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Abstract—We prove that for any positive integers n and k such
that n≥ k≥ 1, there exists an [n, k] generalized Reed-Solomon
(GRS) code that has a sparsest and balanced generator matrix

(SBGM) over any finite field of size q ≥ n+ ⌈ k(k−1)
n

⌉, where
sparsest means that each row of the generator matrix has the
least possible number of nonzeros, while balanced means that the
number of nonzeros in any two columns differ by at most one.
Previous work by Dau et al (ISIT’13) showed that there always
exists an MDS code that has an SBGM over any finite field of
size q ≥

(

n−1
k−1

)

, and Halbawi et al (ISIT’16, ITW’16) showed that
there exists a cyclic Reed-Solomon code (i.e., n = q− 1) with an
SBGM for any prime power q. Hence, this work extends both of
the previous results.

I. INTRODUCTION

Maximum distance separable (MDS) codes, especially

Reed-Solomon (RS) codes, with constrained generator matri-

ces are recently attracting attention for their applications in

the scenarios where encoding is performed in a distributed

way [1]−[11]. Examples of such scenarios include wireless

sensor networks [1], cooperative data exchange [3], [4], [11],

and simple multiple access networks [2], [6]. An interesting

problem of this topic is how to construct MDS codes that

have a sparsest and balanced generator matrix (SBGM), where

sparsest means that each row of the generator matrix has the

least possible number of nonzeros, while balanced means that

the number of nonzeros in any two columns differ by at most

one [1]. More specifically, in an SBGM of an [n, k] MDS

code, the weight of each row is n− k + 1 and the weight of

each column is either ⌊k(n−k+1)
n

⌋ or ⌈k(n−k+1)
n

⌉.

In general, for every MDS code we can easily find a sparsest

generator matrix. The difficulty of this problem is to ensure

that a sparsest generator matrix is also balanced. In [1], it was

shown that there always exists an MDS code with an SBGM

over any finite field of size q >
(
n−1
k−1

)
for any n ≥ k ≥ 1.

The authors in [9] constructed an [n, k] cyclic Reed-Solomon

code (i.e., n = q− 1) that has an SBGM for any prime power

q and any k such that 1 ≤ k ≤ n. However, it was left as

an open problem whether there exists an [n, k]q generalized

Reed-Solomon (GRS) code with an SBGM for k ≤ n < q−1.

In this paper, we extends the results in [1], [9] by proving that

for any positive integers n and k such that n≥ k ≥ 1, there

exists an [n, k] generalized Reed-Solomon code that has an

SBGM over any finite field Fq of size q≥n+ ⌈k(k−1)
n

⌉.

A. Related Work

MDS codes with more general constraints on the support

of their generator matrices were studied in [2], [4], [5]. A

conjecture, called GM-MDS Conjecture, was proposed in [5]

stating that given any k × n binary matrix M = (mi,j) that

satisfies the so-called MDS Condition, there exists an [n, k]q
MDS code for any prime power q ≥ n + k − 1 that has a

generator matrix G = (gi,j) satisfying gi,j = 0 whenever

mi,j = 0, where the MDS Condition requests that for any

r ∈ {1, 2, · · · , k}, the union of the supports of any r rows of

M has size at least n− k + r.1 Unfortunately, the GM-MDS

Conjecture is proved to be true only for some very special

cases, that is, a) the rows of M are divided into three groups

such that the rows within each group have the same support

[2]; or b) the supports of any two rows of M intersect with

at most one element [5]; or c) k ≤ 5 [10].

II. PRELIMINARY

For any positive integer n, [n] := {1, 2, · · · , n}; if n ≤ 0,

[n] is the empty set. For any set A, |A| is the size (i.e., the

number of elements) of A. We denote by Fq the field with

q elements, where q ≥ 2 is a prime power. The support of a

row/column vector over Fq is the set of its nonzero coordinates

and the weight of a row/column vector is the size of its support.

A multiset S with underlying set {s1, s2, · · · , sL} is a

set of ordered pairs S = {(s1, n1), (s2, n2), · · · , (sL, nL)},

where each ni ≥ 0 is an integer, called the multiplicity of

si and denoted by ni = multS(si). We also denote S as

S = {s1, · · · , s1, s2, · · · , s2, · · · , sL, · · · , sL}, where each

si appears ni times in S and is also called an element of

S. The size |S| of S is the sum of the multiplicities of

its different elements, i.e., |S| =
∑L

i=1 ni. Any subset S0

of {s1, s2, · · · , sL} can be viewed as a multiset such that

multS0
(si) = 1 if si ∈ S0, and multS0

(si) = 0 if si /∈ S0. If

S′ = {(s1,m1), (s2,m2), · · · , (sL,mL)} is another multiset,

not necessarily S′ 6= S, the union of S and S′, denoted by

S ⊔ S′, is {(s1, n1+m1), (s2, n2+m2), · · · , (sL, nL+mL)}.

Let Pk[x] denote the set of polynomials in Fq[x] of degree

less than k, including the zero polynomial, where x is an

indeterminant. Then Pk[x] is a k-dimensional vector space

over Fq according to the usual addition and multiplication of

polynomials. Let q ≥ n ≥ k and a1, a2, · · · , an be n distinct

1Another conjecture which is equivalent to the GM-MDS Conjecture was
proposed in [4].
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elements of Fq. The [n, k] generalized Reed-Solomon (GRS)

code defined by a1, a2, · · · , an is [?]:

C = {(f(a1), f(a2), · · · , f(an)); f ∈ Pk[x]}.

The code C is an MDS code, i.e., the minimum distance of C
is d=n−k+1. A generator matrix G of C is said to be sparsest

and balanced if G satisfies the following two conditions:

(P1) Sparsest condition: the weight of each row of G is

exactly n− k + 1;

(P2) Balanced condition: the weight of each column of G is

either ⌊k(n−k+1)
n

⌋ or ⌈k(n−k+1)
n

⌉.

