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Sum-Rate Capacity for Symmetric Gaussian
Multiple Access Channels with Feedback
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Abstract

The feedback sum-rate capacity is established for the symmetric J-user Gaussian multiple-access channel (GMAC). The main
contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant
of the factorization of a convex envelope of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the
Fourier-Modulated Estimate Correction strategy of Kramer (2002).

I. INTRODUCTION

T
HE feedback capacity of the two-user Gaussian multiple-access channel (GMAC) was established by Ozarow [1]. The
coding theorem was based on extending feedback strategies of Elias [2] and Schalkwijk and Kailath [3] (see [4]), while

the converse followed from a cut-set argument. Kramer [5] extended Ozarow’s scheme to more than two users by using a
method he called Fourier-Modulated Estimate Correction, or Fourier-MEC. For the symmetric GMAC and sufficiently large
signal-to-noise ratio (SNR), the Fourier-MEC sum-rate meets the cut-set bound and is thus optimal. However, the problem
remains open for low and intermediate SNRs.

The coding schemes in [1], [2], [3], [5] start by mapping the message onto a point on the real line or complex plane, and
they iteratively correct the receiver’s estimate of this point by using linear minimum mean squared error (LMMSE) estimation.
There are many variants of the schemes. For example, one can convert complex-channel strategies to real-channel strategies [5],
one can interpret the LMMSE step as posterior matching [6], [7], and one can use multi-dimensional Fourier transforms for
Fourier-MEC, e.g., a Hadamard transform [5], [7].

Progress on improving capacity outer bounds was made in [8] by applying the Hekstra-Willems dependence-balance
argument [9], and in [10] that studies linear feedback strategies. Other results regarding GMACs with imperfect and/or noisy
feedback are presented in [11], [12], [13]. Inner and outer bounds for other classes of multiple-access channels (MACs) with
feedback are derived in [14], [15], [16].

A. Contribution

We derive a converse bound that establishes the following capacity result. Achievability follows from [5, Sec. V].
Theorem 1: The feedback sum-rate capacity of the J-user symmetric GMAC is

Csum =
1

2
log2 (1 + PJβ) bits/channel use (1)

where β is the unique solution satisfying β ∈ [1, J] and

(1 + PJβ)J−1
= (1 + Pβ(J − β))J . (2)

The proof of Theorem 1 combines the Lagrange-duality approach of [17] with a variant of the factorization of a convex
envelope used in [18], [19], and that was inspired by work on functional inequalities [20], [21]. One difference to [18] is that
in our problem the matrix that describes the channel is rank-deficit. Besides establishing the optimality of Gaussian signaling,
we transform a non-convex Lagrangian dual problem into a convex problem.

B. Notation

We use the following notation. Random variables are denoted by uppercase letters and their realizations by lowercase letters.
Random column vectors are denoted by boldface uppercase letters and their realizations by boldface lowercase letters. The
i-th entry of the column vector X is denoted by Xi or [X]i. We denote matrices with uppercase letters, e.g., A, B,C. The (i, j)
element of matrix A is denoted by Aij or [A]ij . For the cross-covariance matrix of two random vectors X and Y , we use
the shorthand notation KXY , and for the covariance matrix of a random vector X we use the shorthand notation KX := KXX .
Calligraphic letters denote sets, e.g., A,B, C. The expression X ∼ N(m, σ2) denotes a Gaussian random variable with mean
m and variance σ2. We denote the convergence in distribution (weak convergence) by

w⇒.
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C. Organization

This paper is organized as follows. In Section II, we present the system model and review existing capacity bounds. In
Section III, we give an upper bound on the sum rate for general GMACs with feedback. In Section IV, we prove Theorem 1.
Section V concludes the paper and the appendices provide supporting results and proofs.

II. SYSTEM MODEL AND RELATED WORK

Consider a GMAC with J transmitters (called users) with channel input symbols X1, X2, . . . , XJ , and a receiver with the
channel output symbol Y . The received signal at time instant i is

Yi = Zi +

J∑
j=1

gj Xj,i (3)

for i = 1, 2, . . . , n, where Z1, Z2, . . . , Zn is a string of independent and identically distributed (i.i.d.) zero-mean Gaussian noise
variables with unit variance and g1, g2, . . . , gJ are channel gains. The J channel inputs have the block power constraints

n∑
i=1

E
[
X2
j,i

]
≤ nPj, j = 1, 2, . . . , J . (4)

The SNR of user j is thus Pjg
2
j
. If P1g

2
1
= P2g

2
2
= . . . = PJg

2
J
, then the transmitters can be swapped without changing the

problem. For such models, we may as well set Pj = P and gj = 1 for all j, and we refer to this channel as the symmetric

GMAC.
Let Wj with nRj bits be the message of user j. The transmitted signal at time instant i is

Xj,i = fj,i(Wj,Y
i−1), j = 1, 2, . . . , J (5)

where the fj,i(·) are encoding functions to be optimized. The receiver puts out the estimates(
Ŵ1, Ŵ2, . . . , ŴJ

)
= g(Yn) (6)

where g(·) is a decoding function. The event that the receiver makes an error is

E =
J⋃
j=1

{
Ŵj , Wj

}
. (7)

The rate-tuple R = (R1, R2, . . . , RJ) is said to be achievable if, for any specified positive error probability Pe and sufficiently
large n, there are encoding functions and a decoder such that Pr [E] ≤ Pe. The closure of the set of achievable R is called the
capacity region CMAC-FB. We are interested in characterizing the sum-rate capacity Csum, i.e., the maximum sum of the entries
of any R in CMAC-FB.

A. Capacity without Feedback

The capacity region CMAC without feedback is the set of R = (R1, R2, . . . , RJ ) satisfying (see [22, Section 14.3])

RS ≤ 1

2
log(1 + PS) (8)

for all S ⊆ J = {1, 2, . . . , J}, where RS =
∑

j∈S Rj and PS =
∑

j∈S Pj . The sum-rate capacity without feedback is therefore

1

2
log(1 + PJ). (9)

B. Two-User Capacity with Feedback

Feedback allows the users cooperate to increase rates. For J = 2 the capacity region is known to be [1]

CMAC-FB =

⋃
0≤ρ≤1

R(ρ) (10)

where R(ρ) is the set of rate pairs (R1, R2) that satisfy

0 ≤ R1 ≤ 1

2
log

(
1 + P1(1 − ρ2)

)
0 ≤ R2 ≤ 1

2
log

(
1 + P2(1 − ρ2)

)
R1 + R2 ≤ 1

2
log

(
1 + P1 + P2 + 2ρ

√
P1P2

)
.

