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Information Bottleneck on General Alphabets

Georg Pichler, Günther Koliander

Abstract—We prove rigorously a source coding theorem

that can probably be considered folklore, a generalization

to arbitrary alphabets of a problem motivated by the Infor-
mation Bottleneck method. For general random variables

(Y, X), we show essentially that for some n ∈ N, a function f
with rate limit log|f | ≤ nR and I(Y

n; f(Xn)) ≥ nS exists if and
only if there is a random variable U such that the Markov

chain Y ◦−− X ◦−− U holds, I(U; X) ≤ R and I(U; Y) ≥ S. The proof

relies on the well established discrete case and showcases a

technique for lifting discrete coding theorems to arbitrary
alphabets.

I. Introduction

Since its inception [1], the Information Bottleneck (IB)
method became a widely applied tool, especially in the context
of machine learning problems. It has been successfully applied
to various problems in machine learning [2], computer vision [3],
and communications [5], [6], [7]. Furthermore, it is a valuable
tool for channel output compression in a communication system
[8], [9].

In the underlying information-theoretic problem, we define a
pair (S, R) ∈ R

2 to be achievable for the two arbitrary random
sources (Y, X), if there exists a function f with rate limited
range 1

n
log|f | ≤ R and I(Y; f(X)) ≥ nS, where (Y, X) are n

independent and identically distributed (i.i.d.) copies of (Y, X).
While this Shannon-theoretic problem and variants thereof

were also considered (e. g., [10], [11]), a large part of the
literature is aimed at studying the IB function

SIB(R) = sup
U : I(U;X)≤R
Y ◦−−X ◦−−U

I(U; Y) (1)

in different contexts. In particular, several works (e. g., [1], [2],
[12], [13], [14]) intend to compute a probability distribution
that achieves the supremum in (1). The resulting distribution
is then used as a building block in numerical algorithms, e. g.,
for document clustering [2] or dimensionality reduction [12].

In the discrete case, SIB(R) is equal to the maximum of all
S such that (S, R) is in the achievable region (closure of the
set of all achievable pairs). This statement has been re-proven
many times in different contexts [15], [11], [16], [17]. In this
note, we prove a theorem, which can probably be considered
folklore, extending this result from discrete to arbitrary random
variables. Formally speaking, using the definitions in [18], we
prove that a pair (S, R) is in the achievable region of an
arbitrary source (Y, X) if and only if, for every ε > 0, there
exists a random variable U with Y ◦−− X ◦−− U, I(X; U) ≤ R + ε,
and I(Y; U) ≥ S − ε. This provides a single-letter solution to
the information-theoretic problem behind the information bot-
tleneck method for arbitrary random sources and in particular
it shows, that the information bottleneck for Gaussian random
variables [12] is indeed the solution to a Shannon-theoretic
problem.
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The proof relies on the discrete case. Thus, the techniques
employed could be useful for lifting other discrete coding theo-
rems to the case of arbitrary alphabets.

II. Main Result

Let Y and X be random variables with arbitrary alphabets
SY and SX, respectively. The bold-faced random vectors Y and
X are n i.i.d. copies of Y and X, respectively. We then have the
following definitions.

Definition 1. A pair (S, R) ∈ R
2 is achievable if for some

n ∈ N there exists a measurable function f : Sn
X → M for some

finite set M with bounded cardinality 1
n

log|M| ≤ R and

1

n
I
(
Y; f(X)

)
≥ S. (2)

The set of all achievable pairs is denoted R ⊆ R
2.

Definition 2. A pair (S, R) ∈ R
2 is IB-achievable if there

exists an additional random variable U with arbitrary alphabet
SU, satisfying Y ◦−− X ◦−− U and

R ≥ I(X; U), (3)

S ≤ I(Y; U). (4)

The set of all IB-achievable pairs is denoted RIB ⊆ R
2.

In what follows, we will prove the following theorem.

Theorem 3. The equality RIB = R holds.

III. Preliminaries

When introducing a function, we implicitly assume it to be
measurable w.r.t. the appropriate σ-algebras. The σ-algebra
associated with a finite set is its power set and the σ-algebra
associated with R is the Borel σ-algebra. The symbol ∅ is used
for the empty set and for a constant random variable. When
there is no possibility for confusion, we will not distinguish
between a single-element set and its element, e. g., we write
x instead of {x} and 1x for the indicator function of {x}. We
use A △ B := (A \ B) ∪ (B \ A) to denote the symmetric set
difference.

