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Near-Optimal Noisy Group Testing
via Separate Decoding of Items

Jonathan Scarlett and Volkan Cevher

Abstract—The group testing problem consists of determining
a small set of defective items from a larger set of items based on
a number of tests, and is relevant in applications such as medical
testing, communication protocols, pattern matching, and more.
In this paper, we revisit an efficient algorithm for noisy group
testing in which each item is decoded separately (Malyutov and
Mateev, 1980), and develop novel performance guarantees via
an information-theoretic framework for general noise models.
For the special cases of no noise and symmetric noise, we find
that the asymptotic number of tests required for vanishing error
probability is within a factor log 2 ≈ 0.7 of the information-
theoretic optimum at low sparsity levels, and that with a small
fraction of allowed incorrectly decoded items, this guarantee
extends to all sublinear sparsity levels. In addition, we provide a
converse bound showing that if one tries to move slightly beyond
our low-sparsity achievability threshold using separate decoding
of items and i.i.d. randomized testing, the average number of
items decoded incorrectly approaches that of a trivial decoder.

I. INTRODUCTION

The group testing problem consists of determining a small
subset S of “defective” items within a larger set of items
{1, . . . , p} based on a number of tests. This problem has a
history in medical testing [1], and has regained significant
attention with following applications in areas such as com-
munication protocols [2], pattern matching [3], and database
systems [4], and new connections with compressive sensing
[5], [6]. In the noiseless setting, each test takes the form

Y =
∨
j∈S

Xj , (1)

where the test vector X = (X1, . . . , Xp) ∈ {0, 1}p indicates
which items are included in the test, and Y is the resulting
observation. That is, the output indicates whether at least
one defective item was included in the test. One wishes to
minimize the total number of tests n while still ensuring
the reliable recovery of S. We focus on the non-adaptive
setting, in which all tests must be designed in advance. The
corresponding test vectors X(1), . . . , X(n) are represented by
the matrix X ∈ {0, 1}n×p with i-th row X(i).

Following both classical works [7]–[10] and recent advances
[11]–[13], the information-theoretic performance limits of
group testing have become increasingly well-understood, and
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several practical near-optimal algorithms for the noiseless set-
ting have been developed. In contrast, practical algorithms for
noisy settings have generally remained less well-understood,
with the best known theoretical guarantees usually being
far from the information-theoretic limits (though sometimes
matching in scaling laws) [14]–[16].

A notable exception to these limitations is the technique
of Malyutov and Mateev [8] based on separate decoding of
items,1 in which each given item j ∈ {1, . . . , p} is decoded
based only on the j-th column Xj of X, along with Y (see
Section I-B). This approach is computationally efficient, and
was also proved to come with strong theoretical guarantees in
the case that k := |S| = O(1) [8], [17] (see Section I-C).

In this paper, we develop a theoretical framework for
understanding separate decoding of items, and move beyond
the work of [8] in several important directions: (i) We consider
the general case of k = o(p), thus handling much more general
scenarios corresponding to “denser” settings, and leading
to non-trivial challenges in the theoretical analysis; (ii) We
consider not only exact recovery, but also partial recovery,
often leading to much milder requirements on the number of
tests; (iii) We provide a novel converse bound revealing that
under separate decoding of items, our achievability bounds
cannot be improved in several cases of interest.

Before discussing the previous work and our contributions
in more detail, we formally state the setup.

A. Problem Setup

We let the defective set S be uniform on the
(
p
k

)
subsets

of {1, . . . , p} of cardinality k. For convenience, we will
sometimes equivalently refer to a vector β ∈ {0, 1}p whose
j-th entry indicates whether or not item j is defective:

βj = 1{j ∈ S}. (2)

We consider i.i.d. Bernoulli testing, where each item is placed
in a given test independently with probability ν

k for some
constant ν > 0. The vector of n observations is denoted
by Y ∈ {0, 1}n, and the corresponding measurement matrix
(each row of which contains a single measurement vector) is
denoted by X ∈ {0, 1}n×p. Denoting the i-th entry of Y by
Y (i) and the i-th row of X by X(i) = (X

(i)
1 , . . . , X

(i)
p ), the

measurement model is given by

(Y (i)|X(i)) ∼ PY |N(S,X(i)), (3)

1This is referred to as separate testing of inputs in more recent works [17],
[18], but there the word “testing” refers to a hypothesis test performed at the
decoder, as opposed to testing the sense of designing X.
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where N(S,X(i)) =
∑p
j=1 1{j ∈ S ∩ X

(i)
j = 1} denotes

the number of defective items in the test. That is, we consider
arbitrary noise distributions PY |N for which Y (i) depends on
X(i) only through N(S,X(i)), with conditional independence
among the tests i = 1, . . . , n. For each item j = 1, . . . , p, the
j-th column of X is written as Xj ∈ {0, 1}n.

While most of our results will be written in terms of general
noise models of the form (3), we also pay particular attention
to two specific models: The noiseless model in (1), and the
symmetric noise model with parameter ρ > 0:

Y =
( ∨
j∈S

Xj

)
⊕ Z, (4)

where Z ∼ Bernoulli(ρ), and ⊕ denotes modulo-2 addition.
In the general case (i.e., not necessarily using separate

decoding of items), given X and Y, a decoder forms an
estimate Ŝ of S, or equivalently, an estimate β̂ of β. We
consider two related performance measures. In the case of
exact recovery, the error probability is given by

Pe := P[Ŝ 6= S], (5)

and is taken over the realizations of S, X, and Y (the decoder
is assumed to be deterministic). In addition, we consider a less
stringent performance criterion in which we allow for up to
dpos ∈ {0, . . . , p−k−1} false positives and dneg ∈ {0, . . . , k−
1} false negatives, yielding an error probability of

Pe(dpos, dneg) := P
[
|Ŝ\S| > dpos ∪ |S\Ŝ| > dneg

]
. (6)

In some cases (particularly for the converse) it will be conve-
nient to consider yet another criterion in which we only seek to
bound the average number of incorrectly-decoded items Nerr:

E[Nerr] =

p∑
j=1

P[β̂j 6= βj ]. (7)

B. Separate Decoding of Items

We use the terminology separate decoding of items to mean
any decoding scheme in which β̂j is only a function of Xj

and Y, i.e.,

β̂j = φj(Xj ,Y), j = 1, . . . , p (8)

for some functions {φj}pj=1. All of our achievability results
will choose φj not depending on j; more specifically, follow-
ing [8], each decoder is of the following form for some γ > 0:

φj(Xj ,Y) = 1

{ n∑
i=1

log
PY |Xj ,βj (Y

(i)|X(i)
j , 1)

PY (Y (i))
> γ

}
, (9)

where PY is the unconditional distribution of a given ob-
servation, and PY |Xj ,βj (·|·, 1) is the conditional distribution
given βj = 1 and the value of Xj . This can be interpreted
as the Neyman-Pearson test for binary hypothesis testing with
hypotheses H0 : βj = 0 and H1 : βj = 1.

The computational complexity of (9) is O(n) for each
j = 1, . . . , p, for a total of O(np). This matches the runtime
of typical group testing algorithms [12], though it is slower
than recent sublinear-time algorithms [15], [16] (see also
[19], [20] for earlier works on non-random noise models).

Moreover, considerable speedups are possible via distributed
implementations, as shown in [21], [22].

The rule (9) requires knowledge of the Bernoulli test
parameter ν, the crossover probability ρ, and the number of
defectives k. The last of these poses the strongest assumption,
though it is commonly made in the group testing literature.
We leave the study of universal variants (e.g., see [23]) for
future work.

C. Related Work

Figure 1 summarizes the main results known for the noise-
less and symmetric noise models (both information-theoretic
and practical), along with our novel contributions. We proceed
by outlining the relevant related work, and then describe our
contributions in more detail and further discuss Figure 1.