(11)

The parameter ρ is the correlation coefficient of X1 and X2, and the optimal X1 and X2 are zero-mean Gaussian with second
moments P1 and P2, respectively. CMAC-FB is here the same as a standard cut-set bound. However, we show that cut-set bounds
are loose for J > 2, and that dependence balance bounds can characterize the fundamental limits of communication.
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C. Two-User Dependence Balance Bounds

Dependence balance bounds were introduced by Hekstra and Willems [9] for single output two-way channels. The tool
generalizes to other models such as MACs with feedback. For example, for the two-user MAC with feedback, the achievable
(R1, R2) must satisfy

0 ≤ R1 ≤ I(X1;Y |X2,T )
0 ≤ R2 ≤ I(X2;Y |X1,T )
R1 + R2 ≤ I(X1, X2;Y |T )

(12)

for some p(t, x1, x2, y) for which

T ↔ [X1, X2] ↔ Y forms a Markov chain (13)

I(X1; X2 |T ) ≤ I(X1; X2 |Y,T ). (14)

In [9, Section 7], the term I(X1; X2 |T ) is interpreted as the amount of dependence consumed, and I(X1; X2 |Y,T ) as the amount
of dependence produced by communication. An interpretation of the inequality (14) is thus that dependence consumed cannot
exceed the dependence produced, i.e., communication is limited by dependence balance.

Other interpretations of this bound are described in [8]. Observe that (14) can be rewritten in the following two ways:

I(X1;Y |T ) + I(X2;Y |T ) ≤ I(X1, X2;Y |T ) (15)

I(X1, X2;Y |T ) ≤ I(X1;Y |X2,T ) + I(X2;Y |X1,T ). (16)

The bound (16) requires the set function f : 2{1,2} → R defined by

f ({1}) = I(X1;Y |X2,T ) (17)

f ({2}) = I(X2;Y |X1,T ) (18)

f ({1, 2}) = I(X1, X2;Y |T ) (19)

to be submodular. In other words, for valid choices of p(t, x1, x2, y), the rate region defined by (12) is a polymatroid. We
may thus interpret dependence balance as a submodularity (or polymatroid) constraint, i.e., communication is limited by
submodularity.

We remark that for two-user GMACs the dependence balance bound yields the same rate region as the standard cut-set bound.
However, the dependence balance bound is more informative in the following sense. Consider jointly Gaussian p(t, x1, x2, y).
The optimal correlation coefficient ρ∗ in (11) is the one that satisfies (14)-(16) with equality. However, dependence balance
(or submodularity) limits ρ to the range [0, ρ∗], whereas the cut-set bound permits all ρ in [0, 1].

D. Multi-User Dependence Balance Bounds

The two-user dependence balance concept was generalized to J users in [15, Thm. 4] and more dependence balance bounds
are derived in [8, Thm. 1]. The capacity region of the J-user MAC with feedback is a subset of the set of rate-tuples
(R1, R2, . . . , RJ) satisfying

RS ≤ I(XS;Y |XSC ,T ) (20)

for all S ⊆ J , where SC is the complement of S, and where

T ↔ [X1, X2, . . . , XJ ] ↔ Y forms a Markov chain (21)

I(X1, X2, . . . , XJ ;Y |T ) ≤ 1

M − 1

M∑
m=1

I(XSC
m

;Y |XSm
,T ), (22)

for any partition {Sm}Mm=1 of J into M ≥ 2 subsets. One may again interpret (22) as a submodular constraint. For example,
for the partition S1 = {1}, S2 = {2}, . . . , SJ = {J} the dependence balance constraint (22) becomes

I(X1, X2, . . . , XJ ;Y |T ) ≤ 1

J − 1

J∑
j=1

I(XJ\{ j };Y |Xj,T ) (23)

where J\ { j} is the set {1, 2, . . . , j − 1, j + 1, . . . , J}. As usual, one can add the power constraints E[X2
j
] ≤ Pj , j ∈ J , to

these bounds. Also, as for (15) for the two-user case, the bound (22) can be written as

M∑
m=1

I(XSm
;Y |T ) ≤ I(X1, X2, . . . , XJ ;Y |T ). (24)
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Fig. 1. Cut-set bounds for the sum-rate of a two-user symmetric GMAC with feedback.

E. Cut-set Bound

The cut-set bounds give the following result, see [1] and [22, Theorem 15.10.1].
Proposition 1: For the two-user symmetric GMAC with feedback, we have

Csum ≤ max
−1≤ρ≤1

min

{
1

2
log(1 + 2P(1 + ρ)︸                    ︷︷                    ︸

f1(ρ)

, log(1 + P(1 − ρ2))︸                 ︷︷                 ︸
f2(ρ)

}
. (25)

The sum-rate on the RHS of (25) turns out to be achievable [1], and it is depicted in Figure 1. Similarly, again starting from [22,
Theorem 15.10.1], we obtain the following result.

Proposition 2: For the three-user symmetric GMAC with feedback, we have

Csum ≤ max
−1/2≤ρ≤1

min

{
1

2
log(1 + 3P(1 + 2ρ)︸                     ︷︷                     ︸

g1(ρ)

,

3

4
log(1 + 2P(1 − ρ)(1 + 2ρ))︸                                ︷︷                                ︸

g2(ρ)

,
3

2
log

(
1 +

P(1 + 2ρ)(1 − ρ)
1 + ρ

)
︸                                 ︷︷                                 ︸

g3(ρ)

}
. (26)

The sum rate (26) is not generally achievable. Figure 2 illustrates the situation for the special case P = 0.3. The cut-set
bound of Proposition 2 leads to an upper bound on the sum rate given by the intersection point of the curves g2 and g3.

However, we show that the capacity is given by the intersection of the curves g1 and g2; this intersection point is achieved by
Fourier-MEC [5].

For the symmetric GMAC and large SNR, i.e., more that a certain threshold, the Fourier-MEC sum-rate meets the cut-set
bound. For example, a sufficient condition for the cut-set bound to give the sum-rate capacity is that the SNR is greater than
or equal to 2J+1/J2 [5]. Observe that this threshold grows almost exponentially with the number of users.

III. GENERAL CONVERSE BOUND FOR J USERS

We derive the following upper bounds on the feedback sum-rate capacity of the general J-user GMAC.
Theorem 2: For any λ ≥ 0 and any partition {Sm}Mm=1 of J into M ≥ 2 subsets, we have

Csum ≤ max
p(x)∈GG

(1 − λ)I(X1, X2, . . . , XJ ;Y) + λ

M − 1

M∑
m=1

I(XSC
m

;Y |XSm
) (27)

where GG is the set of zero-mean Gaussian distributions satisfying E[X2
j
] ≤ Pj for j = 1, 2, . . . , J.
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Fig. 2. Cut-set bounds for the sum-rate of a three-user symmetric GMAC with feedback.