A GRS code that has a sparsest and balanced generator matrix

(SBGM) is simply called a sparsest and balanced GRS code.

III. EXISTENCE OF SPARSEST AND BALANCED GRS

CODES

In this section, we prove that there always exists a sparsest

and balanced [n, k] GRS code for any n ≥ k ≥ 1. Formally,

we have the following theorem.

Theorem 1: For any n≥ k≥ 1, there exists an [n, k] gen-

eralized Reed-Solomon code that has a sparsest and balanced

generator matrix over any field Fq of size q≥n+⌈k(k−1)
n

⌉.

Clearly, [1, 1, · · · , 1] is an SBGM of the [n, 1] GRS code;

and the identity matrix is an SBGM of the [n, n] GRS code.

Hence, in the following, we only need to consider the case of

n > k ≥ 2.

Before proving Theorem 1, we first prove two lemmas.

First, let α = (α1, α2, · · · , αn) be an n-tuple of distinct

indeterminants. For each subset Z of [n] and 0 ≤ ℓ ≤ |Z|,

let s
(ℓ)
Z (α) be the ℓth elementary symmetric polynomial with

respect to {αj; j ∈ Z}. That is,

s
(0)
Z (α) = 1,

and for 1 ≤ ℓ ≤ |Z|,

s
(ℓ)
Z (α) =

∑

U⊆Z and |U|=ℓ




∏

j∈U

αj



 .

Then we have the following lemma.

Lemma 1: Suppose n > k ≥ 2. There exists a k×n binary

matrix W = (wi,j) satisfying the following four conditions:

(i) The weight of each row of W is k − 1;

(ii) The weight of each column of W is either ⌊k(k−1)
n

⌋ or

⌈k(k−1)
n

⌉;

(iii) ξ(α) 6≡ 0, where

ξ(α)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s
(0)
Z1

(α) s
(0)
Z2

(α) · · · s
(0)
Zk

(α)

s
(1)
Z1

(α) s
(1)
Z2

(α) · · · s
(1)
Zk

(α)

s
(2)
Z1

(α) s
(2)
Z2

(α) · · · s
(2)
Zk

(α)

· · · · · · · · · · · ·

s
(k−1)
Z1

(α) s
(k−1)
Z2

(α) · · · s
(k−1)
Zk

(α)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (1)

and Zi is the support of the ith row of W , ∀i ∈ [k];

(iv) The degree of each αi in ξ(α) is at most ⌈k(k−1)
n

⌉.

Proof: First, consider n ≥ k(k−1). In this case, we have

⌈k(k−1)
n

⌉ = 1. Let W = (wi,j) such that wi,j = 1 for each

i ∈ [k] and each (i−1)(k−1)+1 ≤ j ≤ i(k−1), and wi,j = 0
otherwise. Then we have Zi = {j ∈ [n]; (i− 1)(k− 1) + 1 ≤
j ≤ i(k− 1)}, and Z1, Z2, · · · , Zk are mutually disjoint. It is

easy to check that W satisfies conditions (i) − (iv).

In the following, we consider the case that k(k − 1) > n.

Since we have assumed n > k ≥ 2, then we always have

k(k − 1) > n > k ≥ 2.

For convenience, we write k(k − 1) as

k(k − 1) = an+ r (2)

where 0 ≤ r ≤ n− 1, and let

δ = (δ1, δ2, · · · , δn)

= (

r (a+1)’s
︷ ︸︸ ︷

a+ 1, · · · , a+ 1,

n−r r’s
︷ ︸︸ ︷

a, · · · , a) . (3)

Here we point out some simple facts about a and δ. First,

since k(k − 1) > n > k ≥ 2, if r = 0, then

2 ≤ a =

⌊
k(k − 1)

n

⌋

=

⌈
k(k − 1)

n

⌉

< k − 1;

if 0 < r ≤ n− 1, then

1 ≤ a =

⌊
k(k − 1)

n

⌋

< a+ 1 =

⌈
k(k − 1)

n

⌉

≤ k − 1.

So we always have

δj ∈

{⌊
k(k − 1)

n

⌋

,

⌈
k(k − 1)

n

⌉}

. (4)

and

2 ≤ a+ 1 ≤ k − 1. (5)

Moreover, by (2) and (3), we have

n∑

j=1

δj = (a+ 1)r + a(n− r) = an+ r = k(k − 1). (6)

Construction of W : The binary matrix W is constructed

by the following three steps.

Step 1. List the elements of the multiset

S = {(1, k − 1), (2, k − 2), · · · , (k − 1, 1)}

in a sequence

S = 1, 2, · · · , k − 1
︸ ︷︷ ︸

, 1, 2, · · · , k − 2
︸ ︷︷ ︸

, · · · , 1, 2
︸︷︷︸

, 1

= c1, c2, · · · , cK (7)

where

K =

k−1∑

ℓ=1

ℓ =
k(k − 1)

2
. (8)



Then construct subsets S1, S2, · · · , Sn of [k] by Algorithm 1.

Step 2. List the elements of the multiset

T = {(k, k − 1), (k − 1, k − 2), · · · , (2, 1)}

in a sequence

T = k, k − 1, k
︸ ︷︷ ︸

, k − 2, k − 1, k
︸ ︷︷ ︸

, · · · , 2, 3, · · · , k
︸ ︷︷ ︸

= e1, e2, · · · , eK (9)

and let

θ = (θ1, θ2, · · · , θn) = δ − (|S1|, |S2|, · · · , |Sn|). (10)

Then construct subsets T1, T2, · · · , Tn of [k] by Algorithm 2.

Step 3. Let W be the k×n binary matrix such that for each

j ∈ [n], Yj = Sj ∪ Tj is the support of the jth column of W .

