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Abstract—This paper is concerned with a rate-distortion theory
for sequences of i.i.d. random variables with general distribu-
tion supported on general sets including manifolds and fractal
sets. Manifold structures are prevalent in data science, e.g., in
compressed sensing, machine learning, image processing, and
handwritten digit recognition. Fractal sets find application in
image compression and in modeling of Ethernet traffic. We derive
a lower bound on the (single-letter) rate-distortion function that
applies to random variables X of general distribution µX and
for continuous X reduces to the classical Shannon lower bound.
Moreover, our lower bound is explicit up to a parameter obtained
by solving a convex optimization problem in a nonnegative real
variable. The only requirement for the bound to apply is the
existence of a σ-finite reference measure µ for X (i.e., a measure
µ with µX ≪ µ and such that the generalized entropy hµ(X) is
finite) satisfying a certain subregularity condition. This condition
is very general and prevents the reference measure µ from being
highly concentrated on balls of small radii. To illustrate the wide
applicability of our result, we evaluate the lower bound for a
random variable distributed uniformly on a manifold, namely,
the unit circle, and a random variable distributed uniformly on
a self-similar set, namely, the middle third Cantor set.

I. INTRODUCTION AND MATHEMATICAL SETUP

This paper is concerned with a rate-distortion (R-D) theory

for sequences of i.i.d. random variables with general dis-

tribution supported on general sets including manifolds and

fractal sets. Manifold structures are prevalent in data science,

e.g., in compressed sensing [1]–[5], machine learning [6],

image processing [7], [8], and handwritten digit recognition

[9]. Fractal sets find application in image compression and in

modeling of Ethernet traffic [10].

R-D theory [11]–[14] is concerned with the characterization

of ultimate limits on the discretization of sequences of random

variables. Specifically, let (X ,X ) and (Y,Y ) be measurable

spaces equipped with a measurable function ρ : X × Y →
[0,∞], henceforth called distortion function, and let (Xi)i∈N

be a sequence of random variables with the Xi distributed on

X . For every l ∈ N, one considers all measurable mappings

gl : X l → Y l with |gl(X l)| < ∞, referred to as source codes

of length l. A pair (R,D) of nonnegative real numbers is said

to be achievable if, for sufficiently large l ∈ N, there exists a

source code gl of length l with |gl(X
l)| ≤ ⌊elR⌋ and expected

average distortion

E

[

1

l

l
∑

i=1

ρ(Xi, (gl(X1, . . . , Xl))i)

]

≤ D.

Suppose that (X ,X ) and (Y,Y ) are standard spaces (cf. [15,

Section 1.4]) and consider a sequence (Xi)i∈N of i.i.d. random

variables that are distributed on X . The (single-letter) R-D

function is defined as

R(D) := inf
Y : E[ρ(X,Y )]≤D

I(X,Y ), (1)

where Y is distributed on (Y,Y ), X = X1, and I(·, ·)
denotes mutual information. If there exists a y∗ ∈ Y with

E[ρ(X, y∗)] < ∞, then the R-D theorem [12, Theorems 7.2.4

& 7.2.5] states that

i) for every D ≥ 0 with R(D) < ∞, (R,D) is achievable

for all R > R(D), and

ii) (R,D) is not achievable for all R < R(D).