A. Proof of Theorem 2

Our converse bound starts from Section II-D and we use the shorthand X = (X1, X2, . . . , XJ ). We find it convenient to
express our problem as a minimization, i.e., we seek to minimize −I(X;Y |T ) over the input distributions p(t, x) that satisfy
the dependence-balance constraint

I(X;Y |T ) ≤ 1

M − 1

M∑
m=1

I(XSC
m

;Y |XSm
,T ) (28)

for (T, X) such that T ↔ X ↔ Y forms a Markov chain. We will treat the power constraints in two steps. First, for any fixed
covariance matrix K , we will optimize over all distributions satisfying E[XX

T ] = K . Then, we will optimize over all K whose
diagonal entries are at most P.

Given the covariance matrix K , we form the Lagrangian for our optimization problem as

sλ(X |T ) :=(λ − 1)I(X;Y |T ) − λ

M − 1

M∑
m=1

I(XSC
m

;Y |XSm
,T ). (29)

This can be rewritten as

sλ(X |T ) = −
(
λ

M − 1
+ 1

)
I(X;Y |T ) + λ

M − 1

M∑
m=1

I(XSm
;Y |T ). (30)

We define
Sλ(X) = inf

p(t |x):
T↔X↔Y

{sλ(X |T )}

and note that Sλ(X) is a convex function of p(x) because Sλ(X) is the lower convex envelope of sλ(X), which is defined by
dropping the random variable T in (29). In addition, we define

Sλ(X |T ) =
∑
t

p(t)Sλ(X |T = t). (31)

The dual function of our problem for K � 0 is

Vλ(K) := inf
p(x):E[XXT ]=K

{Sλ(X)} . (32)

Alternatively, we have
Vλ(K) = inf

p(t,x):E[XX
T ]=K

T↔X↔Y

{sλ(X |T )} . (33)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 00, NO. 0, MONTH 2018 6

By the standard Lagrangian duality we bound the original optimization problem as follows

Csum ≤ −max
λ

min
p(t,x): E[X2

j
]≤Pj

T↔X↔Y

sλ(X |T ) (34)

= −max
λ

min
K�0:

[K] j j ≤Pj

min
p(t,x): E[XX

T ]=K
T↔X↔Y

sλ(X |T )

︸                          ︷︷                          ︸
Vλ(K)

. (35)

From now on we mainly deal with the dual function Vλ(K). For 0 < λ ≤ 1, the minimization problem (33) is a convex
problem, and it follows from (29) and maximum entropy results that the optimizing distribution p(t, x1, x2, x3) is jointly Gaussian.
The more difficult case is λ > 1. Our approach for all cases will be to establish that the distribution attaining the minimum
in (33) must make the channel input Gaussian. This follows from a novel variant of the factorization of convex envelopes.

Consider two independent uses of the GMAC:

Y1 = GX1 + Z1

Y2 = GX2 + Z2

(36)

where G =
[
1 1 . . . 1

]
, X1 and X2 are independent and identically distributed, and where Z1, Z2 ∼ N(0, 1) are independent.

One key difference to [18] is that G is not an invertible matrix. We define

Xθ1
=

1
√

2
(X1 + X2), Xθ2

=

1
√

2
(X1 − X2), (37)

Yθ1
=

1
√

2
(Y1 + Y2), Yθ2

=

1
√

2
(Y1 − Y2). (38)

We thus have

Yθ1
= GXθ1

+ Z̃1, Yθ2
= GXθ2

+ Z̃2 (39)

where Z̃1, Z̃2 ∼ N(0, 1) are independent. Moreover, we generalize the definition (30) to the two-letter extension as

sλ(X1, X2 |T ) := −
(
λ

M − 1
+ 1

)
I(X1, X2;Y1,Y2 |T ) +

λ

M − 1

M∑
m=1

I([X1]Sm
, [X2]Sm

;Y1,Y2 |T ). (40)

Next, we state and prove four key propositions.
Proposition 3: I(X1, X2;Y1,Y2) = I(Xθ1

, Xθ2
;Yθ1
,Yθ2

).
Proof : The function f (x, y) =

(
(x + y)/

√
2, (x − y)/

√
2
)

is bijective. �

Proposition 4: The chain Yθ1
↔Xθ1

↔Xθ2
↔Yθ2

is Markov and we have

I(Xθ1
, Xθ2

;Yθ1
,Yθ2

) = I(Xθ1
;Yθ1

) + I(Xθ2
;Yθ2

|Yθ1
). (41)

Proof : The Markovity follows by (39). We further compute

I(Xθ1
, Xθ2

;Yθ1
,Yθ2

) = I(Xθ1
, Xθ2

;Yθ1
) + I(Xθ1

, Xθ2
;Yθ2

|Yθ1
)

= I(Xθ1
;Yθ1

) + I(Xθ2
;Yθ1

|Xθ1
) + I(Xθ2

;Yθ2
|Yθ1

) + I(Xθ1
;Yθ2

|Yθ1
, Xθ2

)
(a)
= I(Xθ1

;Yθ1
) + I(Xθ2

;Yθ2
|Yθ1

) (42)

where (a) is consequence of the Markov chain. �

Proposition 5: For any λ ≥ 0 we have

sλ(Xθ1
, Xθ2

|T ) ≥ sλ(Xθ1
|T ) + sλ(Xθ2

|Yθ1
,T ) (43)

with equality if and only we have

• I(Yθ1
; [Xθ2

]Sm
|[Xθ1

]Sm
,T ) = 0

• I(Yθ2
; [Xθ1

]Sm
|Yθ1
, [Xθ2

]Sm
,T ) = 0

for m = 1, . . . ,M.
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Proof : We compute

sλ(Xθ1
, Xθ2

|T ) − sλ(Xθ1
|T ) − sλ(Xθ2

|Yθ1
,T )

=

(
λ

M − 1
+ 1

) (
−I(Xθ1

, Xθ2
;Yθ1
,Yθ2

|T ) + I(Xθ1
;Yθ1

|T ) + I(Xθ2
;Yθ2

|Yθ1
,T )

)

+

λ

M − 1

(
M∑
m=1

I([Xθ1
]Sm
, [Xθ2

]Sm
;Yθ1
,Yθ2

|T ) − I([Xθ1
]Sm

;Yθ1
|T ) − I([Xθ2

]Sm
;Yθ2

|Yθ1
,T )

)

(a)
=

λ

M − 1

M∑
m=1

(
I([Xθ1

]Sm
, [Xθ2

]Sm
;Yθ1

|T ) + I([Xθ1
]Sm
, [Xθ2

]Sm
;Yθ2

|Yθ1
,T ) − I([Xθ1

]Sm
;Yθ1

|T ) − I([Xθ2
]Sm

;Yθ2
|Yθ1
,T )

)