Information-theoretic limits. The information-theoretic
limits of group testing have long been well-understood for
k = O(1) in the Russian literature [7], [8], and have re-
cently become increasingly well-understood for more general
k = o(p) [11], [13], [24], [25]. Here we highlight two results
from [13], [25], [26] that are particularly relevant to our work:
• For the noiseless model (1) with Bernoulli testing and
k = Θ(pθ) for some θ ∈ (0, 1), the minimal number of
tests n∗ ensuring high-probability exact recovery satisfies

n∗ = inf
ν>0

max

{
k log p

k

H2(e−ν)
,

θ
1−θk log p

k

e−νν

}
(1 + o(1)),

(10)
where H2(·) is the binary entropy function.2 In particular,
for θ ≤ 1

3 , we have n∗ =
(
k log2

p
k

)
(1 + o(1)), which is

optimal even beyond Bernoulli testing.
• For the symmetric noise model (4) with ρ > 0, we have

for sufficiently small θ that

n∗ =
k log p

k

log 2−H2(ρ)
(1 + o(1)). (11)

Moreover, if we move to partial recovery with dpos =
dneg = α∗k for arbitrarily small α∗ > 0, then the
right-hand side of (11) is achievable for all θ ∈ (0, 1)
(including in the noiseless case ρ = 0).

Practical algorithms. In the noiseless setting, numerous
practical group testing algorithms have been proposed with
various theoretical guarantees. The best known bounds under
Bernoulli testing were given for the definite defectives (DD)
algorithm in [25], in particular matching (10) for θ ≥ 1

2 .
Moreover, in [27], it was shown that the same bound is attained
by the linear programming (LP) relaxation techniques of [18].
The DD algorithm was also shown to yield improved bounds
under a non-Bernoulli random design in [28], but in this paper
we focus on Bernoulli testing.

In noisy settings, less is known. For the symmetric noise
model, an algorithm called noisy combinatorial orthogonal
matching pursuit (NCOMP) [14] (also referred to as noisy
column matching in [29]) was shown to achieve optimal
O(k log p) scaling, but the constant factors in this result are

2Here and subsequently, all logarithms have base e, and all information
measures are in units of nats.



3

Value 3 such that k = #(p3)
0 0.2 0.4 0.6 0.8 1

A
sy

m
p
to

ti
c

ra
ti
o

of
k
lo

g
2
p=

k
to

n

0

0.2

0.4

0.6

0.8

1
Joint false pos/neg 

Joint exact

False pos/neg 

False neg 

False pos 

Exact

Practical joint exact

Value 3 such that k = #(p3)
0 0.2 0.4 0.6 0.8 1

A
sy

m
p
to

ti
c

ra
ti
o

of
k
lo

g
2
p=

k
to

n

0

0.1

0.2

0.3

0.4

0.5
Joint false pos/neg 

Joint exact

False pos/neg 

False neg 

False pos 

Exact

Best previous practical

Figure 1: Asymptotic thresholds on the number of tests required for vanishing error probability in the noiseless setting (Left),
and the symmetric noise setting with ρ = 0.11 (Right). The number of defective items is k = Θ(pθ) for some θ > 0. The
vertical axis represents the constant c(θ) such that the number of tests is

(
1
c(θ)k log2

p
k

)
(1 + o(1)). The blue curves correspond

to separate decoding of items, with exact recovery (Exact), Θ(k) false positives only (False pos), Θ(k) false negatives only
(False neg), or both Θ(k) false positives and Θ(k) false negatives (False pos/neg). The “practical joint exact” curve is DD
[12] or LP [18] in the noiseless case, and the “best previous practical” curve is NCOMP [14] in the noisy case.

quite suboptimal. NCOMP is in fact also an algorithm with
separate decoding of items, albeit different than that of [8].

Some heuristic algorithms have been proposed for noisy
settings without theoretical guarantees, including belief prop-
agation [30] and a noisy LP relaxation [18]. A different LP
relaxation was also given in [29] that only makes use of the
negative tests; as a result, we found that it does not perform
as well in practice. On the other hand, it was shown to yield
optimal scaling laws in the symmetric noise model, with the
constant factors again left loose to simplify the analysis.

Another related algorithm is the column-based algorithm of
[31], which separately computes the number of agreements
and disagreements with Y for each column Xj (though a
final sorting step is also performed, so this is not a “separate
decoding” algorithm according to our definition). The main
focus in [31] is on the regime that dneg = 0 and dpos = Θ(p)
(i.e., a very large number of false positives), which we do not
consider in this paper.

Recently, algorithms based on sparse graph codes (with
non-Bernoulli testing) have been proposed with various guar-
antees [15], [16]. For the noiseless non-adaptive case with
exact recovery, however, the scaling laws are O(k log k log p),
thus failing to match the information-theoretic scaling
Θ(k log p

k ). Nevertheless, for partial recovery, a O(k log p)
guarantee was proved in [16] (with loose constant factors).
While these algorithms are suboptimal, they have the notable
advantage of running in sublinear time.

We briefly mention that a rather different line of works has
considered group testing with adversarial errors [19], [32],
[33]. This is a fundamentally different setting to that of random
errors, and the corresponding test designs and algorithms are

less relevant to the present paper.
Separate decoding of items. The idea of separate decoding

of items for sparse recovery problems (including group testing)
was initiated by Malyutov and Mateev [8], who showed that
when k = O(1) and the decoder (9) is used with suitably-
chosen γ, one can achieve exact recovery with vanishing error
probability provided that

n ≥ log p

I1
(1 + o(1)), (12)

where the single-item mutual information I1 is defined as
follows, with implicit conditioning on item 1 being defective:

I1 := I(X1;Y ). (13)

As noted in [17], in the noiseless setting with ν = ln 2 we
have I1 = (log 2)2

k (1 + o(1)) as k →∞, and in this case, (12)
matches (10) up to a factor of log 2 ≈ 0.7. In fact, the same
turns out to be true for the symmetric noise model, matching
(11) up to a factor of log 2, or even better if ν is further
optimized (see Appendix A). In more recent works [17], [23],
similar results were shown when the rule (9) is replaced by
a universal rule (i.e., not depending on the noise distribution)
based on the empirical mutual information. However, we stick
to (9) in this paper, as we found it to be more amenable to
general scalings of the form k = o(p).

Characterizations of the mutual information I1 for several
specific noise models were given in [34].

D. Contributions

In this paper, we provide an information-theoretic frame-
work for studying separate decoding of items with general
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scalings of the form k = o(p), as opposed to the case
k = O(1) considered in [8], [23]. As with joint decoding [13],
[26], the regime k = o(p) comes with significant challenges,
with additional requirements on n arising from concentration
inequalities and often dominating (12). In addition, we con-
sider the novel aspect of partial recovery, as well as presenting
a converse bound that is specific to separate decoding.

As mentioned above, our contributions for the noiseless and
symmetric noise models are summarized in Figure 1, where
we plot the asymptotic number of tests for achieving Pe →
0 or Pe(dpos, dneg) → 0 under Bernoulli testing with ν =
log 2. Note that in this figure, the number of allowed false
positives and/or false negatives (if any) is always assumed to
be Θ(k), though we allow for an arbitrarily small implied
constant. Moreover, the horizontal line at the top of each plot
also represents a converse for joint decoding with an arbitrarily
small fraction of false positives and false negatives.

We make the following observations:
• In the noiseless case, our asymptotic bounds are within a

factor log 2 of the optimal threshold for joint decoding
as θ → 0, are reasonable for all θ ∈ (0, 1) with
improvements when false positives or false negatives are
allowed, and are within a factor log 2 of the optimal
joint decoding threshold for all θ when both are allowed.
Moreover, with exact recovery and θ ∈ (0, 0.0398), we
strictly improve on the best known bound for any efficient
algorithm under Bernoulli testing.

• For the symmetric noise model, the general behavior is
similar, but we significantly outperform the best known
previous bound (NCOMP [14])3 for all θ ∈ (0, 1). Once
again, when both false positives and false negatives are
allowed, we are within a factor log 2 of the optimal
threshold for joint decoding.