Algorithm 1

Input: S = c1, c2, · · · , cK , and δ = (δ1, δ2, · · · , δn);

Output: S1, S2, · · · , Sn;

Initialization: L = 0, j = 0;

1: while L < K do

2: j = j + 1;

3: if L <
∑k−1

ℓ=a+1 ℓ then

4: Sj = {cL+1, · · · , cL+δj};

5: else if
∑k−1

ℓ=m+1 ℓ ≤ L <
∑k−1

ℓ=m ℓ for some

m ∈ [a] = {1, 2, · · · , a} then

6: Sj = {cL+1, · · · , cL+m};

7: end if

8: L = L+ |Sj |;

9: end while

10: if j < n

11: Sj+1 = · · · = Sn = ∅;

12: end if

Algorithm 2

Input: T = e1, e2, · · · , eK , and θ = (θ1, θ2, · · · , θn);

Output: T1, T2, · · · , Tn;

Initialization: L = 0, j = 1;

1: while L < K do

2: j = j + 1;

3: Tj = {eL+1, · · · , eL+θj};

4: L = L+ |Tj |;

5: end while

Two examples of our construction are given in Section IV.

Moreover, we have the following three claims.

Claim 1. For each j ∈ [n], Sj is a subset of [k] and, when

viewed as multisets, we have ⊔λ1

j=1Sj = S, where λ1 is the

value of j at the end of the while loop of Algorithm 1.

Claim 2. For each j ∈ [n], Tj is a subset of [k] and Sj∩Tj =
∅. Moreover, when viewed as multisets, we have ⊔n

j=1Tj = T .

Claim 3. Let X∗ = {(1, |S1|), (2, |S2|), · · · , (λ1, |Sλ1
|)}.

Then there exist a unique σ∗ ∈ Sk and a unique

(X∗
1 , X

∗
2 , · · · , X

∗
k ) ∈ Xσ∗ such that X∗ = X∗

1⊔X
∗
2⊔· · ·⊔X

∗
k ,

where Sk denotes the permutation group on [k] and, for each

σ ∈ Sk, Xσ denotes the set of all tuples (X1, X2, · · · , Xk)
such that Xi ⊆ Zi and |Xi| = σ(i)− 1, i = 1, 2, · · · , k.

The proof of Claims 1 − 3 are given in Appendices A −
C, respectively.

Note that for each i ∈ [k], multS⊔T (i) = k − 1. Then by

Claims 1 and 2, each i ∈ [k] is contained by k− 1 sets in the

collection {Y1, Y2, · · · , Yn}, where Yj (j ∈ [n]) is the support

of the jth column of W by our construction. So each row of

W has weight k − 1, hence condition (i) is satisfied.

For each j ∈ [n], by (4), δj ∈ {⌊k(k−1)
n

⌋, ⌈k(k−1)
n

⌉}. So by

Claims 1, 2 and Algorithm 2, the weight of the jth column of

W is |Yj | = |Sj | + |Tj| = δj ∈ {⌊k(k−1)
n

⌋, ⌈k(k−1)
n

⌉}, hence

condition (ii) is satisfied.

For any multiset X = {(1, ℓ1), (2, ℓ2), · · · , (n, ℓn)}, let

α
X :=

n∏

j=1

α
ℓj
j .

Then from (1), we have

ξ(α) =
∑

σ∈Sk

sgn(σ)
k∏

i=1

s
(σ(i)−1)
Zi

(α)

=
∑

σ∈Sk

sgn(σ)
∑

(X1,X2,··· ,Xk)∈Xσ

α
X1α

X2 · · ·αXk

=
∑

σ∈Sk

sgn(σ)
∑

(X1,X2,··· ,Xk)∈Xσ

α
X1⊔X2⊔···⊔Xk . (11)

where sgn(σ) denotes the sign of the permutation σ. By

Claim 3, there exist a unique σ∗ ∈ Sk and a unique

(X∗
1 , X

∗
2 , · · · , X

∗
k ) ∈ Xσ∗ such that X∗=X∗

1 ⊔X∗
2 ⊔· · ·⊔X∗

k .

So by (11), sgn(σ∗)αX∗

1⊔X∗

2⊔···⊔X∗

k is a non-zero monomial

in ξ(α). Hence, ξ(α) 6≡ 0 and condition (iii) is satisfied.

Note that Xi ⊆ Zi, ∀i ∈ [k], and each column of W

has weight either ⌊k(k−1)
n

⌋ or ⌈k(k−1)
n

⌉, i.e., each j ∈ [n]

is contained by at most ⌈k(k−1)
n

⌉ sets in {Z1, Z2, · · · , Zk},

where Zi is the support of the ith row of W . So in (11),

the degree of αj in each αX1⊔X2⊔···⊔Xk is at most ⌈k(k−1)
n

⌉.

Hence, the degree of αj in ξ(α) is at most ⌈k(k−1)
n

⌉. Hence,

condition (iv) is satisfied, which completes the proof.

Lemma 2: Suppose ξ(α1, α2, · · · , αn) is a nonzero poly-

nomial over the field Fq such that the degree of each αi is

at most m (m ≥ 1). If q ≥ n +m, then there exist distinct

a1, a2, · · · , an ∈ Fq such that ξ(a1, a2, · · · , an) 6= 0.

Proof: Similar to the Schwartz-Zippel Theorem, this

lemma can be proved by induction on the number of inde-

terminants n. First, for n = 1, ξ(α1) has at most m zeros in

Fq because the degree of α1 is at most m. So there exists an

a1 ∈ Fq such that ξ(a1) 6= 0, provided that q ≥ 1 +m.

Now assume that n > 1, q ≥ n+m and the induction hy-

pothesis is true for polynomials of up to n−1 indeterminants.

Consider the polynomial ξ(α1, α2, · · · , αn). Without loss of



generality, assume the degree of α1 in ξ is t (1 ≤ t ≤ m).
Then we can factor out α1 and obtain

ξ(α1, α2, · · · , αn) =
t∑

i=0

αi
1ξi(α2, · · · , αn),

where ξt(α2, · · · , αn) 6≡ 0. Clearly, the degree of each

αi (2 ≤ i ≤ n) in ξt is at most m. The induction hypothesis

implies that there exist distinct a2, · · · , an ∈ Fq such that

ξt(a2, · · · , an) 6= 0. Then the polynomial

η(α1) = ξ(α1, a2, · · · , an) =
t∑

i=0

αi
1ξi(a2, · · · , an) 6≡ 0

and has degree t. Note that q ≥ n+m ≥ n+ t. There exists

an a1 ∈ Fq\{a2, · · · , an} such that

ξ(a1, a2, · · · , an) = η(a1) 6= 0.