Let (Ω, Σ, µ) be a probability space. A random variable
X : Ω → SX takes values in the measurable space (SX, AX). The
push-forward probability measure µX : AX → [0, 1] is defined by
µX(A) = µ

(
X

−1(A)
)

for all A ∈ AX. We will state most results
in terms of push-forward measures and usually ignore the
background probability space. When multiple random variables
are defined, we implicitly assume the push-forward measures to
be consistent in the sense that, e. g., µX(A) = µXY(A × SY) for
all A ∈ AX.

For n ∈ N let Ωn denote the n-fold Cartesian product
of (Ω, Σ, µ). A bold-faced random vector, e. g., X, defined on
Ωn, is an n-fold copy of X, i. e., X = X

n. Accordingly, the
corresponding push-forward measure, e. g., µX is the n-fold
product measure.

For a random variable X let aX, bX, and cX denote arbitrary
functions on SX, each with finite range. We will use the symbol
MX to denote the range of aX, i. e., aX : SX → MX.
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Definition 4 ([19, Def. 8.11]). The conditional expectation of
a random variable X with SX = R, given a random variable Y,
is a random variable E[X|Y] such that

1) E[X|Y] is σ(Y)-measurable, and

2) for all A ∈ σ(Y), we have E

[
1AE[X|Y]

]
= E[1AX] .

The conditional probability of an event B ∈ Σ given Y is defined
as P{B|Y} := E[1B|Y].

The conditional expectation and therefore also the conditional
probability exists and is unique up to equality almost surely by
[19, Thm. 8.12]. Furthermore, if (SX, AX) is a standard space
[18, Sec. 1.5], there even exists a regular conditional distribution
of X given Y [19, Thm. 8.37].

Definition 5. For two random variables X and Y a regular
conditional distribution of X given Y is a function κX|Y : Ω ×
AX → [0, 1] such that

1) for every ω ∈ Ω, the set function κX|Y(ω) := κX|Y(ω; · ) is
a probability measure on (SX, AX).

2) for every set A ∈ AX, the function κX|Y( · ; A) is σ(Y)-
measurable.

3) for µ-a. e. ω ∈ Ω and all A ∈ AX, we have κX|Y(ω; A) =
P

{
X

−1(A)
∣∣Y

}
(ω) (cf. Def. 4).

Note, in particular, that finite spaces are standard spaces.

Remark 1. If the random variable Y is discrete, then κX|Y

reduces to conditioning given events Y = y for y ∈ SY, i. e.,
κX|Y(ω; A) = µXY(A×Y(ω))

µY(Y(ω))
(cf. [19, Lem. 8.10]).

We use the following definitions and results from [18], [19].

Definition 6. For random variables X and Y with |SX| < ∞
the conditional entropy is defined as [18, Sec. 5.5]

H(X|Y) :=

∫
H

(
κX|Y

)
dµ, (5)

where H( · ) denotes discrete entropy on SX. For arbitrary ran-
dom variables X, Y, and Z the conditional mutual information
is defined as [18, Lem. 5.5.7]

I(X; Y|Z) := sup
aX,aY

∫
D

(
κaX(X)aY(Y)|Z

∥∥κaX(X)|Z × κaY(Y)|Z

)
dµ

(6)

= sup
aX,aY

[
H(aX(X)|Z) + H(aY(Y)|Z) − H(aX(X)aY(Y)|Z)

]
, (7)

where D( · ‖ · ) denotes Kullback-Leibler divergence [18, Sec. 2.3]
and the supremum is taken over all aX and aY with finite range.
The mutual information is given by [18, Lem. 5.5.1] I(X; Y) :=
I(X; Y|∅).

Definition 7 ([19, Def. 12.20]). For arbitrary random variables
X, Y, and Z, the Markov chain X ◦−− Y ◦−− Z holds if, for any
A ∈ AX, B ∈ AZ, the following holds µ-a. e.:

P
{

X
−1(A) ∩ Z

−1(B)
∣∣Y

}
= P

{
X

−1(A)
∣∣Y

}
P

{
Z

−1(B)
∣∣Y

}
. (8)

In the following, we collect some properties of these definitions.