The function R(D) is difficult to characterize analytically in

general, but asymptotic results in terms of the R-D dimension

of order k > 0, defined as −(1/k) limD→0 R(D)/ logD if

the limit exists, are available [16]. For discrete-continuous

mixtures, the function R(D) is known explicitly up to a

term that vanishes as D → 0 [17]. For general distributions,

only bounds on R(D) are available. While upper bounds on

R(D) can be obtained by evaluating I(X,Y ) for a specific

Y with E[ρ(X,Y )] ≤ D, lower bounds are notoriously hard

to obtain. The best-known lower bound is the Shannon lower

bound for discrete random variables of finite entropy and with
∑

x∈X e−sρ(x,y) independent of y for all s > 0 [13, Section

4.3], and for continuous random variables of finite differential

entropy and with difference distortion function ρ(x− y) [13,

Section 4.6]. For continuous X of finite differential entropy

and distortion function ρ(x − y) = ‖x − y‖ks , where ‖ · ‖s is

a semi-norm and k > 0, the Shannon lower bound is known

explicitly [18, Section VI] and, provided that X satisfies a

certain moment constraint, tight as D → 0 [19], [20]. Using

Csiszár’s parametric representation of R(D) [21], a Shannon

lower bound was reported recently in [22, Theorem 55] for the

class of m-rectifiable random variables [22, Definition 11], and

for general random variables in [23, Theorem 2]. The bounds

in [22], [23] are, however, not explicit.

Contributions. We derive a lower bound RL(X) on the R-

D function R(D) in (1) for random variables X of general

distribution supported on general sets including manifolds and

fractal sets. The expression for RL(X) we get is explicit up

to a parameter obtained by solving a convex optimization

problem in a nonnegative real variable and, for continuous X
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of finite differential entropy and distortion function ρ(x−y) =
‖x − y‖ks , reduces to the classical Shannon lower bound

reported in [18]. The only requirement for our lower bound

to apply is the existence of a σ-finite reference measure µ
for X (i.e., a measure µ with µX ≪ µ and such that the

generalized entropy hµ(X) is finite) satisfying a certain sub-

regularity condition. This subregularity condition guarantees

the existence of a δ0 > 0 such that the reference measure

µ is not highly concentrated on balls of radii δ ∈ (0, δ0];
it is satisfied, e.g., by uniform distributions on regular sets of

dimension m in R
d (cf. [24, Section 12]). Specific examples of

regular sets of dimension m are compact convex sets K ⊆ R
m

with span(K) = R
m [24, Example 12.7], surfaces of compact

convex sets K ⊆ R
m+1 with span(K) = R

m+1 [24, Example

12.8], m-dimensional compact C1-submanifolds of R
d [24,

Example 12.9], self-similar sets of similarity dimension m
satisfying the weak separation property [25, Theorem 2.1], and

finite unions of regular sets of dimension m [24, Lemma 12.4].

To illustrate the wide applicability of our result, we evaluate

the lower bound RL(X) for a random variable distributed

uniformly on a manifold, namely, the unit circle, and for

a random variable distributed uniformly on a self-similar

set, namely, the middle third Cantor set. Proofs are omitted

throughout due to space constraints.

Notation. Sets are designated by calligraphic letters, e.g.,

A, with |A| denoting cardinality and A closure. σ-algebras

are indicated by script letters, e.g., X , and will throughout

be assumed to contain all singleton sets. For a measure

space (X ,X , µ) and a measurable set A ∈ X , we write

µ|A for the restriction of µ to A. For a Borel measure

µ, the support supp(µ) is the smallest closed set such that

µ(X\supp(µ)) = 0. We denote the m-dimensional Hausdorff

measure by H m [26, Definition 2.46]. For µ and ν defined on

the same measurable space with µ absolutely continuous with

respect to ν, expressed by µ ≪ ν, we write dµ/dν for the

Radon-Nikodym derivative of µ with respect to ν. The product

measure of µ and ν is designated by µ⊗ν. Random variables

distributed on general measurable spaces (X ,X ) are denoted

by capital letters, e.g., X , and µX is the distribution of X .

E[·] stands for the expectation operator. If X is distributed on

the σ-finite measure space (X ,X , µ) and of finite generalized

entropy

hµ(X) := −E

[

log
dµX

dµ
(X)

]

with µX ≪ µ, then we call µ a reference measure for X . For

X distributed on (X ,X ) and Y distributed on (Y,Y ), the

mutual information between X and Y is

I(X,Y ) := E

[

log
dµX,Y

d(µX ⊗ µY )
(X,Y )

]

if µX,Y ≪ µX ⊗ µY , and I(X,Y ) := ∞ else. For a > 0,

the gamma function is defined by Γ(a) =
∫∞

0 ta−1e−t dt. For

a > 0 and s ≥ 0, the lower incomplete gamma function is

γ(a, s) =
∫ s

0
ta−1e−t dt. Norms on R

d are denoted as ‖ · ‖,

‖ · ‖2 stands for the Euclidean norm, and ‖ · ‖s refers to a

general semi-norm. For a ∈ R, we let ⌊a⌋ be the greatest

integer less than or equal to a. For a > 0, log a denotes the

logarithm of a taken to the base e. We use the convention

0 · ∞ = 0.