This completes the induction.

Now we are able to prove Theorem 1.

Proof of Theorem 1: Let W be a k × n binary matrix

satisfying conditions (i) − (iv) of Lemma 1. By Lemma 2,

if q ≥ n + ⌈k(k−1)
n

⌉, there exist distinct a1, a2, · · · , an ∈ Fq

such that ξ(a1, a2, · · · , an) 6= 0.

For each i ∈ [k], let

fi(x) =
∏

j∈Zi

(x− aj) (12)

where Zi is the support of the ith row of W . Clearly, f1(x),
f2(x), · · · , fk(x) ∈ Pk[x]. Moreover, f1(x), f2(x), · · · , fk(x)
are linearly independent in Pk[x], which can be proved as

follows. By (12), we have

fi(x) =
∏

j∈Zi

(x − aj)

= xk−1+
k−1∑

ℓ=1




∑

U⊆Zi,|U|=ℓ




∏

j∈U

aj







(−1)ℓxk−1−ℓ

= xk−1 +

k−1∑

ℓ=1

s
(ℓ)
Zi
(a1, a2, · · · , an)(−1)ℓxk−1−ℓ

for each i ∈ [k]. Denote ci,ℓ := s
(ℓ)
Zi
(a1, a2, · · · , an) and

C =






1 1 · · · 1
−c1,1 −c2,1 · · · −ck,1
· · · · · · · · · · · ·

(−1)k−1c1,k−1 (−1)k−1c2,k−1 · · · (−1)k−1ck,k−1






.

Then f1(x),f2(x), · · · , fk(x) are linearly independent in Pk[x]
if and only if det(C) 6= 0. From (1), we can easily see that

ξ(a1, a2, · · · , an) = (−1)1+2+···+(k−1)det(C).

Since ξ(a1, a2, · · · , an) 6= 0, then det(C) 6= 0. Hence,

f1(x),f2(x), · · · , fk(x) are linearly independent in Pk[x].

Now, let C be the GRS code defined by a1, a2, · · · , an and

G =







f1(a1) f1(a2) · · · f1(an)
f2(a1) f2(a2) · · · f2(an)
· · · · · · · · · · · ·

fk(a1) fk(a2) · · · fk(an)







.

Since f1(x),f2(x), · · · , fk(x) are linearly independent in

Pk[x], then G is a generator matrix of C.

By assumption, W satisfies conditions (i) and (ii) of Lemma

1, that is, the weight of each row of W is k − 1 and the

weight of each column of W is either ⌊k(k−1)
n

⌋ or ⌈k(k−1)
n

⌉.

Moreover, by (12), for each i ∈ [k] and j ∈ [n], fi(aj) = 0 if

and only if j ∈ Zi, that is wi,j = 1 (because Zi is the support

of the ith row of W ). So according to the construction of

G, the number of zeros in every row of G is k − 1 and the

number of zeros in every column of G is either ⌊k(k−1)
n

⌋ or

⌈k(k−1)
n

⌉. Equivalently, the number of ones in every row of G
is n − k + 1 and the number of ones in every column of G
is either ⌊k(n−k+1)

n
⌋ or ⌈k(n−k+1)

n
⌉. So G satisfies conditions

(P1) and (P2), hence is an SBGM of C.

IV. EXAMPLES OF THE CONSTRUCTION

As an illustration of our construction, consider the following

two examples, which reflect two typical cases of the output of

Algorithm 1.

Example 1: Let k = 7 and n = 10. Then k(k−1) = 4n+2.

So a = 4, r = 2, ⌊k(k−1)
n

⌋ = 4 and ⌈k(k−1)
n

⌉ = 5. According

to (3), we have

δ = (5, 5, 4, 4, 4, 4, 4, 4, 4, 4)

and according to (7), we have

S = 1, 2, 3, 4, 5, 6
︸ ︷︷ ︸

, 1, 2, 3, 4, 5
︸ ︷︷ ︸

, 1, 2, 3, 4
︸ ︷︷ ︸

, 1, 2, 3
︸ ︷︷ ︸

, 1, 2
︸︷︷︸

, 1.

By Algorithm 1, S is divided into S1, · · · , S6 as follows:

1, 2, 3, 4, 5
︸ ︷︷ ︸

S1

, 6, 1, 2, 3, 4
︸ ︷︷ ︸

S2

, 5, 1, 2, 3
︸ ︷︷ ︸

S3

, 4, 1, 2, 3
︸ ︷︷ ︸

S4

, 1, 2
︸︷︷︸

S5

, 1
︸︷︷︸

S6

(13)

and S7 = · · · = Sn = ∅. Hence,

(|S1|, |S2|, · · · , |Sn|) = (5, 5, 4, 4, 2, 1, 0, 0, 0, 0)

and according to (10), we have

θ = δ − (|S1|, |S2|, · · · , |Sn|)

= (0, 0, 0, 0, 2, 3, 4, 4, 4, 4).

Moreover, according to (9), we have

T = 7, 6, 7
︸︷︷︸

, 5, 6, 7
︸ ︷︷ ︸

, 4, 5, 6, 7
︸ ︷︷ ︸

, 3, 4, 5, 6, 7
︸ ︷︷ ︸

, 2, 3, 4, 5, 6, 7
︸ ︷︷ ︸

.

Then by Algorithm 2, we have T1 = · · · = T4 = ∅ and T is

divided into T5, · · · , T10 as follows:

7, 6
︸︷︷︸

T5

, 7, 5, 6
︸ ︷︷ ︸

T6

, 7, 4, 5, 6
︸ ︷︷ ︸

T7

, 7, 3, 4, 5
︸ ︷︷ ︸

T8

, 6, 7, 2, 3
︸ ︷︷ ︸

T9

, 4, 5, 6, 7
︸ ︷︷ ︸

T10

.