• Although it is not shown in Figure 1, we provide a
converse bound showing that if one tries to move beyond
our achievability threshold for θ → 0 (or equivalently,
the threshold obtained at all θ with both false positives
and false negatives), then any separate decoding of items
scheme with Bernoulli testing must have E[Nerr] =
k(1− o(1)), i.e., the average number of errors is close to
the trivial value of k that would be obtained by declaring
every item as non-defective. In contrast, below the same
threshold, we show that E[Nerr] = o(k) is achievable.

The exact recovery results are given in Section II, the partial
recovery results are given in Section III, and the converse
bounds are given in Section IV. In addition to these theoretical
developments, we evaluate the performance of separate de-
coding via numerical experiments in Section V, showing it to
perform well despite being outperformed by the LP relaxation
technique of [18].

3The final bound stated in [14, Thm. 6] appears to have a term omitted
due an incorrect claim at the end of the proof stating that log k

log p
tends to

zero (which is only true if k = o(pθ) for all θ > 0). Upon correcting
this, the final bound increases from n ≈ 4.36(1 − 2ρ)−2 log2 p to n ≈
4.36(1 +

√
θ)2(1 − 2ρ)−2 log2 p. This correction was also made in the

follow-up paper [29], but that paper only considered the suboptimal choice
ν = 1, yielding a bound with worse constants. We also note that the bounds
in [29] for an LP relaxation (using negative tests only) are strictly worse than
those stated above for NCOMP.

II. ACHIEVABILITY RESULTS WITH EXACT RECOVERY

In this section, we develop the theoretical results leading to
the asymptotic bounds for the noiseless and noisy settings in
Figure 1. To do this, we first establish non-asymptotic bounds
on the error probability, then present the tools for performing
an asymptotic analysis, and finally give the details of the
applications to specific models.

A. Additional Notation

We define some further notation in addition to that in
Section I-A. Our analysis will apply for any given choice of
the defective set S, due to the symmetry of the observation
model (3) and the i.i.d. test matrix X. Hence, throughout this
section, we will focus on the specific set S = {1, . . . , k}. In
particular, we assume that item 1 is defective, and we define
PY |X1

accordingly:

PY |X1
(y|x1) = PY |X1,β1

(y|x1, 1). (14)

Hence, the summation in (9) can be written as

ın1 (Xj ,Y) :=

n∑
i=1

ı1(X
(i)
j , Y (i)), (15)

where
ı1(x1, y) := log

PY |X1
(y|x1)

PY (y)
. (16)

Following the terminology of the channel coding literature
[35]–[37], we refer to this quantity as the information den-
sity. Denoting the distribution of a single entry of X by
PX ∼ Bernoulli

(
ν
k

)
, we find that the average of (16) with

respect to (X1, Y ) ∼ PX × PY |X1
is the mutual information

I1 in (13). With the above distributions in place, we define
PnX(x1) =

∏n
i=1 PX(x

(i)
1 ), PnY (y) =

∏n
i=1 PY (y(i)), and

PnY |X1
(y|x1) =

∏n
i=1 PY |X1

(y(i)|x(i)
1 ).

When we specialize our results to the noiseless and sym-
metric noise models, we will choose

ν = νsymm :=

{
unique value such that

(
1− ν

k

)k
=

1

2

}
(17)

= (log 2)(1 + o(1)). (18)

For k →∞ (as we consider), there is essentially no difference
between setting ν = νsymm or ν = log 2, but we found the
former to be slightly more convenient mathematically. Either
choice is known to be asymptotically optimal for maximizing
I1 in the noiseless model [17], [34]. Perhaps surprisingly, this
is no longer true in general for the symmetric noise model
(see Appendix A); however, it simplifies some of the analysis
and does not impact the bounds significantly.

B. Initial Non-Asymptotic Bound

The following theorem provides an initial non-asymptotic
upper bound on the error probability for general models. The
result is proved using simple change-of-measure techniques
that appeared in early studies of channel coding [38], [39],
and have also been applied previously in the context of group
testing [8], [13], [26].
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Theorem 1. (Non-asymptotic, exact recovery) For a general
group testing model with with Bernoulli

(
ν
k

)
testing and sep-

arate decoding of items according to (9), we have

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)e−γ , (19)

where (X1,Y) ∼ PnX(x1)PnY |X1
(y|x1), and γ is given in (9).

Proof. For the exact recovery criterion, correct decoding re-
quires the k defective items to pass the threshold test in
(9), and the p − k non-defective items to fail it. Letting
X1 be an independent copy of X1, i.e., (X1,Y,X1) ∼
PnX(x1)PnY |X1

(y|x1)PnX(x1), it follows that

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)P[ın1 (X1,Y) > γ], (20)

where the first (respectively, second) term corresponds to the
union bound over the defectives (respectively, non-defectives).
We bound the second term in (20) by writing

P[ın1 (X1,Y) > γ]

=
∑
x1,y

PnX(x1)PnY (y)1

{
log

PnY |X1
(y|x1)

PnY (y)
> γ

}
(21)

≤
∑
x1,y

PnX(x1)PnY |X(y|x1)e−γ (22)

= e−γ , (23)

where (22) bounds PnY (y) according to the event in the
indicator function, and then bounds the indicator function by
one. Combining (20) and (23) completes the proof.

C. Asymptotic Analysis

In order to apply Theorem 1, we need to characterize the
probability appearing in the first term. The idea is to exploit
the fact that ın1 (X1,Y) is an i.i.d. sum (cf., (15)), and hence
concentrates around its mean. While the following corollary
is essentially a simple rewriting of Theorem 1, it makes the
application of such concentration bounds more transparent.
Here and subsequently, asymptotic notation such as →, o(·),
and O(·) is with respect to p → ∞, and we assume that
k →∞ with k = o(p).

Theorem 2. (Asymptotic bound, exact recovery) Under the
setup of Theorem 1, suppose that the information density
satisfies a concentration inequality of the following form:

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ ψn(δ2) (24)

for some function ψn(δ2). Moreover, suppose that the follow-
ing conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log
(

1
δ1

(p− k)
)

I1(1− δ2)
, (25)

k · ψn(δ2)→ 0. (26)

Then Pe → 0 under the decoder in (9) with γ = log p−k
δ1

.

Proof. Setting γ = log p−k
δ1

in Theorem 1, we obtain

Pe ≤ kP
[
ın1 (X1,Y) ≤ log

p− k
δ1

]
+ δ1. (27)

By the condition in (25), the probability in (27) is upper
bounded by P[ın1 (X1,Y) ≤ nI1(1 − δ2)], which in turn is
upper bounded by ψn(δ2) by (24). We therefore have from
(27) that Pe ≤ kψn(δ2) + δ1, and hence the theorem follows
from the assumption δ1 → 0 along with (26).

D. Concentration Bounds

In order to apply Theorem 2 to specific models, we need
to characterize the concentration of ın1 (X1,Y) and attain an
explicit expression for ψn(δ2) in (24). The following lemma
brings us one step closer to attaining explicit expressions,
giving a general concentration result based on Bernstein’s
inequality [40, Ch. 2].

Lemma 1. (Concentration via Bernstein’s inequality) Defining

cmean := kE[ı(X1, Y )] = kI1, (28)
cvar := kVar[ı(X1, Y )], (29)

cmax := max
x1,y

∣∣ı(x1, y)
∣∣, (30)

we have for any δ2 > 0 that

P
[∣∣ın1 (X1,Y)− nI1

∣∣ ≤ nδ2I1]
≤ 2 exp

( − 1
2 ·

n
k · c

2
meanδ

2
2

cvar + 1
3cmeancmaxδ2

)
(31)

Proof. Since ın1 (X1,Y) is a sum of i.i.d. random variables
with mean I1, this lemma is a direct application of Bernstein’s
inequality [40, Ch. 2]: For zero-mean i.i.d. random variables
{Wi}ni=1 with variance at most v and maximum absolute value
at most M , it holds that

P
[∣∣∣ n∑

i=1

Wi

∣∣∣ ≤ nδ] ≤ 2 exp

( − 1
2nδ

2

v + 1
3Mδ

)
. (32)

We have defined the values cmean, cvar and cmax conveniently
defined so that they behave as Θ(1) in typical examples (see
Section II-E).