II. THE SUBREGULARITY CONDITION

Our lower bound on the R-D function is valid for reference

measures µ satisfying the following subregularity condition,

which prevents µ from being highly concentrated on balls of

small radii.

Definition 1. Let (X ,X , µ) be a measure space, (Y,Y ) a

measurable space, ρ : X × Y → [0,∞] a distortion function,

k > 0, and set Bρ1/k(y, δ) := {x ∈ X : ρ1/k(x, y) < δ}. The

measure µ is ρ1/k-subregular of dimension m if there exist

constants δ0 ∈ (0,∞] and c > 0 such that

µ
(

Bρ1/k(y, δ)
)

≤ cδm for all y ∈ Y and δ ∈ (0, δ0). (2)

The measure µ is ρ1/k-regular of dimension m if there exist

constants δ0 ∈ (0,∞] and c′, c > 0 such that

c′δm ≤ µ
(

Bρ1/k(y, δ)
)

≤ cδm for all y ∈ Y and δ ∈ (0, δ0).
(3)

Lebesgue measure on X = Y = R
d together with ρ(x, y) =

‖x − y‖ks satisfies (3) with c′ = c. Discrete measures do

not satisfy (2). For the particular choices X = R
d, ‖ · ‖ a

norm on R
d, µ a Borel measure, and Y = supp(µ), ‖ · ‖-

regularity of dimension m agrees with regularity of dimension

m as introduced in [24, Definition 12.1]. A compact set

K ⊆ R
d with 0 < H

m(K) < ∞ is called regular of

dimension m if the measure H m|K is ‖ · ‖-regular (and

hence also ‖ · ‖-subregular) of dimension m [24, Definition

12.1]. Specific examples of regular sets of dimension m are

compact convex sets K ⊆ R
m with span(K) = R

m [24,

Example 12.7], surfaces of compact convex sets K ⊆ R
m+1

with span(K) = R
m+1 [24, Example 12.8], m-dimensional

compact C1-submanifolds of R
d [24, Example 12.8], self-

similar sets of similarity dimension m satisfying the weak

separation property [25, Theorem 2.1], and finite unions of

regular sets of dimension m [24, Lemma 12.4].

If µ(X ) < ∞ and the subregularity condition (2) holds for

some c, δ0 > 0, then c can be modified to make (2) hold for

δ0 = ∞. The formal statement is as follows.

Lemma 1. Let (X ,X , µ) be a measure space with µ(X ) <
∞, (Y,Y ) a measurable space, ρ : X × Y → [0,∞] a dis-

tortion function, and k > 0. If there exist constants c, δ0 > 0
such that µ satisfies the subregularity condition (2), then

µ
(

Bρ1/k(y, δ)
)

≤ max(c, µ(X )δ−m
0 )δm

for all y ∈ Y and δ > 0.

III. LOWER BOUND ON THE RATE-DISTORTION FUNCTION

Based on the parametric representation of R(D) in [21,

Theorem 2.3], a Shannon lower bound for rectifiable measures

[26, Definition 2.59] as reference measures was reported

recently in [22, Theorem 55]. We now extend this bound to

general (not necessarily rectifiable) reference measures µ.



Lemma 2. Consider a random variable X distributed on the

measure space (X ,X , µ), a measurable space (Y,Y ), and a

distortion function ρ : X × Y → [0,∞] satisfying

i) infy∈Y ρ(x, y) = 0 for all x ∈ X , and

ii) there exists a finite set B ⊆ Y such that

E[miny∈B ρ(X, y)] < ∞.