Lemma 8. For random variables X, Y, and Z the following
properties hold:

(i) I(X; Y|Z) ≥ 0 with equality if and only if X ◦−− Z ◦−− Y.

(ii) For discrete X, i. e., |SX| < ∞, we have I(X; Y) = H(X) −
H(X|Y).

(iii) I(X; YZ) = I(X; Z) + I(X; Y|Z).

(iv) If X ◦−− Y ◦−− Z, then I(X; Y) ≥ I(X; Z).

Proof. (i): The claim I(X; Y|Z) ≥ 0 follows directly from (6)
and the non-negativity of divergence.

Assume that X ◦−− Z ◦−− Y, i. e., P
{

X
−1(A) ∩ Y

−1(B)
∣∣Z

}
=

P
{

X
−1(A)

∣∣Z
}

P
{

Y
−1(B)

∣∣Z
}

almost everywhere. Let aX : SX →
MX and aY : SY → MY be functions with finite range. Pick two
arbitrary sets A ⊆ MX, B ⊆ MY and we obtain µ-a. e.

κaX(X)aY(Y)|Z( · ; A × B)

= P
{

X
−1(a−1

X
(A)) ∩ Y

−1(a−1
Y

(B))
∣∣Z

}
(9)

= P
{

X
−1(a−1

X
(A))

∣∣Z
}

P
{

Y
−1(a−1

Y
(B))

∣∣Z
}

(10)

= κaX(X)|Z( · ; A)κaY(Y)|Z( · ; B), (11)

where (9) and (11) follow from part 3 of Def. 5. This proves
that µ-a. e. the equality of measures κaX(X)aY(Y)|Z = κaX(X)|Z ×
κaY(Y)|Z holds. By the properties of Kullback-Leibler divergence
[18, Thm. 2.3.1] we have I(X; Y|Z) = 0 due to (6).

On the other hand, assume I(X; Y|Z) = 0 and choose ar-
bitrary sets A ∈ AX and B ∈ AY. We define aX := 1A,
aY := 1B, X̂ := aX(X), and Ŷ := aY(Y). By (6) we have
D

(
κ

X̂Ŷ|Z(ω)
∥∥κ

X̂|Z(ω) × κ
Ŷ|Z(ω)

)
= 0 for µ-a. e. ω ∈ Ω, which

is equivalent to the equality µ-a. e. of the measures κ
X̂Ŷ|Z =

κ
X̂|Z × κ

Ŷ|Z. We obtain µ-a. e.,

P
{

X
−1(A) ∩ Y

−1(B)
∣∣Z

}
= κ

X̂Ŷ|Z( · ; 1 × 1) (12)

= κ
X̂|Z( · ; 1)κ

Ŷ|Z( · ; 1) (13)

= P
{

X
−1(A)

∣∣Z
}

P
{

Y
−1(B)

∣∣Z
}

. (14)

(ii): See [18, Lem. 5.5.6].
(iii): See [18, Lem. 5.5.7].
(iv): Using Prop. (i) we have I(X; Z|Y) = 0 and by Prop. (iii) it
follows that

I(X; Z) ≤ I(X; YZ) (15)

= I(X; Y) + I(X; Z|Y) = I(X; Y).

Occasionally we will interpret a probability measure on a
finite space M as a vector in [0, 1]M, equipped with the Borel
σ-algebra. We will use the L∞-distance on this space.

Definition 9. For two probability measures µ and ν on a finite
space M, their distance is defined as the L∞-distance d(µ, ν) :=
maxm∈M |µ(m)−ν(m)|. The diameter of A ⊆ [0, 1]M is defined
as diam(A) = supµ,ν∈A d(µ, ν).

Lemma 10 ([20, Lem. 2.7]). For two probability measures µ

and ν on a finite space M with d(µ, ν) ≤ ε ≤ 1
2

the inequality
|H(µ) − H(ν)| ≤ −ε|M| log ε holds.

IV. Proof of RIB ⊆ R

For finite spaces SY, SX, and SU, the statement RIB ⊆ R is
well known, cf., [10, Sec. IV], [11, Sec. III.F]. We restate it in
the form of the following lemma.

