (x, y), it can be further decreased with the

choice Φl+1(x | y) = U
∗
l (x | y) 6= Φl(x | y). In case the

minimum (3) with Φl is exactly zero, Φl becomes constant

after a single update (5). We conclude, that in any case Φli +1

has to converge to the same limit as Φli
. �

Finally, we need the explicit solution of (3), given by

Lemma 3:

Ê(T,Q,Φ) ≡ sup
ρ> 0

{
Ê0(ρ,Q,Φ) + ρT

}
, (8)

where

Ê0(ρ,Q,Φ) ,

− (1 + ρ) log
∑

x

[

Q(x)
∑

y

P (y |x)Φρ(x | y)

] 1
1 + ρ

, (9)

and if the minimum is finite, then the minimizing distribution

is given by

Uρ(x) ∝

[

Q(x)
∑

y

P (y |x)Φ
ρ
(x | y)

] 1
1 + ρ

, (10)

Uρ(y |x) ∝ P (y |x)Φρ(x | y), (11)

for some ρ ∈ [0,+∞].

Proof:

min
U(x, y):

∑
x, y

U(x, y) log Φ(x | y)
U(x)

≥ T

{

D(Ux, y ‖Q ◦ P )
}

ρ> 0

≥ min
U(x, y):

∑
x, y

U(x, y) log Φ(x | y)
U(x)

≥ T

{

D(Ux, y ‖Q ◦ P )

− ρ

[
∑

x, y

U(x, y) log
Φ(x | y)

U(x)
− T

]

︸ ︷︷ ︸

≥ 0

}

≥ min
U(x, y)

{

D(Ux, y ‖Q ◦ P )

− ρ

[
∑

x, y

U(x, y) log
Φ(x | y)

U(x)
− T

]}

= min
U(x, y)

{

(1 + ρ)
∑

x

U(x) log
U(x)

Uρ(x)
︸ ︷︷ ︸

≥ 0

+ Ê0(ρ,Q,Φ) +
∑

x

U(x)
∑

y

U(y |x) log
U(y |x)

Uρ(y |x)
︸ ︷︷ ︸

≥ 0

+ ρT

}

= Ê0(ρ,Q,Φ) + ρT

≥ min
U(x, y):

∑
x, y

U(x, y) log Φ(x | y)
U(x)

≥
∑

x, y
U
ρ
(x, y) log Φ(x | y)

Uρ(x)

{

D(Ux, y ‖Q ◦ P )
}

− ρ

[
∑

x, y

Uρ(x, y) log
Φ(x | y)

Uρ(x)
− T

]

.

From the string of inequalities above, we see that the LHS of

(8), Ê(T,Q,Φ), as a function of T , is lower-bounded by the

straight lines E(T ) = Ê0(ρ,Q,Φ) + ρT of slopes ρ > 0.

The last inequality shows in particular, that for each ρ there

exists T – where the line Ê0(ρ,Q,Φ)+ρT touches the curve

Ê(T,Q,Φ). We conclude that the supremum on the RHS of

(8) is the lower convex envelope of Ê(T,Q,Φ).
On the other hand, it can be checked directly by the

definition of convexity, that the LHS of (8) is a convex (∪)

function of T . Therefore, the LHS of (8) must coincide with

its lower convex envelope, which is given by the RHS. �

Our main result is given by the following.

Theorem 1: Let
{
U∗

l

}+∞

l=0
be a sequence of iterative solu-

tions of (3), given by (10, 11) with Q = Ql , Φ = Φl , and

ρ = ρl , such that the following conditions hold:

lim sup
l→∞

ρl < 1, (12)

lim inf
l→∞

Ql(x) > 0, ∀ x ∈ X , (13)

lim inf
l→∞

Φl(x | y) > 0, ∀ (x, y) : P (y |x) > 0. (14)

Then the sequence
{
Ê(T,Ql,Φl)

}+∞

l=0
converges to zero if

T < C.

Proof: Suppose T < C and
{(

Qli
, Φli

, ρli
)}+∞

i=1
is a

converging subsequence:

Qli
(x)

i→∞
−→ Q(x), Φli

(x | y)
i→∞
−→ Φ(x | y), ρli

i→∞
−→ ρ̄,

such that the limit of ρli is positive 0 < ρ̄ < 1. Then, by

Lemma 2, continuity of (10), and using boundedness (13), we

obtain:

Q(x)
(7)
= lim

i→∞
Qli +1(x)

(4)
≡ lim

i→∞
U

∗
li
(x) (15)

(10)
∝

[

Q(x)
∑

y

P (y |x)Φ
ρ̄
(x | y)

] 1
1+ ρ̄ (13)

> 0,

Q(x) ∝

[
∑

y

P (y |x)Φ
ρ̄
(x | y)

]1/ρ̄

. (16)