Suppose that µ is a reference measure for X and let D0 :=
inf{D ≥ 0 : R(D) < ∞}. Then, R(D) ≥ RSLB(D) for all

D ∈ (D0,∞), where

RSLB(D) = hµ(X)− inf
s≥0

(sD + log ν(s)) (4)

with

ν(s) = sup
y∈Y

∫

e−sρ(x,y)dµ(x). (5)

For discrete X of finite entropy, µ the counting measure,

and
∑

x∈X e−sρ(x,y) independent of y for all s > 0, Lemma

2 recovers the Shannon lower bound for discrete random

variables reported in [13, Lemma 4.3.1]. For X continuous, µ
the Lebesgue measure, X = Y = R

d, and ρ(x, y) = ρ(x− y),
Lemma 2 recovers the Shannon lower bound for continuous

random variables [13, Equation 4.6.1], which can be evaluated

explicitly for ρ(x, y) = ‖x − y‖ks with k > 0, leading to the

classical form of the Shannon lower bound [18, Section VI]

RSLB(D) = h(X) + log





(

d
kD

)
d
k

Vd Γ
(

d
k + 1

)



−
d

k
. (6)

Here, Vd is the Lebesgue measure of the unit ball with respect

to the semi-norm ‖ · ‖s. What makes the explicit expression

(6) possible is the following simplification of ν(s) in (5)

for difference distortion functions ρ(x, y) = ρ(x − y) and

translation invariant reference measures µ, namely

ν(s) = sup
y∈Y

∫

e−sρ(x−y) dµ(x)

=

∫

e−sρ(x) dµ(x),

which can be evaluated explicitly for ρ(x, y) = ‖x − y‖ks
with k > 0 by changing variables to polar coordinates.

Unfortunately, for X of general distribution and for general

distortion functions, ν(s) in (5) cannot be further simplified,

which precludes an explicit expression for RSLB(D). However,

if the reference measure µ is ρ1/k-subregular, then we can

upper-bound ν(s). This leads to a lower bound on R(D)
that is explicit up to a parameter obtained by solving a

convex optimization problem in a nonnegative real variable.

The corresponding formal statement is as follows.

Theorem 1. Consider a random variable X distributed on the

measure space (X ,X , µ), a measurable space (Y,Y ), and a

distortion function ρ : X ×Y → [0,∞] satisfying Properties i)

and ii) stated in Lemma 2. Suppose that µ is a ρ1/k-subregular

reference measure for X of dimension m satisfying (2) with

δ0 ∈ (0,∞] and c > 0, and let D0 := inf{D ≥ 0 : R(D) <
∞}. Suppose further that either δ0 = ∞ or µ(X ) < ∞. Then,

RSLB(D) ≥ RL(D) for all D > D0,

where RL(D) is given by

RL(D) =






hµ(X) + log

(

( m
kD )

m
k

cΓ(m
k +1)

)

− m
k if c ≥ µ(X )δ−m

0

hµ(X)−mins≥0 q(s,D) else,
(7)

where

q(s,D) = sδ−k
0 D + p(s)

with

p(s) = log

(

µ(X )Γ
(

m
k + 1

)

− (µ(X )− δm0 c)γ
(

m
k + 1, s

)

s
m
k

)

.

For every D > 0, the function q(·, D) is strictly convex on

R+ and attains its unique minimum at s0 defined (implicitly)

through δk0 p
′(s0) = −D.

The lower bound RL(D) in (7) is explicit in the regime

c ≥ µ(X )δ−m
0 ; for c < µ(X )δ−m

0 , it is explicit up to a

parameter obtained by solving a convex optimization problem

in a nonnegative real variable. As the lower bound RL(D)
is obtained from RSLB(D) in (4) by upper-bounding ν(s) in

(5) making use of subregularity of the reference measure µ,

it follows that RL(D) = RSLB(D) whenever the reference

measure satisfies the subregularity condition with equality and

for δ0 = ∞. Specifically, we have equality in the following

special case.

Corollary 1. Consider a continuous random variable X dis-

tributed on R
d and of finite differential entropy. Suppose that

ρ(x, y) = ‖x− y‖ks with k > 0. Then, RL(D) = RSLB(D) for

all D ≥ D0.