Lemma 11. For random variables Y, X, and U with finite SY,
SX, and SU, assume that Y ◦−− X ◦−− U holds. Then, for any
ε > 0, there exists n ∈ N and a function f : Sn

X → M with
1
n

log|M| ≤ I(X; U) + ε such that 1
n

I
(
Y; f(X)

)
≥ I(Y; U) − ε.

In a first step, we will utilize Lem. 11 to show RIB ⊆ R for
an arbitrary alphabet SX, i. e., we wish to prove the following
Proposition 12, lifting the restriction |SX| < ∞.

Proposition 12. For random variables Y, X, and U with finite
SY and SU, assume that Y ◦−− X ◦−− U holds. Then, for any



Y ◦−− X U

X̂ Ũ

g( · ) ≈

(a) RIB ⊆ R.

ZY ◦−− X f(X)

X̂ g(X̂)

an
X( · )

g( · )

≈

(b) R ⊆ RIB.

Fig. 1: Illustrations.

ε > 0, there exists n ∈ N and a function f : Sn
X → M with

1
n

log|M| ≤ I(X; U) + ε such that

1

n
I
(
Y; f(X)

)
≥ I(Y; U) − ε. (16)

Remark 2. Considering that both definitions of achievability
(Defs. 1 and 2) only rely on the notion of mutual information,
one may assume that Def. 6 can be used to directly infer
Proposition 12 from Lem. 11. However, this is not the case. For
an arbitrary discretization aX(X) of X, we do have I(aX(X); U) ≤
I(X; U). However, the Markov chain Y ◦−− aX(X) ◦−− U does
not hold in general. To circumvent this problem, we will use
a discrete random variable X̂ = g(X) with an appropriate

quantizer g and construct a new random variable Ũ, satisfying
the Markov chain Y ◦−− X̂ ◦−− Ũ such that I(Y; Ũ) is close
to I(Y; U). Fig. 1a illustrates this strategy. We choose the
quantizer g based on the conditional probability distribution of
U given X, i. e., quantization based on κU|X using L∞-distance
(cf. Def. 9). Subsequently, we will use that, by Lem. 10, a small
L∞-distance guarantees a small gap in terms of information
measures.

Proof of Proposition 12. Let µYXU be a probability measure on
Ω := SY ×SX ×SU, such that Y ◦−− X ◦−− U holds. Fix 0 < δ ≤ 1

2

and find a finite, measurable partition (Pi)i∈I of the space of
probability measures on SU such that for every i ∈ I we have
diam(Pi) ≤ δ and fix some νi ∈ Pi for every i ∈ I. Define
the random variable X̂ : Ω → I as X̂ = i if κU|X ∈ Pi. The

random variable X̂ is σ(X)-measurable (see Appendix A). We
can therefore find a measurable function g such that X̂ = g(X)
by the factorization lemma [19, Corollary 1.97]. Define the new
probability space Ω ××i∈I

SU, equipped with the probability
measure µ

YXUŨI

:= µYXU ××i∈I νi. Slightly abusing notation,

we define the random variables Y, X, U, and Ũi (for every i ∈ I)
as the according projections. We also use X̂ = g(X) and define

the random variable Ũ = Ũ
X̂
. From this construction we have

µ
YXUŨI

-a. e. the equality of measures κ
Ũ|X̂

= κ
Ũ|X

= ν
X̂
, as well

as Y ◦−− X̂ ◦−− Ũ and Y ◦−− X ◦−− Ũ (see Appendix B). Therefore,
we have µ

YXUŨI

-a. e.

d(κ
Ũ|X̂

, κU|X) ≤ δ, and d(κ
Ũ|X

, κU|X) ≤ δ, (17)

by κ
Ũ|X̂

= κ
Ũ|X

= ν
X̂

and κU|X, ν
X̂

∈ P
X̂
. Thus, for any u ∈ SU,

µU(u) =

∫
κU|X( · ; u) dµYXU (18)

≤

∫
(κ

Ũ|X
( · ; u) + δ) dµ

YXUŨI

= µ
Ũ
(u) + δ (19)

and, by the same argument, µU(u) ≥ µ
Ũ
(u) − δ, i. e., in total,

d(µU, µ
Ũ
) ≤ δ. (20)

Thus, we obtain

I(X; U) = H(µU) − H(U|X) (21)