We will use Lemma 1 to establish the results shown for the
symmetric noise model in Figure 1 (Right). While we could
also use Lemma 1 for the noiseless model, it turns out that
we can in fact do better via the following.

Lemma 2. (Concentration for noiseless model) Under the
noiseless model with ν = νsymm (cf., (17)), we have for any
δ2 ∈ (0, 1) that

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ exp

(
− n(log 2)2

k

×
(

(1− δ2) log(1− δ2) + δ2

)
(1 + o(1))

)
(33)

as p→∞ and k →∞ simultaneously.

Proof. We begin by characterizing at the various outcomes of
(X1, Y ) and their probabilities, as well as the resulting values
of ı1(X1, Y ). Since PY (0) = PY (1) = 1

2 by the definition
of νsymm, the information density simplifies to ı1(x1, y) =
log
(
2PY |X1

(y|x1)
)
, and we have the following:
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• X1 = 1 with probability ν
k , and in this case we deter-

ministically have Y = 1, yielding ı1 = log 2.
• X1 = 0 with probability 1 − ν

k , and conditioned on this
event we have the following:

– Y = 0 with probability
(
1 − ν

k

)k−1
= 1

2 ·
1

1−ν/k =
1
2 ·
(
1+ ν/k

1−ν/k
)

= 1
2 (1+o(1)), where the first equality

follows from the definition of νsymm. Hence, in this
case we have ı1 = log

(
1 + ν/k

1−ν/k
)

= ν
k (1 + o(1)).

– Y = 1 with probability 1 − 1
2 ·
(
1 + ν/k

1−ν/k
)

= 1
2 ·(

1− ν/k
1−ν/k

)
= 1

2 (1 + o(1)), and in this case we have

ı1 = log
(
1− ν/k

1−ν/k
)

= −νk (1 + o(1)).
From these calculations and (18), we immediately obtain

I1 = E[ı(X1, Y )] =
(log 2)2

k
(1 + o(1)). (34)

To ease the notation, we momentarily omit the arguments to ın1
and ı(i). By defining V (i) = i

(i)
1 ·1{X

(i)
1 = 1} and W (i) = i

(i)
1 ·

1{X(i)
1 = 0}, we deduce that ın1 =

∑n
i=1 V

(i) +
∑n
i=1W

(i),
and by the above calculations, the individual distributions of
each V (i) and W (i) are as follows:

V =

{
log 2 w.p. νk
0 w.p. 1− ν

k ,
(35)

W =


0 w.p. νk
log
(

1 + ν/k
1−ν/k

)
w.p. 1

2

(
1 + ν/k

1−ν/k

)
log
(

1− ν/k
1−ν/k

)
w.p. 1

2

(
1− ν/k

1−ν/k

)
.

(36)

We proceed by fixing δ′ > 0 (later to be equated with δ2(1 +
o(1))) and ε ∈ (0, δ′) (later to be taken to zero), and writing

P
[
ın1 ≤

nν log 2

k
(1− δ′)

]
≤ P

[ n∑
i=1

V (i) ≤ nν log 2

k
(1− δ′ + ε)

∪
n∑
i=1

W (i) ≤ −nνε log 2

k

]
(37)

≤ P
[ n∑
i=1

V (i) ≤ nν log 2

k
(1− δ′ + ε)

]
+ P

[ n∑
i=1

W (i) ≤ −nνε log 2

k

]
(38)

=: T1 + T2, (39)

where (37) follows since if both of the events on the right-
hand side are violated then so is the event on the left-hand
side, and (38) follows from the union bound.

To bound the term T1, we simply apply the multiplicative
form of the Chernoff bound for Binomial random variables
[41, Sec. 4.1] to obtain

T1 ≤ exp

(
− nν(log 2)

k

(
(1−δ′+ε) log(1−δ′+ε)+δ′+ε

))
,

(40)
since we have E[V ] = ν log 2

k .

As for T2, a direct calculation yields E[W ] = o
(

1
k2

)
and

max[|W |] = O
(

1
k

)
. Hence, by Hoeffding’s inequality [40,

Ch. 2], we have for any fixed ε > 0 (not depending on p) that

T2 ≤ exp
(
− nCε2

)
(41)

for some constant C > 0 and sufficiently large p. In particular,
since k →∞, we have T2 = o(T1).

Substituting the preceding bounds into (39), we obtain (33)
with 1− δ′ − ε in place of δ2, and ν log 2

k in place of I1. The
lemma is concluded by noting that ε may be arbitrarily small,
and noting from (18) and (34) that ν log 2

k = I1(1 + o(1)).

E. Applications to Specific Models

Noiseless model: For the noiseless group testing model (cf.,
(1)), we immediately obtain the following from Theorem 2
and Lemma 2.

Corollary 1. (Noiseless, exact recovery) For the noiseless
group testing problem with ν = νsymm (cf., (17)) and
k = Θ(pθ) for some θ ∈ (0, 1), we can achieve Pe → 0
with separate decoding of items provided that

n ≥ min
δ2>0

max

{
k log p

(log 2)2(1− δ2)
,

k log k

(log 2)2
(
(1− δ2) log(1− δ2) + δ2

)}(1 + η) (42)

for some η > 0.

Proof. We know from (34) that I1 = (log 2)2

k (1 + o(1)), and
hence, the first term in (42) follows from (25) with δ1 → 0
sufficiently slowly. Moreover, by equating ψn(δ2) with the
right-hand side of (33) and performing simple rearranging in
(26), we obtain the second term in (42).

Symmetric noise model: For the symmetric noisy model (cf.,
(1)), we make use of Lemma 1, with the constants cmean, cvar

and cmax therein characterized in the following. Recall that
H2 is the binary entropy function in nats.

Lemma 3. (Bernstein parameters for symmetric noise) Under
the symmetric noise model with a fixed parameter ρ ∈

(
0, 1

2

)
(not depending on p) and ν = νsymm (cf., (17)), we have

kE[ı(X1, Y )] = (log 2)
(

log 2−H2(ρ)
)
(1 + o(1)), (43)

kVar[ı(X1, Y )] ≤ (log 2)

(
(1− ρ) log2

(
2(1− ρ)

)
+ ρ log2(2ρ)

)
(1 + o(1)), (44)

max
x1,y

∣∣ı(x1, y)
∣∣ = log

1

2ρ
(45)

as p→∞ and k →∞ simultaneously.

Proof. We begin by looking at the various possible outcomes
of (X1, Y ) and their probabilities, as well as the resulting
values of ı1(X1, Y ). Since PY (0) = PY (1) = 1

2 by the
definition of νsymm, the information density simplifies to
ı1(x1, y) = log

(
2PY |X1

(y|x1)
)
, and we have the following:
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• X1 = 1 with probability ν
k , and conditioned on this event,

we have the following:
– Y = 1 with probability 1−ρ, and in this case we have
ı1 = log

(
2(1− ρ)

)
.

– Y = 0 with probability ρ, and in this case we have
ı1 = log(2ρ).

• X1 = 0 with probability 1 − ν
k , and conditioned on this

event, we have the following:
– Y = 0 with probability (1 − ρ) · 1

2 (1 + ξ) + ρ ·
1
2 (1 − ξ) = 1

2

(
1 + (1 − 2ρ)ξ

)
, where ξ = ν/k

1−ν/k as
derived following (33). Hence, in this case, we have
ı1 = log

(
1 + (1− 2ρ)ξ

)
= (1−2ρ)ν

k (1 + o(1)).
– Y = 1 with probability (1− ρ) · 1

2 (1− ξ) + ρ · 1
2 (1 +

ξ) = 1
2

(
1 − (1 − 2ρ)ξ

)
, and in this case, we have

ı1 = log
(
1− (1− 2ρ)ξ

)
= − (1−2ρ)ν

k (1 + o(1)).
With these computations in place, the lemma follows easily
by evaluating the expectation E[ı], variance E[(ı− I1)2], and
maximum max[ı] directly, and substituting ν = νsymm =
(log 2)(1 + o(1)). We briefly outline the details:
• For the mean, the contributions corresponding to X1 =

1 already give the right-hand side of (43), whereas for
X1 = 0, the terms corresponding to Y = 0 and Y = 1
effectively cancel, i.e., their sum is o

(
1
k

)
.