IV. EXAMPLES

To illustrate the generality of Theorem 1, we consider

two specific examples of random variables, namely a random

variable distributed uniformly on a manifold, specifically the

unit circle, and a random variable distributed uniformly on a

self-similar set, specifically the middle third Cantor set.

Example 1. (Uniform distribution on the unit circle) Let

X = Y = R
2 be equipped with the Borel σ-algebra

and the distortion function ρ(x, y) = ‖x − y‖22, and take

X distributed uniformly on the unit circle S1 ⊆ R
2, i.e.,

µX = H m|S1/H
m(S1). We first establish the subregularity

condition (2) for µ = µX , k = 2, and m = 1. It turns out that

(cf. Figure 1)

µX

(

B‖ · ‖2

(

x, δ
))

= µX({y ∈ R
2 : ‖y − x‖2 ≤ δ}) (8)

=
H 1({y ∈ S1 : ‖y − x‖2 ≤ δ})

2π

≤
arcsin(δ)

π
(9)

for all δ ∈ (0, 1] and x ∈ R
2. Since arcsin(x)/x is monoton-

ically increasing on (0, 1), we can upper-bound arcsin(δ) ≤



x

δ

α

S1

Fig. 1. For fixed δ < 1, the maximum Hausdorff measure of the arc
α(x, δ) = S1 ∩ B‖ · ‖2 (x, δ) is H 1(α(x, δ)) = 2 arcsin(δ), which is

achieved for any x ∈ R
2 satisfying ‖x‖2 =

√

(1− δ2).

δ arcsin(δ̂)

δ̂
for all δ ∈ (0, δ̂) and δ̂ ∈ (0, 1]. Therefore, (8)–(9)

leads to the family of subregularity conditions

µX

(

B‖ · ‖2

(

x, δ
))

≤
arcsin(δ̂)

πδ̂
δ

for all x ∈ R
2 and δ ∈ (0, δ̂), parametrized by δ̂ ∈ (0, 1].

For µ = µX , m = 1, k = 2, δ0 = δ̂ ∈ (0, 1], and c =
arcsin(δ̂)/(πδ̂) and hence c < µX(X )/δ0 = 1/δ0, the lower

bound in (7) is given by

R
(δ̂)
L (D) :=

−
s0

δ̂2
D − log

(

Γ

(

3

2

)

−

(

1−
arcsin(δ̂)

π

)

γ

(

3

2
, s0

)

)

+
1

2
log s0 for all D > 0,

where s0 is the unique solution of

δ̂2

2s0
+

δ̂2s
1
2
0 e

−s0

Γ( 3
2 )

1− arcsin(δ̂)
π

− γ
(

3
2 , s0

)

= D.

Finally, we set

RL(D) = max
δ̂∈(0,1]

R
(δ̂)
L (D) for all D > 0. (10)

The result of the maximization in (10) carried out numerically

is depicted in Figure 2 along with the numerically evaluated

Shannon lower bound RSLB(D) in (4) from [22, Section X.C].

It can be seen that RL(D) approaches RSLB(D) as D → 0.

To prepare the ground for the second example, we need

some preliminaries on contracting similarities; we follow the

exposition in [25]. A mapping s : Rd → R
d is called a

contracting similarity if there exists a κ ∈ (0, 1), referred to

as contraction parameter, such that

‖s(u)− s(v)‖2 = κ‖u− v‖2 for all u,v ∈ R
d.

For i ∈ I := {1, . . . , |I|}, consider contracting similarities

si : R
d → R

d with corresponding contraction parameters κi ∈

10−4 10−3 10−2 10−1

1

1.5

2

2.5

3

3.5

4

4.5

5

D

R

RSLB(D)

RL(D)

Fig. 2. The Shannon lower bound RSLB(D) evaluated numerically in [22,
Section X.C] and the lower bound RL(D) in (10) for X distributed uniformly
on the unit circle.

(0, 1). By [27, Theorem 9.1], there exists a unique self-similar

set

K =
⋃

i∈I

si(K) ⊆ R
d.