=

λ

M − 1

M∑
m=1

(
I([Xθ2

]Sm
;Yθ1

|[Xθ1
]Sm
,T ) + I([Xθ1

]Sm
;Yθ2

|Yθ1
, [Xθ2

]Sm
,T )

)
≥ 0

where (a) follows from Proposition 4. The last step follows from the non-negativity of conditional mutual information terms,
and we have equality if and only if all the terms are zero. �

Proposition 6: There is a pair of random variables (T∗, X∗) with |T∗ | ≤ J(J+1)
2
+ 1 and E[X∗XT

∗ ] = K such that

Vλ(K) = sλ(X∗ |T∗). (44)

Proof : The existence of a maximizer and the cardinality bound on T∗ are established in the Appendix A by using a similar
argument as in [18, Appendix 2A]. �

We can now establish the desired result.
Lemma 1: Let p∗(t, x) attain Vλ(K) and let (T1,T2, X1, X2) ∼ p∗(t1, x1)p∗(t2, x2). Let Xt denote the conditional distribution

p∗(x |T = t) and define

Xθ1
|((T1,T2) = (t1, t2)) ∼

1
√

2
(Xt1 + Xt2), Yθ1

|((T1,T2) = (t1, t2)) ∼
1
√

2
(Yt1 + Yt2),

Xθ2
|((T1,T2) = (t1, t2)) ∼

1
√

2
(Xt1 − Xt2), Yθ2

|((T1,T2) = (t1, t2)) ∼
1
√

2
(Yt1 − Yt2).

Then:
1) (T, Xθ1

) also attains Vλ(K).
2) (T, Xθ2

) also attains Vλ(K).
3) The joint distribution (T, Xθ1

, Xθ2
) must satisfy

• I(Yθ1
; [Xθ2

]Sm
|[Xθ1

]Sm
,T ) = 0

• I(Yθ2
; [Xθ1

]Sm
|Yθ1
, [Xθ2

]Sm
,T ) = 0

for m = 1, . . . ,M.
Proof : Consider the steps:

2Vλ(K) (a)
= sλ(X1 |T1) + sλ(X2 |T2)
(b)
= sλ(X1, X2 |T1,T2)
(c)
= sλ(Xθ1

, Xθ2
|T1,T2)

(d)
≥ sλ(Xθ1

|T1,T2) + sλ(Xθ2
|Yθ1
,T1,T2)

(e)
≥ Sλ(Xθ1

) + Sλ(Xθ2
|Yθ1

)
( f )
≥ Sλ(Xθ1

) + Sλ(Xθ2
)

(g)
≥ 2Vλ(K).

(45)

Here (a) holds for the distribution p∗(t, x) that attains Vλ(K); (b) holds since (T1, X1) and (T2, X2) are independent by assumption;
(c) follows by Proposition 3; (d) follows by Proposition 5; (e) follows from

sλ(Xθ1
|T,Yθ2

) =
∑
yθ2

p(yθ2
)sλ(Xθ1

|T,Yθ2
= yθ2

)

(h)
≥

∑
yθ2

p(yθ2
)Sλ(Xθ1

|Yθ2
= yθ2

)

(i)
= Sλ(Xθ1

|Yθ2
) (46)
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where (h) holds because Sλ(Xθ1
|Yθ2
= yθ2

) is the lower convex envelope of sλ(Xθ1
|Yθ2
= yθ2

) and the chain T ↔ Xθ1
↔ Yθ1

conditioned on Yθ2
= yθ2

is Markov (this Markov chain is an immediate implication of (39) where T = (T1,T2)) and (i) is the
definition of Sλ(.|.); (g) holds since Sλ(Xθ1

) is convex in p(xθ1
) and by Jensen’s inequality Sλ(Xθ1

|Yθ2
) ≥ Sλ(Xθ1

); (i) follows
from definition of Vλ(K) and by checking the constraint

E[Xθ1
X
T
θ1
] =

∑
t1,t2

p∗(t1)p∗(t2)
1

2

(
E[Xt1X

T
t1
] + E[Xt2X

T
t2
]
)

=

∑
t

p∗(t)E[XtX
T
t ] = K .

We now see that all inequalities of (45) are equalities, and step (d) combined with Proposition 5 proves the claim. �

Corollary 1: For every ℓ ∈ N , let n = 2ℓ and (Tn, Xn) ∼
∏n

i=1 p∗(ti, xi). Then (Tn, X̃n) achieves Vλ(K) where X̃n |(Tn =

(t1, t2, . . . , tn)) ∼ 1√
n
(Xt1 + Xt2 + · · · + Xtn ) . We choose Xt1, Xt2, . . . , Xtn to be independent random variables.

Proof : The proof follows by induction using Lemma 1. �

Now we state the main Lemma which shows that one of the optimizers is Gaussian.
Lemma 2: There is a single Gaussian distribution (i.e., the random variable T can be chosen to be a constant) that achieves

Vλ(K).
Proof : See Appendix B. �

Note that our approach does not establish the uniqueness of the maximizing distribution.

IV. FEEDBACK SUM-RATE CAPACITY FOR SYMMETRIC GMACS

The proof of Theorem 1 is based on Theorem 2 with the partition S1 = {1} ,S2 = {2} , . . . ,SJ = {J}. We tackle the resulting
(non-convex) optimization problem with Lagrange duality.

Consider the covariance matrix

K =

©«

Q1 ρ12

√
Q1Q2 . . . ρ1J

√
Q1QJ

ρ21

√
Q2Q1 Q2 . . . ρ2J

√
Q2QJ

...
...

. . .
...

ρJ1

√
QJQ1 ρJ2

√
QJQ2 . . . QJ

ª®®®®
¬
. (47)

Lemma 3: The original problem is bounded as follows

−Csum = min
p(t,x):E[X2

j
]≤Pj

T↔X↔Y
subject to (28)

−I(X;Y |T ) ≥ max
λ

min
K�0:Q j ≤Pj

h(λ,K) (48)

where

h(λ,K) = (λ − 1)
2

log
©
«
1 +

J∑
j,k=1

[K]jk
ª®
¬
− λ

2(J − 1)

J∑
j=1

log
©
«
1 +

J∑
ℓ,k=1

[K]ℓk −

(∑J
k=1[K]jk

)2

Pj

ª®®¬
. (49)

Proof : See Appendix C. �

We have shown that the optimal input distributions are Gaussian. At this point the problem is similar to the one in [10], and
we can use Lemmas 4-5 from [10] to complete the optimization. However, the converse in [10] relies on a specific covariance
matrix form with only two variables, and this does not necessarily work for asymmetric power constraints. Therefore, we
provide a different analysis that applies to asymmetric power constraints.