• For the variance, the contributions corresponding to X1 =
1 already give the right-hand side of (44), whereas the
contributions from the sub-cases of X1 = 0 are O

(
1
k2

)
.

• For the maximum, we use the fact that log 1
2ρ ≥

log
(
2(1− ρ)

)
for all ρ ∈

(
0, 1

2

)
.

From this lemma, we immediately obtain the following.

Corollary 2. (Symmetric noise, exact recovery) For noisy
group testing with ρ ∈

(
0, 1

2

)
(not depending on p), ν =

νsymm, and k = Θ(pθ) for some θ ∈ (0, 1), we can achieve
Pe → 0 with separate decoding of items provided that

n ≥ min
δ2>0

max

{
k log p

(log 2)(log 2−H2(ρ))(1− δ2)
,

(k log k) ·
(
cvar + 1

3cmeancmaxδ2
)

1
2c

2
meanδ

2
2

}
(1 + η) (46)

for some η > 0, where cmean, cvar, and cmax are respectively
given by the right-hand sides of (43)–(45).

We have focused on the case ν = νsymm to simplify the
analysis and establish an explicit log 2 gap to joint decoding
as θ → 0 (in which case, the first term of (46) dominates
for arbitrarily small δ2). However, we show in Appendix
A that this choice can be suboptimal even as θ → 0,
and that more generally we obtain the sufficient condition
n ≥ k log p

νD2(ρ‖ρ?e−ν) (1+η) in this limit, where a?b = a(1−b)+

b(1−a), and D2(a‖b) = a log a
b +(1−a) log 1−a

1−b is the binary
KL divergence function. This turns out to marginally improve
on the condition n ≥ k log p

(log 2)(log 2−H2(ρ)) (1 + η) obtained via
the specific choice ν = νsymm = (log 2)(1 + o(1)).

Other noise models: We showed above how to apply Lemma
1 to the symmetric noise model. However, it can also be

applied more generally, yielding an analogous result for any
model in which the quantities cmean, cvar, and cmax in (28)–
(30) behave as Θ(1). In particular, for any such model and
any fixed ν > 0, in the limit as θ → 0, it suffices to have

n ≥ log p

I1
(1 + η) =

k log p

cmean
(1 + η), (47)

for arbitrarily small η > 0. In contrast, for θ strictly greater
than zero, the conditions on n resulting from Bernstein’s
inequality may dominate (47), similarly to Corollary 2.

In the following section, we show that when we move to
partial recovery, it is possible to circumvent the difficulties of
the concentration bounds for θ > 0, and to derive sufficient
conditions of the form (47) valid for all θ ∈ (0, 1), even when
the term k log p is improved to k log p

k .

III. ACHIEVABILITY RESULTS WITH PARTIAL RECOVERY

In this section, we show that the analysis of the previous
section can easily be adapted to provide achievability results
when a certain number false positives dpos and/or false neg-
atives dneg are allowed. We make use of the notation from
Sections I-A and II-A.

The main tool we need is the following, whose proof is in
fact implicit in our analysis for the exact recovery criterion.

Lemma 4. (Auxiliary result for partial recovery) For any
group testing model of the form (3), under the decoder in
(9) with threshold γ > 0, we have the following:

(i) For any j /∈ S, the probability of passing the threshold
test is upper bounded by e−γ .

(ii) Suppose that the information density satisfies a concen-
tration inequality of the form (24) for some function ψn(δ2),
and that the number of tests satisfies n ≥ γ

I1(1−δ2) . Then for
any j ∈ S, the probability of failing the threshold test is upper
bounded by ψn(δ2).

Proof. The first part was shown in (23), and the second part
is implicit in the proof of Theorem 2.

A. General Partial Recovery Achievability Results

We proceed by giving three variations of Theorem 2 for the
case that way may tolerate false positives, false negatives, or
both. We focus on the case that the number of false negatives
and/or false positives is Θ(k), but we note that the implied
constant in the Θ(·) notation may be arbitrarily small.

We begin with the case that only false positives are allowed.
This setting is closely related to that of list decoding, which
was studied in [9], [31], [42], [43]. Recall that asymptotic
notation such as →, o(·), O(·) is with respect to p→∞, and
we assume that k →∞ with k = o(p).

Theorem 3. (Asymptotic bound, false positives only) Con-
sider the group testing problem with dpos = αposk for some
αpos > 0 (not depending on p) and dneg = 0, and suppose that
the information density satisfies a concentration inequality of
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the form (24) for some ψn(δ2). Moreover, suppose that the
following conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log
(

1
δ1
· p−kk

)
I1(1− δ2)

, (48)

k · ψn(δ2)→ 0. (49)

Then under the decoder in (9) with γ = log
(

1
δ1
· p−kk

)
, we

have Pe(dpos, 0)→ 0.

Proof. By applying the second part of Lemma 4, and follow-
ing the proof of (26) in Theorem 2, we find that the probability
of one or more false negatives tends to zero when (49) holds.

Let Npos denote the (random) number of false positives.
Setting γ = log

(
1
δ1
· p−kk

)
in the first part of Lemma 4,

we obtain E[Npos] ≤ (p − k)e−γ = kδ1. By the assumption
δ1 → 0, it follows that E[Npos] = o(k). Hence, by Markov’s
inequality, the probability of Npos > αposk must vanish for
any αpos = Θ(1).

The main difference in Theorem 3 compared to Theorem
1 is that log(p− k) is replaced by log p−k

k in the numerator.
While this may not appear to be a drastic change, it can lead to
visible improvements (cf., Figure 1), particularly for moderate
to large values of θ.

Next, we consider the case that only false negatives are
allowed, i.e., dpos = 0 and dneg > 0.

Theorem 4. (Asymptotic bound, false negatives only) Con-
sider the group testing problem with dneg = αnegk for some
αneg ∈ (0, 1) (not depending on p) and dpos = 0, and suppose
that the information density satisfies a concentration inequality
of the form (24) for some ψn(δ2). Moreover, suppose that the
following conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log
(

1
δ1
· (p− k)

)
I1(1− δ2)

, (50)

ψn(δ2)→ 0. (51)

Then under the decoder in (9) with γ = log p−k
δ1

, we have
Pe(0, dneg)→ 0.

Proof. Applying the first part of Lemma 4 along with the
union bound over the p − k non-defectives and the choice
γ = log p−k

δ1
, we find that the probability of one or more false

negatives is at most δ1, which vanishes by assumption.
Let Nneg denote the (random) number of false negatives.

Setting γ = log
(

1
δ1
· p−kk

)
in the second part of Lemma 4, we

obtain E[Nneg] ≤ kψn(δ2). By the assumption ψn(δ2)→ 0, it
follows that E[Nneg] = o(k). Hence, by Markov’s inequality,
P[Nneg > αnegk] must vanish for any αneg = Θ(1).

By allowing false negatives, we obtain a significantly milder
condition on ψn in (51), corresponding to the concentration
of ın1 (X1,Y). Specifically, all we need is concentration about
the mean at an arbitrarily slow rate, whereas in Theorem 2 we
needed a rate of O

(
1
k

)
. This turns out to significantly reduce

the required number of tests for moderate to large values of
θ; see Corollary 3 below, as well as Figure 1.

Finally, we consider the case that both false positives and
false negatives are allowed.