(20)
≥ H

(
µ

Ũ

)
+ δ|SU| log δ −

∫
H

(
κU|X

)
dµYXU (22)

(17)
≥ H

(
µ

Ũ

)
+ 2δ|SU| log δ −

∫
H

(
κ

Ũ|X̂

)
dµ

YXUŨI

(23)

= I(X̂; Ũ) + 2δ|SU| log δ, (24)

where (21) and (24) follow from Prop. (ii) of Lem. 8, and in both
(22) and (23) we used Lem. 10. From Y ◦−− X ◦−− U and Prop. (i)
of Lem. 8, we know that µYXU-a. e., we have the equality of
measures κYU|X = κY|X × κU|X. Using this equality in (26) we
obtain

µYU(y × u) =

∫
κYU|X( · ; y × u) dµYXU (25)

=

∫
κY|X( · ; y)κU|X( · ; u) dµYXU (26)

(17)

≤

∫
κY|X( · ; y)(κ

Ũ|X
( · ; u) + δ) dµ

YXUŨI

(27)

≤

∫
κ

YŨ|X
( · ; y × u) dµ

YXUŨI

+ δ (28)

= µ
YŨ

(y × u) + δ, (29)

where (25) and (29) follow from the defining property of
conditional probability, part 2 of Def. 4, and (28) follows from

Y ◦−− X ◦−− Ũ and Prop. (i) of Lem. 8. By the same argument,
one can show that µYU(y × u) ≥ µ

YŨ
(y × u) − δ. Therefore, in

total, d(µYU, µ
YŨ

) ≤ δ and, by Lem. 10,

|H(YU) − H(YŨ)| ≤ −δ|SY||SU| log δ. (30)

Thus, the mutual information can be bounded by

I(Y; U) = H(Y) + H(U) − H(YU) (31)
(20)
≤ H(Y) + H(Ũ) − δ|SU| log δ − H(YU) (32)

(30)
≤ I(Y; Ũ) − δ(|SY| + 1)|SU| log δ (33)

≤ I(Y; Ũ) − 2δ|SY||SU| log δ, (34)

where we applied Lem. 10 in (32) and (33). We apply Lem. 11

to the three random variables Y, X̂, and Ũ and obtain a function
f̂ : In → M with 1

n
I
(
Y; f̂(X̂)

)
≥ I(Y; Ũ) − δ and

1

n
log|M| ≤ I(X̂; Ũ) + δ

(24)
≤ I(X; U) + δ − 2δ|SU| log δ. (35)

We have X̂ = gn ◦ X and defining f := f̂ ◦ gn, we obtain

1

n
I(Y; f(X)) =

1

n
I(Y; f̂(X̂)) ≥ I(Y; Ũ) − δ (36)

(34)
≥ I(Y; U) + 2δ|SY||SU| log δ − δ. (37)

Choosing δ such that ε ≥ −2δ|SY||SU| log δ + δ completes the
proof.

We can now complete the proof by showing the following
lemma.

Lemma 13. RIB ⊆ R.

Proof. Assuming (S, R) ∈ RIB, choose µYXU according to Def. 2.
Clearly I(X; U) < ∞ to satisfy (3) and thus also I(Y; U) < ∞ by
Prop. (iv) of Lem. 8 as Y ◦−− X ◦−− U holds. Pick ε > 0, select



functions aX, aU such that I
(
aX(X); aU(U)

)
≥ I(X; U) − ε, and

select functions bY, bU such that I
(
bY(Y); bU(U)

)
≥ I(Y; U) − ε

(cf. (7)). Using Û :=
(
aU(U), bU(U)

)
and Ŷ := bY(Y), we have

0 = I(Y; U|X) = sup
cY,cU

I(cY(Y); cU(U)|X) ≥ I(Ŷ; Û|X) ≥ 0 (38)

as well as

I(X; U) = sup
cX,cU

I
(
cX(X); cU(U)

)
(39)

≥ sup
cX

I(cX(X); Û) = I(X; Û), and (40)

I(Y; U) − ε ≤ I
(
bY(Y); bU(U)

)
≤ I(Ŷ; Û). (41)

We apply Proposition 12, substituting Û → U and Ŷ → Y.
Proposition 12 guarantees the existence of a function f : Sn

X →

M with 1
n

log|M| ≤ I(X; Û) + ε
(40)
≤ I(X; U) + ε

(3)
≤ R + ε and

1

n
I(Y; f(X)) =

1

n
sup
cY

I(cY ◦ Y; f(X)) (42)

≥
1

n
I(bn

Y ◦ Y; f(X)) =
1

n
I(Ŷ; f(X)) (43)

(16)

≥ I(Ŷ; Û) − ε
(41)

≥ I(Y; U) − 2ε
(4)

≥ S − 2ε. (44)

Thus, (S − 2ε, R − ε) ∈ R and therefore (S, R) ∈ R.