Also for the limit Φ(x | y), with the help of (16), by continuity

of (11), using Lemma 2 and condition (14):

lim
i→∞

U
∗
li
(x, y)

(15,11)
= Q(x)

P (y |x)Φ
ρ̄
(x | y)

∑

b P (b |x)Φ
ρ̄
(x | b)

(16)
∝ Q

1− ρ̄
(x)P (y |x)Φ

ρ̄
(x | y) (17)

Φ(x | y)
(7)
= lim

i→∞
Φli +1(x | y)



(5,14)
= lim

i→∞
U∗

li
(x | y)

(17)
∝ Q

1− ρ̄
(x)P (y |x)Φ

ρ̄
(x | y)

Φ(x | y)
(14)
∝ Q(x)P

1
1 − ρ̄ (y |x). (18)

The expressions (16) and (18) can be recognized as Arimoto’s

minimization solutions [1, eq. (11), (9)], both satisfied at the

same time, implying the minimization of the exponent function

E0(−ρ̄, Q) by Q. Equivalently, if we plug Φ(x | y), as given

by (18), into the expression of Q(x) (16), and reduce Q(x)
on both sides, we arrive at the condition

∑

y

P
1

1− ρ̄ (y |x)

[
∑

a

Q(a)P
1

1 − ρ̄ (y | a)

]−ρ̄

= const

∀ x∈X

.

(19)

This is a sufficient condition for Q to minimize E0(−ρ̄, Q)
[1, eq. 22]. Using (19) in the definition (9) gives

Ê0

(
ρ̄,Q,Φ

)
= E0(−ρ̄, Q).

On the other hand, by continuity of (9) we have

lim
i→∞

{

Ê0

(
ρli , Qli

,Φli

)
+ ρliT

}

= Ê0

(
ρ̄, Q,Φ

)
+ ρ̄T,

which is also the limit of the monotonically non-increasing

sequence
{
Ê(T,Ql,Φl)

}+∞

l=0
, therefore it follows that

lim
l→∞

Ê(T,Ql,Φl) = min
Q

E0(−ρ̄, Q) + ρ̄T ≥ 0. (20)

Observe, however, that the straight line of the positive slope ρ̄
on the RHS of (20) cannot cross the T -axis below the capacity

C. So it must cross the T -axis above the capacity, which is in

contradiction to the condition T < C.

Therefore, given (12), there does not exist a subsequence
{
ρli

}+∞

i=0
, converging to a positive value ρ̄. We conclude that

liml→∞ ρl = 0 and by (10)-(11)

D
(
U

∗
l (x) ‖Ql(x)

) l→∞
−→ 0, U

∗
l (y |x)

l→∞
−→ P (y |x),

implying Ê(T,Ql,Φl) ց 0. �
An example of convergence is shown in Fig. 2. The rate of

communication is Rwork. The threshold is T = Rwork+∆. The

error exponent Er(Rwork, Q) is well above the update exponent

Ê(Rwork +∆, Q, Φ), which converges to zero. As the update

exponent converges, the zero point of the error exponent at

R = I(Q ◦ P ) moves towards R = Rwork +∆.

V. DISCUSSION

Observe, that if the update exponent (3) is zero at T , then

necessarily T ≤ T 0 ≤ I(Q◦P ) by (6), and the error exponent

(1) is positive for R < T . This makes reliable communication

possible at R, which is our goal.

Suppose, at some initial point in time, the system is in a

reliable communication mode, with a rate R < I(Q ◦ P ),
and we choose the threshold T , R < T ≤ I(Q ◦ P ), and

the stochastic matrix Φ, such that the update exponent (3)

is zero. This is possible by choosing initially, for example,
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R
work R
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Fig. 2. Example of iterations.

Φ(x | y) = (Q ◦ P )(x | y). Then, a small change in the

channel P (y |x) occurs, so that the update exponent rises

slightly above zero, but is still lower than the decoding error

exponent. Our basic assumption is that the last condition

will remain satisfied after each subsequent iteration of the

algorithm described in Section II, so that by Proposition 1,

with high probability the update will continue according to

the optimal solution of (3), as in (4)-(5).

Since the update exponent is relatively low and the change

in the channel is small, we make another assumption – that

the repeated iteration of the updates (4)-(5) will produce a

sequence
{
(Ql,Φl)

}
, satisfying the conditions of Theorem 1.

Specifically, the slope ρ of the update exponent at T will

remain small and the sequence
{
(Ql,Φl)

}
will not stray to

zero on some x ∈ X . Finally, if the new capacity C is still

higher than T , the iterations will converge by Theorem 1. The

system will return to the initial state with zero update exponent

(3), with respect to the new channel P (y |x).
In this way, the adaptation scheme will safeguard the reli-

able communication mode for as long as the channel capacity

C doesn’t go below T .
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