Theorem 5. (Asymptotic bound, false positives and false neg-
atives) Consider the group testing problem with dpos = αposk
and dneg = αnegk for some αpos > 0 and αneg ∈ (0, 1)
(not depending on p), and suppose that the information
density satisfies a concentration inequality of the form (24) for
some function ψn(δ2). Moreover, suppose that the following
conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log
(

1
δ1
· p−kk

)
I1(1− δ2)

, (52)

ψn(δ2)→ 0. (53)

Then under the decoder in (9) with γ = log p−k
δ1

, we have
Pe(dpos, dneg)→ 0.

Proof. This result is directly deduced from the proofs of
Theorems 3 and 4.

As we show in Corollary 5 below, this result leads to a broad
class of noise models where the threshold n∗ =

log p
k

I1
(1+o(1))

can be achieved for all θ ∈ (0, 1) with partial recovery.

B. Applications to Specific Models

Noiseless model: The following corollary gives three varia-
tions of the result in Corollary 1 corresponding to the three
partial recovery settings considered in the previous subsection.

Corollary 3. (Noiseless model, partial recovery) For the
noiseless group testing problem with ν = νsymm (cf., (17))
and k = Θ(pθ) for some θ ∈ (0, 1), we can achieve
Pe(dpos, dneg) → 0 with separate decoding of items under
any of the following conditions:

(i) dpos = Θ(k), dneg = 0, and

n ≥ min
δ2>0

max

{
k log p

k

(log 2)2(1− δ2)
,

k log k

(log 2)2
(
(1− δ2) log(1− δ2) + δ2

)}(1 + η) (54)

for some η > 0.
(ii) dpos = 0, dneg = Θ(k), and

n ≥ k log p

(log 2)2
(1 + η) (55)

for some η > 0.
(iii) dpos = Θ(k), dneg = Θ(k), and

n ≥
k log p

k

(log 2)2
(1 + η) (56)

for some η > 0.

Proof. These results follow in the same way as Corollary 2,
but with Theorems 3–5 in place of Theorem 2. When false
negatives are allowed, δ2 can be arbitrarily small, so it is
factored into the 1 + η remainder term.

The above bounds are depicted visually and compared to
existing bounds in Figure 1 (Left), and were discussed in
Section I-D.
Symmetric noise model: Next, we provide an analog of
Corollary 2 for partial recovery.
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Corollary 4. (Symmetric noise model, partial recovery) Under
the symmetric noise model with a fixed parameter ρ ∈

(
0, 1

2

)
(not depending on p) and ν = νsymm (cf., (17)), we can
achieve we can achieve Pe(dpos, dneg) → 0 with separate
decoding of items under any of the following conditions:

(i) dpos = Θ(k), dneg = 0, and

n ≥ min
δ2>0

max

{
k log p

k

(log 2)(log 2−H2(ρ))(1− δ2)
,

(k log k) ·
(
cvar + 1

3cmeancmaxδ2
)

1
2c

2
meanδ

2
2

}
(1 + η) (57)

for some η > 0, where cmean, cvar, and cmax are respectively
given by the right-hand sides of (43)–(45).

(ii) dpos = 0, dneg = Θ(k), and

n ≥ k log p

(log 2)(log 2−H2(ρ))
(1 + η) (58)

for some η > 0.
(iii) dpos = Θ(k), dneg = Θ(k), and

n ≥
k log p

k

(log 2)(log 2−H2(ρ))
(1 + η) (59)

for some η > 0.

Proof. These bounds follow in the same way as Corollary 2,
but with Theorems 3–5 in place of Theorem 2.

The above bounds are depicted visually and compared to
existing bounds in Figure 1 (Right), and were discussed in
Section I-D. Similarly to the discussion following Corollary
2, slightly improved bounds can be obtained by considering
ν 6= νsymm; for instance, (59) can be generalized to n ≥

k log p
k

νD2(ρ‖ρ?e−ν) (1 + η), where a ? b = a(1− b) + b(1− a), and
D2(a‖b) = a log a

b + (1− a) log 1−a
1−b (see Appendix A).

Other noise models: Analogous bounds to those in Corollary
4 can be obtained in an identical manner for any noise model
such that the quantities cmean, cvar, and cmax in (28)–(30)
behave as Θ(1). To avoid repetition, we state this formally
only for the case of both false positives and false negatives.

Corollary 5. (General noise models, partial recovery) For
any group testing model such that the quantities cmean, cvar,
and cmax in (28)–(30) behave as Θ(1), we can achieve
Pe(dpos, dneg) → 0 with separate decoding provided that
dpos = Θ(k), dneg = Θ(k), and

n ≥
log p

k

I1
(1 + η) =

k log p
k

cmean
(1 + η) (60)

for some η > 0.

As mentioned in Section I-C, characterizations of cmean (or
equivalently, I1) were given for several noise models in [34].

IV. CONVERSE RESULTS

In this section, we present lower bounds on the required
number of tests to meet certain recovery criteria with separate
decoding of items and Bernoulli testing. Specifically, these
bounds apply to any decoders of the form (8), with functions

φj that may differ from (9). Throughout the section, we again
make use of the notation from Sections I-A and II-A.

It will prove convenient to consider converse bounds with
respect to the average number of errors E[Nerr] =

∑p
j=1 Pe,j

(cf., (7)), where we define

Pe,j := P[β̂j 6= βj ], (61)

and where the probability is with respect to β, X, and Y.
While this is different to the criteria in (5) and (6), our analysis
in Section II for exact recovery can be interpreted as proving
E[Nerr] = o(1) and then using P[Nerr 6= 0] ≤ E[Nerr] (i.e.,
the first moment method). Similarly, Theorem 5 in Section III
is implicitly based on showing that E[Nerr] = o(k). Our main
converse result, Theorem 7, shows (under mild concentration
conditions) that if n is slightly below the threshold (52) in
Theorem 5, then we must have E[Nerr] ≥ k(1−o(1)) (i.e., the
number of errors is close to the trivial value of k that would be
attained by declaring every item to be non-defective). Hence,
these results collectively indicate a phase transition: For n
slightly below the threshold we have E[Nerr]

k → 1, but for n
slightly above that threshold we have E[Nerr]

k → 0.
We emphasize that the converse bounds in this section

are proved for Bernoulli testing, as opposed to arbitrary
test matrices (e.g., see [44]). Converse bounds for arbitrary
matrices appear to be difficult, and are left for future work.

A. Initial Non-Asymptotic Bound

We begin with a non-asymptotic lower bound on Pe,j , which
holds for any given j ∈ {1, . . . , p}. The proof is based on
change-of-measure techniques that have been used extensively
in channel coding [35], [36], though since the distribution of
βj is non-uniform here, the analysis is in fact more akin to
joint source-channel coding [45].

Theorem 6. (Non-asymptotic converse for single item) For
a general group testing model with Bernoulli testing and any
separate decoding of items rule of the form (8), we have

Pe,j ≥
k

p
P
[
ın1 (X1,Y) ≤ log

p− k
k

]
, (62)

where (X1,Y) ∼ PnX(x1)PnY |X1
(y|x1).

Proof. Any given item is defective with probability k
p . Hence,

we let Pβj (bj) be the Bernoulli
(
k
p

)
probability mass function.

Moreover, we let PnY |Xj ,βj (·|·, bj) be the n-th product of
PY |Xj ,βj (·|·, bj), with the latter defined following (9).