Let I∗ =
⋃

j∈N
Ij . For every α = (i1, . . . , ij) ∈ I∗, we set

ᾱ = (i1, . . . , ij−1) ∈ I∗ ∪ {ω} with ω denoting the empty

sequence of length zero. We designate the identity mapping

on R
d by sω, set κω = 1, and define

sα = si1 ◦ si2 ◦ · · · ◦ sij
κα = κi1κi2 . . . κij

for all α ∈ I∗. It follows directly that sα is a contracting

similarity with contraction parameter κα for all α ∈ I∗.

Finally, for every δ > 0 and x ∈ X , let

Jδ = {α ∈ I∗ : κα ≤ δ < κᾱ}

Jδ(x) =
{

α ∈ Jδ : B‖ · ‖2

(

x, δ
)

∩ sα(K) 6= ∅
}

.

The following result will allow us to establish subregularity

for random variables distributed uniformly on self-similar sets.

Lemma 3. [25, Theorem 2.1] For i ∈ I := {1, . . . , |I|},

consider contracting similarities si : R
d → R

d with contrac-

tion parameters κi ∈ (0, 1). Let

K =
⋃

i∈I

si(K)

be the corresponding self-similar set and let m be the similarity

dimension given by the unique solution of

k
∑

i=1

κm
i = 1.



|α| = 1

|α| = 2

|α| = 3

|α| = 4

Fig. 3. Sets sα([0, 1]) with |α| = j have length 3−j . At most three
different sets sα([0, 1]) with |α| = j intersect with an open interval of length
2(3−j+1).

Then,

H
m
(

B‖ · ‖2

(

x, δ
))

≤ H
m(K)|Jδ(x)|δ

m (11)

for all x ∈ R
d and δ ∈ (0,∞). If, in addition, the contracting

similarities satisfy the weak separation property [28, Definition

on p. 3533] and K is not contained in any hyperplane of

dimension d− 1, then 0 < H m(K) < ∞ and

H
m
(

B‖ · ‖2

(

x, δ
))

≤ cδm for all x ∈ R
d and δ ∈ (0,∞)

with c > 1 and independent of x and δ.

We are now ready to present our second example, namely,

a random variable distributed uniformly on the middle third

Cantor set.

Example 2. (Uniform distribution on the middle third Cantor

set) Let X = Y = R be equipped with the Borel σ-

algebra and the distortion function ρ(x, y) = ‖x − y‖22.

Consider the middle third Cantor set C ⊆ [0, 1], i.e., the self-

similar set corresponding to I = {1, 2}, κ1 = κ2 = 1/3,

s1(x) = x/3, s2(x) = x/3+2/3, and m = log 2/ log 3. Since

0 < H log 2/ log 3(C) < ∞ [27, Example 4.5], we can take X
distributed uniformly on C, i.e., µX = H m|C/H m(C). Next,

we use (11) in Lemma 3 to obtain a subregularity condition

for µ = µX . To this end, it is first shown that |Jδ(x)| ≤ 3
for all δ ∈ (0, 1) and x ∈ R. Note that κα = 3−j for all

α = (i1, . . . , ij) and j ∈ N0. Thus,

Jδ = {α ∈ I∗ : κα ≤ δ < κᾱ}

= {α : |α| = j} for all δ ∈
[

3−j , 3−j+1
)

and j ∈ N,

which implies |Jδ(x)| ≤ 3 for all δ ∈ (0, 1) and x ∈ R

(cf. Figure 3). Therefore, (11) together with m = log 2/ log 3
yields the subregularity condition

µX

(

B‖ · ‖2

(

x, δ
))

≤ 3δ
log 2
log 3 for all x ∈ R and δ ∈ (0,∞).

(12)

With (12) the lower bound RL(D) in (7) for µ = µX , m =
log 2/ log 3, k = 2, δ0 = ∞, and c = 3 and hence c ≥
µX(X )/δ0 = 0 is given by

RL(D) = σ log
( σ

D

)

− σ − log(3Γ(σ + 1)) for all D > 0,

where σ := log 2/ log 9.
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