So we obtain

W =













1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1 1 0
1 1 0 1 0 0 1 1 0 1
1 0 1 0 0 1 1 1 0 1
0 1 0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1 1 1













.

We can easily check that Claims 1 and 2 are true. We now

check that Claim 3 is true. From (13), we have λ1 = 6 and

X∗ = {(1, |S1|), (2, |S2|), · · · , (6, |S6|)}

= {(1, 5), (2, 5), (3, 4), (4, 4), (5, 2), (6, 1)}.

Suppose

X∗ = X∗
1 ⊔X∗

2 ⊔ · · · ⊔X∗
k

for some σ∗ ∈ Sk and some (X∗
1 , X

∗
2 , · · · , X

∗
k) ∈ Xσ∗ . We

show that σ∗ and (X∗
1 , X

∗
2 , · · · , X

∗
k) are unique as follows.

First, note that for each j ∈ {1, 2, 3, 4}, multX∗(j) equals

the weight of the jth column of W . Then considering the

first four columns of W , we have {1, 2, 3, 4} ⊆ (∩3
i=1X

∗
i ),

{1, 2, 4} ⊆ X∗
4 , {1, 3} ⊆ X∗

5 and {2} ⊆ X∗
6 . So it must be

that σ∗(7) = 1 and X∗
7 = ∅. Recursively, we obtain σ∗(6) = 2

and X∗
6 = {2}; σ∗(5) = 3 and X∗

5 = {1, 3}; σ∗(4) = 4 and

X∗
4 = {1, 2, 4}. And hence, we have σ∗(i) ∈ {5, 6, 7} for each

i ∈ {1, 2, 3}, and multX∗

7
⊔X∗

6
⊔X∗

5
⊔X∗

4
(j) = 0 for j = 5, 6.

Further, consider the first five columns of W . Since

multX∗

7
⊔X∗

6
⊔X∗

5
⊔X∗

4
(5) = 0, then multX∗

1
⊔X∗

2
⊔X∗

3
(5) =

multX∗(5) = 2 and {1, 2, 3, 4, 5} ⊆ (X∗
1 ∩X∗

2 ). So σ∗(3) = 5
and X∗

3 = {1, 2, 3, 4}. Similarly, considering the first six

columns of W , we can obtain σ∗(2) = 6 and X∗
2 =

{1, 2, 3, 4, 5}. And finally, we can obtain σ∗(1) = 7 and

X∗
1 = {1, 2, 3, 4, 5, 6}.

Hence, σ∗ ∈ Sk and (X∗
1 , X

∗
2 , · · · , X

∗
k) ∈ Xσ∗ are

uniquely determined. That is, Claim 3 is true.

As discussed in the proof of Lemma 1, W satisfies condi-

tions (i) − (iv) of Lemma 1.

Example 2: Let k = 7 and n = 13. Then k(k−1) = 3n+3.

So a = 3, r = 3, ⌊k(k−1)
n

⌋ = 3 and ⌈k(k−1)
n

⌉ = 4. According

to (3), we have

δ = (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

and according to (7), we have

S = 1, 2, 3, 4, 5, 6
︸ ︷︷ ︸

, 1, 2, 3, 4, 5
︸ ︷︷ ︸

, 1, 2, 3, 4
︸ ︷︷ ︸

, 1, 2, 3
︸ ︷︷ ︸

, 1, 2
︸︷︷︸

, 1.

By Algorithm 1, S is divided into S1, · · · , S7 as follows:

1, 2, 3, 4
︸ ︷︷ ︸

S1

, 5, 6, 1, 2
︸ ︷︷ ︸

S2

, 3, 4, 5, 1
︸ ︷︷ ︸

S3

, 2, 3, 4
︸ ︷︷ ︸

S4

, 1, 2, 3
︸ ︷︷ ︸

S5

, 1, 2
︸︷︷︸

S6

, 1
︸︷︷︸

S7

. (14)

And S8 = · · · = Sn = ∅. Hence,

(|S1|, |S2|, · · · , |Sn|) = (4, 4, 4, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0)

and according to (10),

θ = δ − (|S1|, |S2|, · · · , |Sn|)

= (0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3).

Moreover, according to (9), we have

T = 7, 6, 7
︸︷︷︸

, 5, 6, 7
︸ ︷︷ ︸

, 4, 5, 6, 7
︸ ︷︷ ︸

, 3, 4, 5, 6, 7
︸ ︷︷ ︸

, 2, 3, 4, 5, 6, 7
︸ ︷︷ ︸

.

Then by Algorithm 2, we have T1 = · · · = T5 = ∅ and T is

divided into T6, · · · , T13 as follows:

7
︸︷︷︸

T6

, 6, 7
︸︷︷︸

T7

, 5, 6, 7
︸ ︷︷ ︸

T8

, 4, 5, 6
︸ ︷︷ ︸

T9

, 7, 3, 4
︸ ︷︷ ︸

T10

, 5, 6, 7
︸ ︷︷ ︸

T11

, 2, 3, 4
︸ ︷︷ ︸

T12

, 5, 6, 7
︸ ︷︷ ︸

T13

.

So we obtain

W =













1 1 1 0 1 1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 1 0
1 0 1 1 1 0 0 0 0 1 0 1 0
1 0 1 1 0 0 0 0 1 1 0 1 0
0 1 1 0 0 0 0 1 1 0 1 0 1
0 1 0 0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 1 1 1 0 1 1 0 1













.