Consider the covariance matrix

M =

©
«

P1 ρ12

√
P1P2 . . . ρ1J

√
P1PJ

ρ21

√
P2P1 P2 . . . ρ2J

√
P2PJ

...
...

. . .
...

ρJ1

√
PJP1 ρJ2

√
PJP2 . . . PJ

ª®®®®¬
. (50)

Lemma 4: For every λ ≥ 0, we have

max
λ

min
K�0:Q j ≤Pj

h(λ,K) ≥ max
λ

min
ρ12,...,ρN (N−1) :M�0

h(λ,M). (51)

Proof : See Appendix D. �



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 00, NO. 0, MONTH 2018 9

Remark 1: The argument in Lemma 4 is valid for any dependence balance constraint in (24).
We now set all power constraints to be the same, i.e., P1 = P2 = · · · = PJ = P.
Lemma 5: For every λ ≥ 0, we have

max
λ

min
ρ12,...,ρJ (J−1):M�0

h(λ,M) ≥ max
λ

min
β∈[0,J]

{
(λ − 1)

2
log(1 + JPβ) − Jλ

2(J − 1) log (1 + Pβ (J − β))
}
. (52)

Proof : See Appendix E. �

Remark 2: The paper [10] (see also [5]) shows that the optimal covariance matrix is of a simpler form with only two degrees
of freedom. Our argument is based on the Cauchy-Schwarz inequality, as shown in the proof of Lemma 5.

We define the function

ℓ(β, J, P) = 1

2
log (1 + JPβ) − J

2(J − 1) log (1 + Pβ (J − β)) . (53)

Lemma 6: There exists λ∗ ≥ 0 such that

max
λ

min
β∈[0,J]

{
−1

2
log(1 + JPβ) + λℓ(β, J, P)

}
(54)

= −1

2
log (1 + JPβ) (55)

where β ∈ [1, J] is the unique solution to (1 + JPβ)J−1
= (1 + Pβ (J − β))J .

Proof : We have

max
λ

min
β∈[0,J]

{
−1

2
log(1 + JPβ) + λℓ(β, J, P)

}
(56)

(a)
= min

β∈[1,J]:ℓ(β,J,P)≤0

{
−1

2
log(1 + JPβ)

}
(57)

(b)
= −1

2
log (1 + JPβ) (58)

where β is the unique solution satisfying β ∈ [1, J] and (1 + PJβ)J−1
= (1+Pβ(J− β))J ; step (a) follows from strong duality as

the problem is convex from Lemma 7 in Appendix F and satisfy Slater’s condition. Slater’s condition holds because there exists
a β such that ℓ(β, J, P) < 0, i.e., β = 1 so the primal problem is strictly feasible. Step (b) follows from the Karush-Kuhn-Tucker
(KKT) conditions for a convex problem which satisfy the Slater’s condition to find the primal and dual optimal β∗ and λ∗.
We start by showing that λ∗ , 0. Suppose for now that λ∗ = 0, then from the KKT conditions we have

∂

∂β

{
−1

2
log(1 + JPβ) + λℓ(β, J, P)

}����
λ=0

= − JP

2(1 + JPβ) = 0 (59)

which implies that P = 0. This is impossible, so by contradiction we have λ∗ , 0. Now by using complementary slackness
condition λ∗ · ℓ(β∗, J, P) = 0 we deduce that ℓ(β∗, J, P) = 0, which is equivalent to

(1 + JPβ∗)J−1
= (1 + Pβ∗ (J − β∗))J . (60)

This equation has a unique solution for β ∈ [1, J], see [5, Lemma 1], [10, Appendix A]. Finally, the value

λ∗ =

(
1 − (J − 2β)(1 + JPβ)

(J − 1)(1 + Pβ(J − β))

)−1

(61)

is a valid choice since λ∗ is positive because of (59), which concludes the proof of the converse. �

V. CONCLUSIONS

We have derived a new converse bound that combines the Lagrange duality approach of [8] with a novel variation of the
factorization of a convex envelope [18]. The new converse bound meets the achievable sum-rate of the Fourier MEC scheme,
thus establishing the sum-rate capacity for the J-user symmetric GMAC with feedback.

It remains to see whether Fourier MEC can achieve all rate points in the capacity region of the symmetric GMAC with
feedback. For asymmetric transmit power constraints, however, it is known that Fourier-MEC can be improved by using
modulation frequencies other than the uniformly-spaced frequencies ( j − 1)/J for j ∈ J . A few more variations of MEC
strategies are described in [5, Sec. VIII].

Example 1: Fourier MEC does not meet the dependence-balance bound under asymmetric power constraints. For example,
consider three users with the power constraints P1 ≤ 1, P2 ≤ 4 and P3 ≤ 9, for which Fourier-MEC achieves the sum-rate
Rsum = 1.6215 bits/use, see [5, Sec. III]. However, the dependence balance bound permits a larger sum-rate, since the choice
(ρ12, ρ13, ρ23) = (0.5, 0.44, 0.58) satisfies the dependence balance constraints and permits Rsum = 1.6427.
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APPENDIX A
EXISTENCE OF MINIMIZING DISTRIBUTION

Proposition 7 ([23, Lemma 1]): Suppose that Yn and Y have continuous densities fn(y), f (y) with respect to the Lebesgue
measure on R. If Yn

w⇒ Y and

sup
n

| fn(y)| ≤ M(y) < ∞, ∀y ∈ R (62)

and fn is equicontinuous, i.e., ∀ y, ǫ > 0, ∃δ(y, ǫ), n(y, ǫ) such that ‖y − y1‖ < δ(y, ǫ) implies that | fn(y) − fn(y1)| < ǫ
∀n ≥ n(y, ǫ), then for any compact subset C of R we have

sup
y∈C

| fn(y) − f (y)| → 0 as n → ∞. (63)

If { fn} is uniformly equicontinuous, i.e., δ(y, ǫ), n(y, ǫ) do not depend on y, and f (yn) → 0 whenever ‖yn‖ → ∞ then

sup
y∈R

| fn(y) − f (y)| = ‖ fn(y) − f (y)‖∞ → 0 as n → ∞. (64)

Proposition 8 ([18, Proposition 16]): Let {Xn} be any sequence of random variables satisfying Yn = GXn + Z where
Z ∼ N(0, I) is independent of {Xn} and fn(y) represent the density of Yn. Then the collection of functions { fn(y)} is
uniformly bounded and uniformly equicontinuous.

Definition 1: A collection of random variables Xn on RN is said to be tight if for every ǫ > 0 there is a compact set
Cǫ ⊂ RN such that P(Xn < Cǫ ) ≤ ǫ , ∀n.

Proposition 9 ([18, Proposition 17]): Consider a sequence of random variables {Xn} that satisfies the covariance constraint
E[XnX

T
n ] = K , ∀n. Then the sequence is tight.