V. Proof of R ⊆ RIB

We start with the well-known result RIB ⊆ R for finite spaces
SY, SX, and SU, cf., [10, Sec. IV], [11, Sec. III.F]. The statement
is rephrased in the following lemma.

Lemma 14. Assume that the spaces SY and SX are both finite
and µYX is fixed. For some n ∈ N, let f : Sn

X → M be a function
with |M| < ∞. Then there exists a probability measure µYXU,
extending µYX, such that SU is finite, Y ◦−− X ◦−− U, and

I(X; U) ≤
1

n
log|M|, (45)

I(Y; U) ≥
1

n
I(Y; f(X)). (46)

We can slightly strengthen Lem. 14.

Corollary 15. Assume that, in the setting of Lem. 14, we are
given µZYX on SZ×SY ×SX, extending µYX, where SZ is arbitrary,
not necessarily finite. Then there exists a probability measure
µZYXU, extending µZYX, such that SU is finite and ZY ◦−− X ◦−− U,
(45), and (46) hold.

Proof. Apply Lem. 14 to obtain µYXU on SY ×SX ×SU satisfying
(45), (46), and Y ◦−− X ◦−− U. We define µZYXU by

µZYXU(A × y × x × u) =
µZYX(A × y × x)

µYX(y × x)
µYXU(y × x × u)

(47)

for any (y, x, u) ∈ SY × SX × SU and A ∈ AZ. Pick arbitrary
A ∈ AZ, y ∈ SY, and u ∈ SU. The Markov chain ZY ◦−− X ◦−− U

now follows as the events Z
−1(A) ∩ Y

−1(y) and U
−1(u) are

independent given X
−1(x) for any x ∈ SX (cf. Rmk. 1).

Again, we proceed by extending Cor. 15, lifting the restric-
tion that SX is finite and obtain the following proposition.

Proposition 16. Given a probability measure µZYX as in
Cor. 15, assume that |SY| < ∞. For some n ∈ N, let f : Sn

X → M
be a function with |M| < ∞. Then, for any ε > 0, there exists a

probability measure µZYXU, extending µZYX with ZY ◦−− X ◦−− U

and

I(X; U) ≤
1

n
log|M| (48)

I(Y; U) ≥
1

n
I
(
Y; f(X)

)
− ε. (49)

Remark 3. In contrast to Proposition 12, Proposition 16 could
be proved by the usual single-letterization + time-sharing
strategy, by showing that the necessary Markov chains hold.
However, we will rely on the discrete case (Lem. 14) and
showcase a technique to lift it to general alphabets.

Remark 4. In the proof of Proposition 16, we face a similar
problem as outlined in Rmk. 2. We need to construct a function
g(X̂) of a “per-letter” quantization X̂ := an

X(X), that is close to
f(X) in distribution. Fig. 1b provides a sketch.

Proof of Proposition 16. We can partition Sn
X =

⋃
m∈M

Qm

into finitely many measurable, mutually disjoint sets Qm :=
f−1(m), m ∈ M. We want to approximate the sets Qm

by a finite union of rectangles in the semiring [19, Def. 1.9]
Ξ :=

{
B : B =×

n

i=1 Bi with Bi ∈ AX

}
. We choose δ > 0,

which will be specified later. According to [19, Thm. 1.65(ii)],

we obtain B(m) :=
⋃K

k=1
B

(m)
k for each m ∈ M, where B

(m)
k ∈ Ξ

are mutually disjoint sets, satisfying µX(B(m)
△ Qm) ≤ δ. Since

B
(m)
k ∈ Ξ, we have B

(m)
k =×

n

i=1
B

(m)
k,i for some B

(m)
k,i ∈ AX. We

can construct functions aX and g such that g ◦ an
X(x) = m

whenever x ∈ B(m) and x 6∈ B( 6m) with B( 6m) :=
⋃

m′ 6=m
B(m′).