We can check that Claims 1 and 2 are true. Moreover, let

X∗ = {(1, |S1|), (2, |S2|), · · ·, (7, |S7|)}

= {(1, 4), (2, 4), (3, 4), (4, 3), (5, 3), (6, 2), (7, 1)}

and suppose X∗ = X∗
1 ⊔ X∗

2 ⊔ · · · ⊔ X∗
k for some σ∗ ∈ Sk

and some (X∗
1 , X

∗
2 , · · · , X

∗
k ) ∈ Xσ∗ . Then similar to Example

1, we can obtain σ∗(i) = k − i + 1, ∀i ∈ [k], and X∗
7 = ∅,

X∗
6 = {2}, X∗

5 = {2, 3}, X∗
4 = {1, 3, 4}, X∗

3 = {1, 3, 4, 5},

X∗
2 = {1, 2, 4, 5, 6}, X∗

1 = {1, 2, 3, 5, 6, 7}. So both σ∗ ∈ Sk

and (X∗
1 , X

∗
2 , · · · , X

∗
k) ∈ Xσ∗ are unique and Claim 3 is true.

V. CONCLUSION

We show that for any n ≥ k ≥ 1, there exists an [n, k]
sparsest and balanced GRS code over any field Fq with size

q ≥ n +⌈k(k−1)
n

⌉. It is still an open problem whether [n, k]
sparsest and balanced GRS codes exist when the field size q
satisfies n+ 1 < q < n+ ⌈k(k−1)

n
⌉.

APPENDIX A

PROOF OF CLAIM 1

In this appendix, we are to prove Claim 1.

By (3) and (5), we have δℓ≤a+1≤k− 1 for each ℓ ∈ [n].
Then there exists a unique λa+1 ∈ [n] such that

λa+1−1
∑

ℓ=1

δℓ <
k−1∑

ℓ=a+1

ℓ ≤

λa+1∑

ℓ=1

δℓ. (15)

According to Algorithm 1, we have

|Sj | = δj , ∀j ∈ {1, 2, · · · , λa+1} (16)

and each of S1, S2, · · · , Sλa+1
is a subset of [k]. Moreover,

since δλa+1
≤ a+ 1, then from (15), we obtain

λa+1∑

ℓ=1

|Sℓ| =

λa+1∑

ℓ=1

δℓ =

(
k−1∑

ℓ=a+1

ℓ

)

+ t0



for some t0∈{0, 1, · · · , a}. We need to consider the following

two cases.

Case 1. t0 ∈ {1, 2, · · · , a}.

Then according to Algorithm 1, we have

• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0,

Sj = {t0+1, t0+2, · · ·, a−ℓ+1, 1, 2, · · ·, t0}

= {1, 2, · · · , a− ℓ+ 1}; (17)

• For j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1,

Sj = {1, 2, · · · , a− ℓ} (18)

Moreover, λ1 := λa+1 + a− 1 is the value of j at the end of

the while loop of Algorithm 1 and

(|S1|, |S2|, · · ·, |Sλ1
|) =

(δ1, · · ·, δλa+1
, a, a−1, · · ·, t0+1, t0−1, · · ·, 2, 1). (19)

Case 2. t0 = 0.

Then according to Algorithm 1, we have

• For j = λa+1 + ℓ and ℓ ∈ [a],

Sj = {1, 2, · · · , a− ℓ+ 1}. (20)

Moreover, λ1 := λa+1 + a is the value of j at the end of the

while loop of Algorithm 1 and

(|S1|, |S2|, · · ·, |Sλ1
|) =

(δ1, · · ·, δλa+1
, a, a−1, · · · , 2, 1). (21)

In both cases, clearly, each of Sλa+1+1, · · · , Sλ1
is a subset

of [k]. Moreover, we have λ1 ≤ n, which can be proved by

contradiction as follows. Suppose λ1 > n. Then we have

λ1∑

j=1

|Sj |+
a∑

ℓ=1

ℓ >

n∑

j=1

|Sj |+
a∑

ℓ=1

ℓ.

Moreover, since δj ≤ a+1 for all j ∈ [n] (see (3)), then from

(19) and (21), we have

n∑

j=λa+1+1

|Sj |+
a∑

ℓ=1

ℓ ≥
n∑

j=λa+1+1

δj .

From the above two inequalities, we have

λ1∑

j=1

|Sj |+
a∑

ℓ=1

ℓ >

n∑

j=1

δj = k(k − 1) (22)

where the last equation comes from (6). However, combining

the facts
∑λ1

j=1 |Sj |=K= k(k−1)
2 and a<k−1, we have

λ1∑

j=1

|Sj |+
a∑

ℓ=1

ℓ <
k(k − 1)

2
+

k−1∑

ℓ=1

ℓ = k(k − 1)

which contradicts to (22). Hence we proved that λ1 ≤ n.

Further, according to Algorithm 1, we have

Sλ1+1 = · · · = Sn = ∅. (23)

So in Case 1, we have

(|S1|, |S2|, · · ·, |Sn|) =

(δ1, · · · , δλa+1
, a, a−1 · · ·, t0+1, t0−1, · · ·, 2, 1,

n−λ1 zeros
︷ ︸︸ ︷

0, · · · , 0 )
(24)

where t0 ∈ {1, 2, · · · , a} and λ1 = λa+1 + a− 1; in Case 2,

we have

(|S1|, |S2|, · · ·, |Sn|) =

(δ1, · · · , δλa+1
, a, a−1 · · ·, 2, 1,

n−λ1 zeros
︷ ︸︸ ︷

0, · · · , 0 ) (25)

where λ1 = λa+1 + a− 1. In both cases, each Sj is a subset

of [k] and, as multisets, ⊔n
j=1Sj = ⊔λ1

j=1Sj = S.

In Example 1, we have a+1 = 5. From (13), we can obtain

λ6 = 2, λ5 = 3 and t0 = 3. So this example falls into Case 1

and λ1 = λa+1 + a− 1 = 6.

In Example 2, we have a+1 = 4. From (14), we can obtain

λ6 = 2, λ5 = 3, λ4 = 4 and t0 = 0. So this example falls

into Case 2 and λ1 = λa+1 + a = 7.

APPENDIX B

PROOF OF CLAIM 2

To prove Claim 2, we continue considering the two cases

discussed in Appendix A.