Theorem 3 (Prokhorov): If {Xn} is a tight sequence of random variables in RN then there exists a subsequence
{
Xni

}
and

a limiting probability distribution X∗ such that Xni

w⇒ X∗.

Proposition 10 ([18, Proposition 18]): Let Xn

w⇒ X∗ and let Z ∼ N(0, 1) be pairwise independent of {Xn}, X∗. Let
Yn = GXn + Z , Y∗ = GX∗ + Z . Further let E[XnX

T
n ] = K , E[X∗XT

∗ ] = K . Let fn(y) denote the density of Yn and f∗(y) denote
the density of Y∗. Then we have

1) Yn
w⇒ Y∗,

2) fn(y) → f∗(y) for all y,
3) h(Yn) → h(Y∗).
Proposition 11 (Lower Semi-continuity): Let Xn

w⇒ X∗ and Yn = GXn + Z , Y∗ = GX∗ + Z , where Z ∼ N(0, 1) is pairwise
independent of {Xn}, X∗. Let sλ(Xn) = (λ − 1)h(Yn) +

(
λ

J−1
+ 1

)
h(Z) − λ

J−1

∑J
j=1 h(Yn |Xjn) and sλ(X∗) similarly. Then

1) (Yn, X1n)
w⇒ (Y∗, X1∗),

2) lim infn↔∞ sλ(Xn) ≥ sλ(X∗).
Proof : The first part follows from pointwise convergence of characteristic functions (which is equivalent to weak convergence

by Levy’s continuity theorem) since Φ(Xn,Z)(u, v) = E[eiuXn+ivZ ] = E[eiuXn ]E[eivZ ] = ΦXn
(u)ΦZ(v) then by letting n → ∞

we have ΦX∗(u)ΦZ(v) = E[eiuX∗ ]E[eivZ ] = E[eiuXn+ivZ ] = Φ(X∗,Z)(u, v). To relate (Yn, X1n) with (Xn, Z) we use the linear
transformation (Yn, X1n)T = A(Xn, Z)T for a deterministic matrix A. By using the previous steps and the linear dependence we
obtain limn→∞ Φ(Yn,X1n )(t) = limn→∞ Φ(Xn,Z)(At) = Φ(X∗,Z)(At) = Φ(Y∗,X1∗)(t).

For the second part fix δ > 0 and define Nδ ∼ N(0, δ), pairwise independent of {Xn}, X∗. From the Markov chain
X1n + Nδ ↔ X1n ↔ Yn and the data processing inequality we have h(Yn |X1n) ≤ h(Yn |X1n + Nδ). By the third claim of
proposition 10, we obtain

(λ − 1)h(Yn) +
(
λ

J − 1
+ 1

)
h(Z) − λ

J − 1

J∑
j=1

h(Yn |Xjn + Jδ) → (λ − 1)h(Y∗) +
(
λ

J − 1
+ 1

)
h(Z) − λ

J − 1

J∑
j=1

h(Y∗ |Xj∗ + Nδ)

(65)

as n ↔ ∞. Thus, we have

lim inf
n↔∞

sλ(Xn) ≥ (λ − 1)h(Y∗) +
(
λ

J − 1
+ 1

)
h(Z) − λ

J − 1

J∑
j=1

h(Y∗ |Xj∗ + Nδ). (66)

Since the RHS of (66) is continuous in δ, we take δ ↓ 0 and prove the second claim. �

Theorem 4 ([24, Theorem 1]): Let {Yi ∈ C} be a sequence of continuous random variables with pdf’s { fi} and Y∗ be a
continuous random variable with pdf f∗ such that fi → f∗ pointwise. Let ‖y‖ =

√
y†y denote the Euclidean norm of y ∈ C. If

the conditions
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max{sup
y

fi(y), sup
y

f∗(y)} ≤F, (67)

max{
∫

‖y‖κ fi(y)dy,
∫

‖y‖κ f∗(y)dy} ≤L (68)

hold for some κ > 1 and for all i then h(Yi) → h(Y∗).
Remark 3: This theorem is relatively straightforward. We have lim infi h(Yi) ≥ h(Y∗) due to the upper bound on the densities

and lim supi h(Yi) ≤ h(Y∗) due to the moment constraints.
Proof of Proposition 6: Define

vλ(K̂) = inf
p(x):E[XXT ]=K̂

sλ(X). (69)

Let Xn be a sequence of random variables such that E[XnX
T
n ] = K̂ and sλ(Xn) ↓ vλ(K̂). By the covariance constraint

(Proposition 9) we know that the sequence of random variables Xn forms a tight sequence and by Theorem 3 there exists X∗
K̂

and a convergent subsequence such that Xni

w⇒ X
∗
K̂

. From Proposition 10 and 11 we have sλ(X∗
K̂
) = vλ(K̂). For λ ≥ 0 we

have the following trivial bound

vλ(K̂) = sλ(X∗
K̂
) ≥ −

(
λ

J − 1
+ 1

)
I(X∗

K̂
;Y) ≥

(
−λ + J − 1

2(J − 1)

)
log(1 + GK̂GT ) = Cλ. (70)

Recall that Vλ(K) is defined using a convex combination:

Vλ(K) = inf
(V,X):E[XX

T ]=K
T↔X↔Y

sλ(X |V). (71)

Hence to obtain the best convex combination subject to the covariance constraint it suffices to consider the family of maximizers
X

∗
K̂

for K̂ � 0. Thus, we have

Vλ(K) = inf
αi,K̂i :αi ≥0,

∑
i

αi=1∑
i

αi K̂i=K

∑
i
αivλ(K̂i). (72)

It takes J(J+1)
2

constraints to preserve the covariance matrix and one constraint to preserve
∑

i αivλ(K̂i). Hence, by using the
Bunt-Caratheodory theorem, we can consider convex combinations of at most m :=

J(J+1)
2
+ 1 points, i.e.,

Vλ(K) = inf
αi,K̂i :αi ≥0,

∑m
i=1 αi=1∑m

i=1 αi K̂i=K

m∑
i=1

αivλ(K̂i). (73)

Consider any sequence of convex combinations
({
αn
i

}
,
{

Kn
i

})
that approaches the supremum as n → ∞. Using compactness

of the m−dimensional simplex, we can assume w.l.o.g. that αn
i

n→∞→ α∗
i
, i = 1, . . . ,m. If any α∗

i
= 0, since αn

i
Kn
i
= K and

vλ(Kn
i
) ≥ Cλ it is easy to see that αn

i
vλ(Kn

i
) n→∞→ 0. Thus we can assume that mini=1,...,m α

∗
i
= α∗ > 0. This implies that

Kn
i
� 2

α∗K for large enough n uniformly in i. Hence we can find a convergent subsequence for each i, 1 ≤ i ≤ m, so that