By the law of total probability, under any event Aj , we have

Pe,j ≥ P[Aj ]− P[Aj ∩ Cj ], (63)

where Cj = 1{β̂j = βj} is the correct decoding event
for item j. In analogy with change-of-measure techniques
from joint source-channel coding [45], we take Aj ={

log
Pβj (βj)P

n
Y |Xj,βj

(Y|Xj ,βj)

PnY (Y) ≤ γ
}

for some γ > 0.
To proceed, we make use of the fact that under separate

decoding of items (cf., (8)), the correct decoding event Cj
depends on the tests (X,Y) only through (Xj ,Y); the other
columns Xj′ (j′ 6= j) of the test matrix have no impact. In
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particular, for each possible outcome bj ∈ {0, 1} of βj , we can
define a set D(bj) of (xj ,y) pairs that lead to the decision
β̂j = bj . Under this definition, we can bound the second term
in (63) as follows:

P[Aj ∩ Cj ]

=
∑
bj

∑
(xj ,y)∈D(bj)

Pβj (bj)P
n
X(xj)P

n
Y |Xj ,βj (y|xj , bj)

× 1
{

log
Pβj (bj)P

n
Y |Xj ,βj (y|xj , bj)
PnY (y)

≤ γ
}

(64)

≤
∑
bj

∑
(xj ,y)∈D(bj)

PnX(xj)P
n
Y (y)eγ (65)

= eγ , (66)

where
• (64) follows directly from the preceding definition of
D(bj), the choice of Aj , and the joint distribution
(βj ,Xj ,Y) ∼ Pβj × PnX × PnY |Xj ,βj ;

• (65) follows by upper bounding
Pβj (bj)P

n
Y |Xj ,βj (y|xj , bj) according to the event

in the indicator function, and then upper bounding the
indicator function by one;

• (66) follows since by definition, the union of the sets
D(bj) over all bj is precisely the set of all (xj ,y) pairs.

Substituting (66) and the choice of Aj into (63), we obtain

Pe,j ≥ P
[

log
Pβj (βj)P

n
Y |Xj ,βj (Y|Xj , βj)

PnY (Y)
≤ γ

]
− eγ (67)

=
k

p
P
[

log
PnY |Xj ,βj (Y|Xj , 1)

PnY (Y)
≤ log

p

k
+ γ

∣∣∣βj = 1

]
+
(

1− k

p

)
P
[

log
(

1− k

p

)
≤ γ

]
− eγ , (68)

where we have applied βj ∼ Bernoulli
(
k
p

)
and used

log
PnY |Xj,βj

(Y|Xj ,0)

PnY (Y) = 0. The latter claim follows since
conditioned on βj = 0, the output is independent of Xj and
is randomly generated according to k different columns of X,
meaning PnY |Xj ,βj (Y|Xj , 0) = PnY (Y).

Setting γ = log
(
1 − k

p

)
in (68), the second term becomes

1− k
p , and the third term exactly cancels out the second term.

Finally, the first term equals the right-hand side of (62), since
by definition (X1,Y) in (62) has the same distribution as
(Xj ,Y) conditioned on βj = 1 in (68).

B. Asymptotic Analysis

In order to apply Theorem 6, we need to characterize
the probability appearing in the first term. Similarly to the
achievability analysis in Section II, the idea is to exploit the
fact that ın1 (X1,Y) is an i.i.d. sum, and therefore concentrates
around its mean.

Theorem 7. (Converse for average number of errors) Under
the setup of Theorem 6, suppose that the information density
satisfies a concentration inequality of the following form:

P[ın1 (X1,Y) ≥ nI1(1 + δ2)] ≤ ψ′n(δ2) (69)

for some function ψ′n(δ2). Moreover, suppose that the follow-
ing conditions hold for some δ2 > 0:

n ≤
log p−k

k

I1(1 + δ2)
, (70)

ψ′n(δ2)→ 0. (71)

Then any decoder based on separate decoding of items must
have a number of errors Nerr satisfying E[Nerr] ≥ k(1−o(1)).

Proof. Substituting (70) into (62) gives Pe,j ≥
k
pP
[
ın1 (X1,Y) ≤ nI1(1 + δ2)

]
, which is lower bounded by

k
p

(
1−ψ′n(δ2)

)
by the definition of ψ′n. Hence, we have from

(71) that Pe,j ≥ k
p (1 − o(1)), and the theorem follows since

E[Nerr] =
∑p
j=1 Pe,j by definition.

C. Application to Specific Models

The following corollary applies Theorem 7 to the noiseless
setting, the symmetric noise model, and more general noise
models where Bernstein’s inequality can be applied.

Corollary 6. (Converses for specific models) For the group
testing problem under Bernoulli testing with parameter ν > 0,
and k = Θ(pθ) for some θ ∈ (0, 1), any decoding rule based
on separate decoding of items must satisfy E[Nerr] ≥ k(1 −
o(1)) in any of the following settings:

(i) The tests are noiseless, and the number of tests satisfies

n ≤
k log p

k

(log 2)2
(1− η) (72)

for arbitrarily small η > 0.
(ii) The noise is symmetric with parameter ρ ∈

(
0, 1

2

)
(not

depending on p), and the number of tests satisfies

n ≤
k log p

k

νD2(ρ‖ρ ? e−ν)
(1− η) (73)

for arbitrarily small η > 0, where a? b = a(1− b) + b(1−a),
and D2(a‖b) = a log a

b + (1− a) log 1−a
1−b .

(iii) The noise follows an arbitrary distribution such that
cmean, cvar, and cmax in (28)–(30) all behave as Θ(1), and
the number of tests satisfies

n ≤
log p

k

I1
(1− η) =

k log p
k

cmean
(1− η) (74)

for arbitrarily small η > 0.

Proof. Without loss of generality, we assume that the upper
bounds on n in the corollary statement hold with equality,
since the decoders could always choose to ignore some tests.
Once n is set in this way, we simply apply Theorem 7, using
Lemma 1 with cmean = Θ(1), cvar = Θ(1), and cmax =
Θ(1) to establish that ψ′n(δ2) → 0 for arbitrarily small δ2.
For part (i), we use the fact that ν = νsymm (cf., (17)) is
asymptotically optimal in the noiseless setting [17], [34], and
use the corresponding characterization of I1 in (34). For part
(ii), we use the fact that I1 =

(
ν
kD2(ρ‖ρ ? e−ν)

)
(1 + o(1)),

as shown in Appendix A.

Note that when ν = log 2 or ν = νsymm in (73), the
denominator simplifies to (log 2)(log 2 − H2(ρ))(1 + o(1)),
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thus matching the achievability threshold in (59). Conversely,
as discussed in Appendix A, the achievability arguments can
be adapted to match (73) more generally.

V. NUMERICAL EXPERIMENTS

In this section, we complement our theoretical findings with
numerical experiments, comparing separate decoding of items
against alternative algorithms in both the noiseless and noisy
settings. We will see that although the linear programming
(LP) methods of [18] tend to be superior, the experiments are
consistent with our theoretical findings.

In all experiments below, we let X be an i.i.d. Bernoulli
matrix with parameter ν = log 2, and we estimate the success
probabilities by averaging over 500 independent trials. All
LP based methods are solved using Gurobi [46]. For separate
decoding of items as in (9), in accordance with our theoretical
analysis, we choose

γ = nI1(1− δ) (75)

for some δ ∈ (0, 1). Specifically, we let δ = 0.5, as we found
this to work well in the examples considered below.

A. Noiseless Setting

In the noiseless setting, we compare against the following
existing algorithms:
• Combinatorial Orthogonal Matching Pursuit (COMP)

[14], which declares an item as negative if and only if it
appears in some negative test;

• Definite Defectives (DD) [12], which uses COMP to
construct a set of possible defectives, and declares an item
to be defective if and only if there exists a positive test
in which it is the unique possibly defective item.

• The linear programming (LP) relaxation of [18], with
non-integer returned values of the defective status
rounded to {0, 1}.

Figure 2 plots the success probability as a function of the
number of tests with p = 3000, k = 30, and dpos = dneg =
3. We observe that separate decoding slightly outperforms
COMP, whereas both DD and LP provide better performance,
with LP performing best. This is consistent with the fact that
DD and LP have better theoretical guarantees in the noiseless
setting for most θ < 1

2 (cf., Figure 1). Despite this, separate
decoding does provide good performance, with the gaps to LP
and DD being relatively small.