First, consider Case 1. We need to divide this case into the

following four subcases according to the value of r.

Case 1.1: r ≤ λa+1.

Then by (3), (10) and (24), we have

θ = δ − (|S1|, |S2|, · · · , |Sn|)

= (

λa+1 zeros
︷ ︸︸ ︷

0, · · · , 0 , 0, 1, · · · , a− t0 − 1, a− t0 + 1,

· · · , a− 2, a− 1, δλ1+1, · · · , δn)

where δλ1+1 = · · · = δn = a. That is,

θj =







0, 1 ≤ j ≤ λa+1;

ℓ− 1, j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0;

ℓ, j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1;

δj = a, λ1 + 1 ≤ j ≤ n.
(26)

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1 + 1, Tj = ∅;

• For j = λa+1 + ℓ and 2 ≤ ℓ ≤ a− t0,

Tj = {k−(ℓ−1)+1, k−(ℓ−1)+2, · · ·, k}

= {k−ℓ+2, k−ℓ+3, · · ·, k}; (27)

• For j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1,

Tj={k−(a−t0)+1, · · · , k, k−ℓ+1, · · · , k−(a−t0)}

={k−ℓ+1, k−ℓ+2, · · · , k} (28)



• Finally, Tλ1+1, Tλ1+2, · · ·, Tn are obtained by dividing

the sequence

k−(a−t0)+1, · · ·, k
︸ ︷︷ ︸

, k−a+1, · · ·, k
︸ ︷︷ ︸

, · · ·, 2, · · ·, k
︸ ︷︷ ︸

into n − λ1 segments of length a, and Tλ1+j is then

formed by the elements of the jth segment, 1≤j≤n−λ1.

Clearly, each Tj is a subset of [k]. Moreover, since

n∑

j=1

θj =

n∑

j=1

δj −
n∑

j=1

|Sj | =
k(k − 1)

2
= K

which is equal to the length of T . So Algorithm 2 always

divides T into T1, T2, · · · , Tn of size θ1, θ2, · · · , θn, respec-

tively. Hence, as multisets, we have ⊔n
j=1Tj = T .

Note that Tj = ∅ for 1 ≤ j ≤ λa+1 + 1, and Sj = ∅ for

λ1 +1 ≤ j ≤ n. So Sj ∩ Tj = ∅ for j ∈ {1, · · · , λa+1 +1}∪
{λ1 + 1, · · · , n}. Moreover, for λa+1 + 2 ≤ j ≤ λ1, by (17),

(18), (20), (27) and (28), we have

max(Sj) ≤ a− ℓ+ 1 < k − ℓ + 1 ≤ min(Tj).

So Sj ∩ Tj = ∅ for j ∈ {λa+1 + 2, · · · , λ1}. Hence, we have

Sj ∩ Tj = ∅ for all j ∈ [n].
Case 1.2: λa+1 < r ≤ λa+1 + a− t0.

Then r = λa+1 + t1, where 1 ≤ t1 ≤ a− t0, and

θj =







0, 1 ≤ j ≤ λa+1;

ℓ, j = λa+1 + ℓ and 1 ≤ ℓ ≤ t1;

ℓ− 1, j = λa+1 + ℓ and t1 + 1 ≤ ℓ ≤ a− t0;

ℓ, j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1;

δj = a, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1, Tj = ∅;
• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ t1,

Tj = {k−ℓ+1, k−ℓ+2, · · ·, k};

• For j = λa+1 + ℓ and t1 + 1 ≤ ℓ ≤ a− t0,

Tj={k−ℓ+1, k−ℓ+2, · · ·, k}\{k−l+t1+1};

• For j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1

Tj={k−ℓ+1, k−ℓ+2, · · ·, k};

• Finally, Tλ1+1, Tλ1+2, · · ·, Tn are obtained by dividing

the sequence

k−(a−t0 −t1)+1, · · ·, k
︸ ︷︷ ︸

, k−a+1, · · ·, k
︸ ︷︷ ︸

, · · ·, 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

Case 1.3: λa+1 + a− t0 < r ≤ λ1.

Then r = λa+1 + t2, where a− t0 + 1 ≤ t2 ≤ a− 1, and

θj =







0, 1 ≤ j ≤ λa+1;

ℓ, j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0;

ℓ+ 1, j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ t2;

ℓ, j = λa+1 + ℓ and t2 + 1 ≤ ℓ ≤ a− 1;

δj = a, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1, Tj = ∅;
• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0,

Tj = {k−ℓ+1, k−ℓ+2, · · ·, k};

• For j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ t2,

Tj={k−ℓ, k−ℓ+1, · · ·, k};

• For j = λa+1 + ℓ and t2 + 1 ≤ ℓ ≤ a− 1

Tj={k−ℓ, k−ℓ+1, · · ·, k}\{k−a+t0−ℓ+t2};

• Finally, Tλ1+1, Tλ1+2, · · ·, Tn are obtained by dividing

the sequence

k−2a+t0+t2+1, · · ·, k
︸ ︷︷ ︸

, k−a, · · ·, k
︸ ︷︷ ︸

, · · · , 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

Case 1.4: λ1 < r < n.

Then by (3), (10) and (24), we have

θj =







0, 1 ≤ j ≤ λa+1;

ℓ, j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0;

ℓ+ 1, j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1;

δj ≤ a+ 1, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1, Tj = ∅;
• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ a− t0,

Tj = {k−ℓ+1, k−ℓ+2, · · ·, k};

• For j = λa+1 + ℓ and a− t0 + 1 ≤ ℓ ≤ a− 1

Tj={k−ℓ, k−ℓ+1, · · ·, k};

• Finally, Tλ1+1, Tλ1+2, · · ·, Tn are obtained by dividing

the sequence

k−(a−t0), · · ·, k
︸ ︷︷ ︸

, k−a, · · ·, k
︸ ︷︷ ︸

, · · · , 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

For all of these subcases, similar to Case 1.1, it can be

verified that for each j ∈ [n], Tj is a subset of [k], Sj∩Tj = ∅
and, when viewed as multisets, we have ⊔n

j=1Tj = T .