K
nk
i

k→∞→ K∗
i
. We thus have

Vλ(K) =
m∑
i=1

α∗i vλ(K̂∗
i
). (74)

In other words, we can find a pair of random variables (T∗, X∗) with |T | ≤ J(J+1)
2
+ 1 such that Vλ(K) = sλ(X∗ |T∗). �

APPENDIX B
PROOF OF LEMMA 2

We define the set of typical sequences as T (n)(T ) :=
{

tn :
��|{i : ti = t}| − np∗(t)

�� ≤ nωnp∗(t),∀t ∈ [1 : m]
}
, where ωn is any

sequence such that ωn → 0 as n → ∞ and ωn
√

n → ∞ as n → ∞. For instance ωn =
log n√

n
. By using Chebyshev’s inequality,

we have

P(
��|{i : ti = t}| − np∗(t)

�� ≤ nωnp∗(t)) ≤
1 − p∗(t)
p∗(t)ω2

nn
.
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Hence P(tn < T (n)(T )) → 0 as n → ∞. Consider a sequence of induced distributions X̂n ∼ X̃n |tn, where X̃n |tn and X̃n |(Tn
= tn)

denote the same thing.
Proposition 12: X̂n

w⇒ N(0,∑m
t=1 p∗(t)Kt ).

Proof : For given tn, let An(t) = | {i : ti = t} |. We know that An(t) ∈ np∗(t)(1 ± ωn), ∀t. Consider a c with entries in real
number and ‖c‖ = 1. Let X̂c

n,i
∼ 1√

n
c
T · Xti and X̂

c

n,i
be independent random variable over i. Observe that

∑n
i=1 X̂

c

n,i
∼ c

T
X̂n.

Note that

n∑
i=1

E[(X̂c

n,i)2] =
1

n

∑
t

An(t)cTKt c

→ c
T

(∑
t

p∗(t)Kt

)
c.

n∑
i=1

E[(X̂c

n,i)2; | X̂c

n,i | > ǫ1] =
1

n

∑
t

An(t)E[cTXtX
T
t c; cTXtX

T
t c > nǫ21 ]

≤
∑
t

p∗(t)(1 + ωn)E[cTXtX
T
t c; cTXtX

T
t c > nǫ21 ] → 0.

For the last step, we used that the Kt ’s are bounded, and hence c
T
Xt has a bounded second moment. The Lindeberg-Feller

Central Limit Theorem gives
∑n

i=1 X̂
c

n,i

w⇒ N(0, cT ∑
t p∗(t)Kt c). Hence X̂n

w⇒ N(0,∑t p∗(t)Kt ) from Kramer-Wold. �

Proposition 13: Given any δ > 0, there exists N0 such that ∀n > N0 we have for all tn ∈ T (n)(T )

sλ(X̃n |tn) − sλ(X∗) ≤ δ,

where X
∗ ∼ N(0,∑t p∗(t)Kt ).

Proof : Assume the claim is not true. Then we have a subsequence tnk ∈ T nk (T ) and distributions X̃nk |tnk such that

sλ(X̃nk |tnk ) > sλ(X∗) + δ, ∀k.

However from Proposition 12 we know that X̃nk |tnk
w⇒ X

∗ and from Proposition 10 we have sλ(X̃nk |tnk ) → sλ(X∗), a
contradiction. �

Proof of Lemma 2: We know from Corollary 1 that for every ℓ ∈ N and n = 2ℓ, the pair (Tn, X̃n) achieves Vλ(K). Hence
we have

Vλ(K) =
∑
tn

p∗(tn)sλ(X̃n |tn)

=

∑
tn ∈T (n)(T )

p∗(tn)sλ(X̃n |tn) +
∑

tn<T(n)(T )
p∗(tn)sλ(X̃n |tn).

For a given tn, let X̂ ∼ X̃n |tn so that E[X̂ X̂
T ] � ∑m

t=1 Kt . Thus sλ(X̂) ≤ Cλ for some fixed constant that is independent of tn.
Using Proposition 13 we can upper bound Vλ(K) for large n by

Vλ(K) =
∑

tn ∈T (n)(T )
p∗(tn)sλ(X̃n |tn) +

∑
tn<T(n)(T )

p∗(tn)sλ(X̃n |tn)

≤
∑

tn ∈T (n)(T )
p∗(tn)(sλ(X∗) + δ) + Cλ

∑
tn<T(n)(T )

p∗(tn)

= P(tn ∈ T (n)(T ))(sλ(X∗) + δ) + CλP(tn < T (n)(T )).

Here X
∗ ∼ N(0,∑t p∗(t)Kt ). Since P(tn ∈ T (n)(T )) → 1 as n → ∞ we have Vλ(K) ≤ sλ(X∗)+δ. However, δ > 0 is arbitrary,

and hence Vλ(K) ≤ sλ(X∗). The other direction Vλ(K) ≥ sλ(X∗) follows from the definition of Vλ(K) and
∑

t p∗(t)Kt � K . �
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APPENDIX C
PROOF OF LEMMA 3

By the standard Lagrangian duality we have

− Csum = min
p(t,x): E[X2

j
]≤Pj

T↔X↔Y
subject to (22)

−I(X;Y |T )
(a)
≥ max

λ
min

p(x)∈GG
sλ(X)

= max
λ

min
K�0:Q j ≤Pj



(λ − 1)

2
log

©«
1 +

J∑
j,k=1

[K]jk
ª®
¬
− λ

2(J − 1)

J∑
j=1

log
©«
1 +

J∑
ℓ,k=1

[K]ℓk −

(∑J
k=1[K]jk

)2

Pj

ª®®
¬



(75)

where (a) follows from Theorem 2 and last step by inserting an optimal Gaussian input distribution. �

APPENDIX D
PROOF OF LEMMA 4

For the Gaussian MAC with gj = 1 for all j we have

KXY =

(
KX Cov (X,Y)

Cov (X,Y )T KY

)
=

(
KX KX1

(KX1)T 1 + 1
TKX1

)
(76)

where KY = 1 + 1
TKX1, Cov (X,Y) = KX1 and 1 is column vector of all ones. The function h(·) can be rewritten as follows:

2h(λ,KX ) = − log det KY − λ

J − 1
log

J∏
j=1

det KXjY

(det KY )J−1
J∏
j=1

det KXj

. (77)

We define K ′
X

to be the same as KX except that the (1,1) entry of K ′
X

is P1 rather than Q1. Then from (76) we have

K ′
X1Y
= KX1Y ◦

(
D F

F E

)
, (78)

K ′
XjY
= KXjY ◦

(
1 1

1 E

)
, j , 1 (79)

where ‘◦’ denotes Hadamard multiplication, and where

D =
P1

Q1

, E =
KY + P1 − Q1

KY

, F =
Cov (X1,Y) + P1 − Q1

Cov (X1,Y )
. (80)