Indeed, we obtain aX by finding a measurable partition of SX

that is finer than (B
(m)
k,i , (B

(m)
k,i )c) for all i, k, m. For fixed

m ∈ M,

Qm ⊆ Qm ∪
(
B(m) \ B( 6m)

)
(50)

⊆
(
B(m) \ B( 6m)

)
∪

(
Qm \ B(m)

)
∪

⋃

m′ 6=m

Qm ∩ B(m′) (51)

⊆
(
B(m) \ B( 6m)

)
∪

(
Qm △ B(m)

)
∪

⋃

m′ 6=m

B(m′) \ Qm′ (52)

⊆
(
B(m) \ B( 6m)

)
∪

⋃

m′

B(m′)
△ Qm′ , (53)

where we used the fact that Qm ∩ Qm′ = ∅ for m 6= m′ in (52).
Using X̂ := aX(X), we obtain for any y ∈ Sn

Y

µYf(X)(y × m) = µYX(y × Qm) (54)

(53)

≤ µYX

(
y × (B(m) \ B( 6m))

)
+

∑

m′

µX(B(m′)
△ Qm′ ) (55)

≤ µ
Yg(X̂)(y × m) + |M|δ. (56)

On the other hand, we have

µYf(X)(y × m) = µY(y) −
∑

m′ 6=m

µYf(X)(y × m
′) (57)

(56)
≥ µY(y) −

∑

m′ 6=m

(
µ

Yg(X̂)(y × m
′) + |M|δ

)
(58)

≥ µ
Yg(X̂)(y × m) − |M|2δ. (59)

We thus obtain d(µYf(X), µ
Yg(X̂)) ≤ |M|2δ. This also implies

d(µf(X), µg(X̂)) ≤ |SY|n|M|2δ. Assume |SY|n|M|2δ ≤ 1
2

and

apply Cor. 15 substituting X̂ → X, XZ → Z, and the function



g → f . This yields a random variable U with XZY ◦−− X̂ ◦−− U,

I(X̂; U) ≤
1

n
log|M|, and I(Y; U) ≥

1

n
I
(
Y; g(X̂)

)
. (60)

We also obtain ZY ◦−− X ◦−− U due to

0 = I(XZY; U|X̂) (61)

= I(XZY; U) − I(U; X̂) (62)

≥ I(XZY; U) − I(U; X) (63)

= I(ZY; U|X) (64)

≥ 0, (65)

where (61) follows from XZY ◦−− X̂ ◦−− U using Prop. (i)
of Lem. 8, (62) and (64) follow from Prop. (iii) of Lem. 8, (63)
is a consequence of Def. 6, and we used Prop. (i) of Lem. 8 in
(65). This also immediately implies 0 = I(X; U|X̂) and hence

1

n
log|M|

(60)

≥ I(X̂; U) = I(X̂; U) + I(X; U|X̂) (66)

= I(XX̂; U) = I(X; U), (67)

where we used Prop. (iii) of Lem. 8 in (67). We also have

I(Y; U)
(60)
≥

1

n
I
(
Y; g(X̂)

)
(68)

=
1

n

(
H(Y) + H(g(X̂)) − H(Yg(X̂))

)
(69)

≥
1

n
I
(
Y; f(X)

)
+

1

n
|SY|n|M|3δ log(|M|2δ)

+
1

n
|SY|n|M|3δ log(|SY|n|M|2δ) (70)

≥
1

n
I
(
Y; f(X)

)
+

2

n
|SY|n|M|3δ log(|M|2δ) (71)

where we used Lem. 10 in (70). Select δ such that ε ≥
− 2

n
|SY|n|M|3δ log(|M|2δ).

We can now finish the proof by showing the following lemma.

Lemma 17. R ⊆ RIB.