Next, consider Case 2. We need to divide this case into the

following three subcases according to the value of r.

Case 2.1: r ≤ λa+1.

Then by (3), (10) and (25), we have

θj =







0, 1 ≤ j ≤ λa+1;

ℓ− 1, j = λa+1 + ℓ and 1 ≤ ℓ ≤ a;

δj = a, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1 + 1, Tj = ∅;



• For j = λa+1 + ℓ and 2 ≤ ℓ ≤ a,

Tj = {k−ℓ+2, k−ℓ+3, · · · , k};

• Finally, Tλ1+1, Tλ1+2, · · · , Tn are obtained by dividing

the sequence

k−a+1, · · ·, k
︸ ︷︷ ︸

, · · · , 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

Case 2.2: λa+1 < r ≤ λ1.

Then r = λa+1 + t1, where 1 ≤ t1 ≤ a and

θj =







0, 1 ≤ j ≤ λa+1;

ℓ, j = λa+1 + ℓ and 1 ≤ ℓ ≤ t1;

ℓ− 1, j = λa+1 + ℓ and t1 + 1 ≤ ℓ ≤ a;

δj = a, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1, Tj = ∅;
• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ t1,

Tj = {k−ℓ+1, k−ℓ+2, · · · , k};

• For j = λa+1 + ℓ and t1 + 1 ≤ ℓ ≤ a,

Tj = {k−ℓ+2, k−ℓ+3, · · · , k}\{k−ℓ+t1+1};

• Finally, Tλ1+1, Tλ1+2, · · · , Tn are obtained by dividing

the sequence

k−a+t1+1, · · ·, k
︸ ︷︷ ︸

, k−a+1, · · ·, k
︸ ︷︷ ︸

, · · · , 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

Case 2.3: λ1 < r < n.

Then by (3), (10) and (25), we have

θj =







0, 1 ≤ j ≤ λa+1;

ℓ, j = λa+1 + ℓ and 1 ≤ ℓ ≤ a;

δj ≤ a+ 1, λ1 + 1 ≤ j ≤ n.

According to Algorithm 2, we have

• For 1 ≤ j ≤ λa+1, Tj = ∅;
• For j = λa+1 + ℓ and 1 ≤ ℓ ≤ a,

Tj = {k−ℓ+1, k−ℓ+2, · · · , k};

• Finally, Tλ1+1, Tλ1+2, · · · , Tn are obtained by dividing

the sequence

k−a, · · ·, k
︸ ︷︷ ︸

, k−a−1, · · ·, k
︸ ︷︷ ︸

, · · · , 2, · · ·, k
︸ ︷︷ ︸

into n−λ1 segments of length a, and Tλ1+j is formed by

the elements of the jth segment, 1≤j≤n−λ1.

For all of these subcases, similar to Case 1.1, it can be

verified that for each j ∈ [n], Tj is a subset of [k], Sj∩Tj = ∅
and, when viewed as multisets, we have ⊔n

j=1Tj = T .

Combining all of the above discussions, we proved that

each Tj is a subset of [k], Sj ∩ Tj = ∅ and, when viewed

as multisets, ⊔n
j=1Tj = T .

APPENDIX C

PROOF OF CLAIM 3

We again consider all the cases and subcases discussed in

Appendices A and B.

We use the notations λ1 and λa+1 with the same meaning

as in Appendices A and B. We further define λj for all j ∈
{2, · · · , a} ∪ {a+ 2, · · · , k − 1} as follows.

For Case 1, let

λj =

{

λa+1 + a− j + 1, if t0 + 1 ≤ j ≤ a;

λa+1 + a− j, if 2 ≤ j ≤ t0.
(29)

And for Case 2, let

λj = λa+1 + a− j + 1, ∀ 2 ≤ j ≤ a. (30)

For each j ∈ {a+ 2, · · · , k − 1}, let λj ∈ [n] be such that

λj−1
∑

ℓ=1

δℓ <

k−1∑

ℓ=j

ℓ ≤

λj∑

ℓ=1

δℓ. (31)

Note that by (3) and (5), we have δj≤a+ 1≤k − 1 for each

j ∈ [n]. Then for each j ∈ {a + 2, · · · , k − 1}, it is easy to

see that λj is a uniquely determined value.

As an illustration, consider again Example 1. Note that k =
7 and a = 4, and in Appendix A, we have obtained λ5 = 3
and λ1 = 6. Now we can further obtain λ6 = 2, λ3 = λ4 = 4
and λ2 = 5. In general, for Case 1, by (29) and (31), we

always have

λk−1 < · · · < λt0−1 < λt0 = λt0+1 < · · · < λ1.

For Example 2, note that k = 7 and a = 3, and in Appendix

A, we have obtained λ4 = 4 and λ1 = 7. We can further obtain

λ6 = 2, λ5 = 3, λ3 = 5 and λ2 = 6. In general, for Case 2,

by (30) and (31), we always have

λk−1 < λk−2 < · · · < λ2 < λ1.

Now let X∗ = {(1, |S1|), (2, |S2|), · · · , (λ1, |Sλ1
|)} and

suppose X∗ is represented as X∗ = X∗
1 ⊔ X∗

2 ⊔ · · · ⊔ X∗
k

for some σ∗ ∈ Sk and some (X∗
1 , X

∗
2 , · · · , X

∗
k) ∈ Xσ∗ . Then

for all subcases as discussed in the proof of Claim 2, it is a

mechanical (but somewhat tedious) work to check, just as in

Example 1, that

X∗
k = ∅

and

X∗
i = Zi ∩ {1, 2, · · · , λi}, ∀i ∈ {1, 2, · · · , k − 1}.

Hence, σ∗ : i 7→ k− i+1, ∀i ∈ [k], is the unique permutation

in Sk and (X∗
1 , X

∗
2 , · · · , X

∗
k) is the unique choice in Xσ∗ .
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