Observe that D > 1 and E > 1. Now by using Oppenheim’s inequality (det K ′
X1Y

≥ DE det KX1Y ) [25, p. 480] we have

2h(λ,K ′
X
) = − log EKY − λ

J − 1
log

(
J∏
j=2

det K ′
XjY

)
det K ′

X1Y

EJ−1DKJ−1
Y

J∏
j=1

KXj

(81)

≤ − log EKY − λ

N − 1
log E

J∏
j=1

det KXjY

KJ−1
Y

J∏
j=1

KXj

(82)

= −(1 + λ

J − 1
) log E + 2h(λ,KX ) ≤ 2h(λ,KX ). (83)

The minimum is reached for K ′
X

which is a covariance matrix from the argument below

K ′
X
=

©
«

P1 ρ12

√
Q1Q2 . . . ρ1J

√
Q1QJ

ρ21

√
Q2Q1 Q2 . . . ρ2J

√
Q2QJ

...
...

. . .
...

ρJ1

√
QJQ1 ρJ2

√
QJQ2 . . . QJ

ª®®®®¬
=

©
«

P1 ρ12

√
Q1

P1

√
P1Q2 . . . ρ1J

√
Q1

P1

√
P1QJ

ρ21

√
Q1

P1

√
Q2P1 Q2 . . . ρ2J

√
Q2QJ

...
...

. . .
...

ρJ1

√
Q1

P1

√
QJP1 ρJ2

√
QJQ2 . . . QJ

ª®®®®®®®¬
. (84)

With the same approach we attain the minimum for Q2 = P2, Q3 = P3, . . . , QJ = PJ . Thus, we can get the desired lower
bound on the original problem.
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APPENDIX E
PROOF OF LEMMA 5

Consider the arithmetic mean

ρ =
1

J(J − 1)

©
«

J∑
j,k=1
j,k

ρjk

ª®®®
¬
. (85)

For the inequality in Lemma 5 to hold we need to show the following inequality

J∏
j=1

©«
1 +

J∑
ℓ,k=1

Mℓk −

(∑J
k=1 Mjk

)2

P

ª®®
¬
≤ (1 + Pβ (J − β))J . (86)

We prove it as follows:

J∏
j=1

©
«
1 +

J∑
ℓ,k=1

Mℓk −

(∑J
k=1 Mjk

)2

P

ª®®¬
(a)
≤

©
«
1 +

J∑
ℓ,k=1

Mℓk −
J∑
j=1

(
J∑

k=1

Mjk

)2

JP

ª®®®®
¬

J

(87)

(b)
≤

©
«
1 +

J∑
ℓ,k=1

Mℓk −
©
«

J∑
j,k=1

Mjk

J
√

P

ª®
¬

2ª®®
¬

J

(88)

= (1 + Pβ (J − β))J (89)

where (a) follows from arithmetic-geometric mean (AM-GM) which is valid for non-negative real numbers, and (b) follows
from Cauchy-Schwarz inequality

(12
+ 12
+ · · · + 12) ©«

J∑
j=1

(
J∑

k=1

Mjk√
P

)2ª®
¬
≥ ©«

J∑
j,k=1

Mjk√
P

ª®
¬

2

. (90)

For equality in both (a) and (b) a sufficient and necessary condition is ρ12 = ρ13 = · · · = ρ(J−1)J = ρ. Define β = 1+ (J − 1)ρ,
therefore to obtain the expression in (89) we will use the identity

∑J
ℓ,k=1 Mℓk = PJβ. Since −1/(J − 1) ≤ ρ ≤ 1, we have

0 ≤ β ≤ J.

APPENDIX F
CONVEXITY

Lemma 7: The problem min
β∈[0,J]:ℓ(β,J,P)≤0

{
− 1

2
log(1 + JPβ)

}
is convex, where

ℓ(β, J, P) = 1

2
log (1 + JPβ) − J

2(J − 1) log (1 + Pβ (J − β)). (91)

Proof : For a fixed P and J, the term − log(1 + JPβ) is convex on β. We now show that, for a fixed P and J, ℓ(β, J, P) is
convex in β. We split the derivations into two steps. In the first step, we show that ∂2ℓ(β,J,P)

∂β2 ≥ 0 for β ≥ 1. In the second
step, we show that β ∈ [1, J] are the only possible maximizers for the original problem.

1) We compute ∂2ℓ(β,J,P)
∂β2 as

(
1 γ γ2 γ3 γ4

)

©
«

M3P4
+ 8M2P4

+ 2M2P3
+ 22MP4

+ 14MP3

+3MP2
+ 21P4

+ 24P3
+ 11P2

+ 2P

2M3P4
+ 16M2P4

+ 2M2P3
+ 46MP4

+ 20MP3

+2MP2
+ 48P4

+ 42P3
+ 10P2

M3P4
+ 9M2P4

+ 33MP4
+ 10MP3

+ 45P4

+30P3
+ 2P2

2M2P4
+ 16MP4

+ 4MP3
+ 30P4

+ 12P3

M2P4
+ 7MP4

+ 12P4

ª®®®®®®®®®®®®®®®®®®®¬

> 0
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where M = J − 3 ≥ 0 and γ = β − 1 ≥ 0 for the case of three or more users (J ≥ 3). For P > 0 and γ ≥ 0 the above
inequality holds from the addition of only positive terms, thus the problem is convex. To show that the problem is convex
for all admissible values of β, we need to rule out some values and that is done in the next part.

2) Assume that β0 ∈ [0, 1[ is the minimizer of the problem defined above, so that the following holds

min
β∈[0,J]:ℓ(β,J,P)≤0

{
−1

2
log(1 + JPβ)

}
= −1

2
log(1 + JPβ0). (92)

For β1 = 1, the constraint ℓ(1, J, P) < 0 is satisfied, which is equivalent to showing that

(1 + JP)J−1 < (1 + (J − 1)P)J (93)

for P > 0. But we have (
1 + (J − 1)P

1 + JP

)J−1

=

(
1 − P

1 + JP

)J−1

(94)

≥ 2

1 + JP
(95)

>
1

1 + (J − 1)P (96)

where (95) follows by Bernoulli’s inequality ((1+ x)r ≥ 1+ rx for r ≥ 1, x ≥ −1). The new minimizer is β1 = 1 instead
of β0 < β1 based on

−1

2
log(1 + JPβ1) < −1

2
log(1 + JPβ0). (97)

This leads to a contradiction, and therefore we rule out the minimizers β0, and the original problem becomes equivalent
to the problem

min
β∈[1,J]:ℓ(β,J,P)≤0

{
−1

2
log(1 + JPβ)

}
. (98)
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