B. Symmetric Noise Setting

In the symmetric noise setting, we compare against the
following existing algorithms:
• The The Noisy Combinatorial Orthogonal Matching Pur-

suit (NCOMP) algorithm declares the j-th item to be

defective if and only if
∑n
i=1 1{X

(i)
j =1∩Y (i)=1}∑n

i=1 1{X
(i)
j =1}

≥ 1 −
ρ(1 + ∆), for some threshold ∆ > 0. We set ∆ = 1.5
based on manual tuning.

• The (noisy) Linear Programming (LP) of [18], which
introduces slack variables indicating tests where errors
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Figure 2: Experimental evaluation of practical algorithms for
noiseless group testing, with p = 3000 items and k = 30
defectives, allowing up to dpos = 3 false positives and dneg =
3 false negatives.
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Figure 3: Experimental evaluation of practical algorithms for
symmetric noisy group testing, with p = 3000 items, k = 30
defectives, and crossover probability ρ = 0.05, allowing up to
dpos = 3 false positives and dneg = 3 false negatives.

occurred. This algorithm depends on a regularization
parameter λ weighting the slack variables, and we set
this to be λ = 0.5 based on manual tuning.

Figure 3 plots the success probability as a function of the
number of tests with p = 3000, k = 30, dpos = dneg = 3,
and ρ = 0.05. Similarly to the noiseless example, we observe
that separate decoding slightly outperforms NCOMP, with LP
again providing the best performance.

C. Discussion

In the above examples, we see that the LP method of
[18] provides the best performance. However, we recall from
Section I-C that LP methods currently only have theoretical
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guarantees in the noiseless setting. Moreover, it is non-trivial
to develop large-scale distributed algorithms, as was done for
separate decoding of items in [21], [22]. These limitations
present important directions for future research.

It may appear to be slightly surprising that the performance
of NCOMP is close to the separate decoding rule of (9),
since the former only depends on a small fraction of the
tests (namely, those with X

(i)
j = 1). The intuition is that

although most tests do not contain item j (i.e., X(i)
j = 0),

those that do contain item j are considerably more informative
for determining whether j is defective. Hence, focusing only
on these tests does not degrade the performance too much.

VI. CONCLUSION

We have provided an information-theoretic framework for
studying group testing under the separate decoding of items
method proposed in [8]. Our bounds are the best known
for any practical group testing algorithm in several cases of
interest, including (i) the noiseless model with partial recovery,
and (ii) the symmetric noise model with exact recovery or
partial recovery. Overall, the results of this paper establish
separate decoding of items as a technique that is not only
computationally efficient, but also comes with near-optimal
theoretical guarantees.

An interesting direction for future work is to extend the
achievability bounds to the case that the universal empirical
mutual information based decoder [23] is used. Moreover,
two key open challenges regarding the converse bounds of
Section IV include (i) considering the error probabilities Pe

or Pe(dpos, dneg) in place of E[Nerr], and (ii) moving beyond
i.i.d. testing towards arbitrary test matrices.

APPENDIX

A. Optimizing ν for the Symmetric Noise Model

In this section, we characterize the mutual information I1
in (13) for the symmetric noise model described in (4), with
a given crossover probability ρ ∈

(
0, 1

2

)
. In contrast to the

noiseless model, we will see that the choices ν = log 2 and
ν = νsymm (cf., (17)) do not always maximize I1.

Throughout this section, asymptotic notation is with respect
to the limit as k →∞. We consider the case that the parameter
ν (such that X is i.i.d. on Bernoulli

(
ν
k

)
) behaves as Θ(1),

since the regimes ν → 0 and ν → ∞ are easily shown to be
strictly suboptimal regardless of the decoding rule.

Preliminary calculations. We have the following under the
symmetric noise model (4):

P[Y = 0] = (1− ρ)
(

1− ν

k

)k
+ ρ

(
1−

(
1− ν

k

)k)
(76)

=
(
(1− ρ)e−ν + ρ(1− e−ν)

)
(1 + o(1)). (77)

In addition, when item 1 is defective, we have

P[Y = 0|X1 = 0]

= (1− ρ)
(

1− ν

k

)k−1

+ ρ

(
1−

(
1− ν

k

)k−1
)

(78)

= (1− ρ)
(

1− ν

k

)k
· 1

1− ν
k

+ ρ

(
1−

(
1− ν

k

)k
· 1

1− ν
k

)
(79)

= (1− ρ)
(

1− ν

k

)k
·
(

1 +
ν

k
+O

( 1

k2

))
+ ρ

(
1−

(
1− ν

k

)k
·
(

1 +
ν

k
+O

( 1

k2

)))
(80)

= P[Y = 0]︸ ︷︷ ︸
=:ζ

+
ν

k

(
(1− 2ρ)

(
1− ν

k

)k)
+O

( 1

k2

)
︸ ︷︷ ︸

=:∆

, (81)

where (80) follows from a Taylor expansion of 1
1− νk

, and (81)
follows by substituting (76).

Characterizing I1. Using the above definitions of ζ and ∆,
we simplify the mutual information I1 in (13) as follows:

I1 = H(Y )−H(Y |X1) (82)

= H2(ζ)− ν

k
H(Y |X1 = 1)−

(
1− ν

k

)
H(Y |X1 = 0)

(83)

= H2(ζ)− ν

k
H2(ρ)−

(
1− ν

k

)
H2

(
ζ + ∆

)
, (84)

where (84) follows since given X1 = 1, the only uncertainty in
Y is the additive noise, whereas given X1 = 0, the probability
that Y = 0 is ζ + ∆.

The derivative of H2(α) is log 1−α
α , and hence, applying a

first-order Taylor expansion in (84) yields

I1 =
ν

k

(
H2(ζ)−H2(ρ)

)
−
(

1− ν

k

)
∆ log

1− ζ
ζ

+O(∆2).

(85)
Special cases ν = log 2 and ν = νsymm. Setting ν = log 2,

we obtain from (77) that ζ → 1
2 . Combined with the fact that

∆ = O
(

1
k

)
, we deduce from (85) that

I1 =
log 2

k

(
log 2−H2(ρ)

)
(1 + o(1)). (86)

Here we have used H2

(
1
2

)
= log 2 and the continuity of

entropy. Since νsymm → log 2 (cf., (18)), we deduce that (86)
also holds when ν = νsymm.

While (86) can be used to establish the optimality of
separate decoding of inputs to within a factor of log 2 in certain
cases, it turns out that we can in fact do better via different
choices of ν.
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General ν. Observing from (76) and (81) that ∆ = ν
k

(
ζ −

ρ
)

+ o
(

1
k

)
, we deduce from (85) that

I1 =
ν

k

(
H2(ζ)−H2(ρ)

)
− ν

k
(ζ − ρ) log

1− ζ
ζ

+ o
(1

k

)
(87)

=
ν

k

(
H2(ζ)− (ζ − ρ) log

1− ζ
ζ
−H2(ρ)

)
︸ ︷︷ ︸

=:I′1

+o
(1

k

)
.

(88)

We proceed by simplifying the leading term I ′1 by substituting
the definition of the binary entropy function:

I ′1 =
ν

k

(
− ζ log ζ − (1− ζ) log(1− ζ)

− (ζ − ρ) log(1− ζ) + (ζ − ρ) log ζ −H2(ρ)

)
(89)

=
ν

k

(
− (1− ρ) log(1− ζ)− ρ log ζ

+ (1− ρ) log(1− ρ) + ρ log ρ

)
(90)

=
ν

k
D2(ρ‖ζ), (91)

where D2(a‖b) = a log a
b + (1− a) log 1−a

1−b is the binary KL
divergence function.

Combining (91) with (77) and (88), we obtain

I1 =

(
ν

k
D2(ρ‖ρ ? e−ν)

)
(1 + o(1)), (92)

where a ? b = a(1 − b) + b(1 − a). A simple numerical
computation reveals that when ρ > 0 (e.g., ρ = 0.11), (92)
may not be optimized by ν = log 2; however, we found the
optimality gap to be small, and we therefore focused primarily
on the latter choice.
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