Proof. Assume (S, R) ∈ R and choose n ∈ N and f , satisfying
1
n

log|M| ≤ R and (2). Choose any ε > 0 and find aY such that

I
(
a

n
Y(Y); f(X)

)
≥ I

(
Y; f(X)

)
− ε

(2)
≥ nS − ε. (72)

This is possible by applying [18, Lem. 5.2.2] with the algebra
that is generated by the rectangles (cf. the paragraph above [18,
Lem. 5.5.1]). We apply Proposition 16, substituting aY(Y) → Y

and Y → Z. For arbitrary ε > 0, Proposition 16 provides U with
YaY(Y) ◦−− X ◦−− U (i. e., Y ◦−− X ◦−− U) and

I(X; U) ≤
1

n
log|M| ≤ R (73)

I(Y; U) ≥ I(aY(Y); U) (74)

(49)

≥
1

n
I
(
a

n
Y(Y); f(X)

)
− ε

(72)

≥ S − 2ε. (75)

Hence, (S − 2ε, R) ∈ RIB and consequently (S, R) ∈ RIB.

Appendix

A. X̂ is σ(X)-measurable

For u ∈ SU consider the σ(X)-measurable function hu :=
κU|X( · ; u) on [0, 1]. We obtain the vector valued function h :=

(hu)u∈SU
on [0, 1]|SU|. This function h is σ(X)-measurable as

every component is σ(X)-measurable. Thus, we have X̂
−1(i) =

h−1(Pi) ∈ σ(X).

B. Distribution of Ũ and Conditional Independence

We will first show that µ
YXUŨI

-a. e.

κ
Ũ|X̂

= κ
Ũ|X

= ν
X̂
. (76)

Clearly, ν
X̂

is a probability measure everywhere. Fixing u ∈ SU,
we need that ν

X̂
(u) is σ(X̂)-measurable, which is shown by the

factorization lemma [19, Corollary 1.97], when writing ν
X̂
(u) =

ν(·)(u) ◦ X̂. Also, this proves σ(X)-measurability as X̂ is σ(X)-

measurable, i. e., σ(X̂) ⊆ σ(X). It remains to show the defining
property of conditional probability, part 2 of Def. 4. Choosing
B ∈ σ(X) and u ∈ SU, we need to show that

E[1Bν
X̂
(u)] = E

[
1B1{u}(Ũ)

]
. (77)

The statement for B ∈ σ(X̂) then follows by σ(X̂) ⊆ σ(X), i. e.,
the σ(X)-measurability of X̂. We prove (77) by

E[1Bν
X̂
(u)] =

∑

i∈I

E

[
1i(X̂)1Bνi(u)

]
(78)

=
∑

i∈I

νi(u)E
[
1i(X̂)1B

]
(79)

=
∑

i∈I

E

[
1u(Ũi)

]
E

[
1i(X̂)1B

]
(80)

=
∑

i∈I

E

[
1i(X̂)1B1u(Ũi)

]
(81)

=
∑

i∈I

E

[
1i(X̂)1B1u(Ũ)

]
(82)

= E

[
1B1u(Ũ)

]
, (83)

where we used Fubini’s theorem [19, Thm. 14.16] in (81).

To prove I(Y; Ũ|X) = 0, we need to show that for every y ∈
SY, u ∈ SU, and B ∈ σ(X), we have

∫
1BκY|X( · ; y)ν

X̂
(u) dµYXU =

∫
1B1u(Ũ)1y(Y) dµ

YXUŨI

(84)

and by integrating, we indeed obtain
∫

1BκY|X( · ; y)ν
X̂
(u) dµYXU (85)

=
∑

i∈I

∫
1B1i(X̂)κY|X( · ; y)νi(u) dµYXU (86)

=
∑

i∈I

νi(u)

∫
1B1i(X̂)κY|X( · ; y) dµYXU (87)

=
∑

i∈I

∫
1u(Ũi) dµ

ŨI

∫
1B1i(X̂)1y(Y) dµYXU (88)

=
∑

i∈I

∫
1B1u(Ũi)1i(X̂)1y(Y) dµ

YXUŨI

(89)

=
∑

i∈I

∫
1B1u(Ũ)1i(X̂)1y(Y) dµ

YXUŨI

(90)

=

∫
1B1u(Ũ)1y(Y) dµ

YXUŨI

, (91)



where we used part 2 of Def. 4 in (88) and Fubini’s theorem
[19, Thm. 14.16] in (89). By replacing κY|X with κ

Y|X̂ and using

B ∈ σ(X̂), the same argument can be used to show I(Y; Ũ|X̂) =
0.
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