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Distributed Data Compression in Sensor Clusters: A

Maximum Independent Flow Approach
Ni Ding∗, Parastoo Sadeghi†, David Smith∗ and Thierry Rakotoarivelo∗

Abstract—Let a cluster (network) of sensors be connected by
the communication links, each link having a capacity upper
bound. Each sensor observes a discrete random variable in
private and one sensor serves as a cluster header or sink. Here,
we formulate the problem of how to let the sensors encode
their observations such that the direction of compressed data
is a feasible flow towards the sink. We demonstrate that this
problem can be solved by an existing maximum independent flow
(MIF) algorithm in polynomial time. Further, we reveal that this
algorithm in fact determines an optimal solution by recursively
pushing the remaining randomness in the sources via unsaturated
communication links towards the sink. We then show that the
MIF algorithm can be implemented in a distributed manner.
For those networks with integral communication capacities,
we propose an integral MIF algorithm which completes much
faster than MIF. Finally, we point out that the nature of the
data compression problem in a sensor cluster is to seek the
maximum independent information flow in the intersection of two
submodular polyhedra, which can be further utilized to improve
the MIF algorithm in the future.

I. INTRODUCTION

Emerging studies on wireless sensor networks and their

applications pose new challenges to the data compression

problem. A sensor network is usually sectioned into clusters,

e.g., based on geographic location, and, in each cluster, a

sensor node is selected as the cluster header to collect all

sensing data from others [1]. The sensor nodes in a cluster

are assumed to be connected by communication links so that

each sensor node not only sources information (i.e., record

measurements/observations) from the environment but also

relays/forwards the incoming compressed data from other

nodes at the same time [2]. See Fig. 1. It is also shown in

[3] that there is a strong spatial-temporal correlation in the

sensing data. Then, there is a data compression problem of

how to determine the source coding rate for each sensor to

encode its measurements/observations so that the compressed

data can be successfully forwarded over the communication

links to the cluster header.

This multiterminal source coding problem in a sensor clus-

ter/network has been studied in [4]–[6]. The authors in [4],

[5] proposed a two-step approach: determine the (minimum)

spanning tree of the sensor network and apply the Edmond

greedy algorithm [7] to determine an extreme point in the

Slepian-Wolf achievable source code rate region [8], [9] for the

lossless data compression. But, this approach does not exploit
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Fig. 1. A digraph that represents a sensor cluster: There are five sensors,
1, . . . , 4 and t. For i, j ∈ {1, . . . 4, t}, the edge (i, j) represents a commu-
nication link from node i to node j. There is a flow upper bound c(i, j)
associated with each edge (i, j), e.g., c(1, 2) = 1. Node t is selected as the
cluster header to collect all the measurements from other sensor nodes.

all the communication resources: Since the communication

links are wireless, any outgoing links of a node, not just the

ones in the spanning tree, can be utilize to forward the com-

pressed data. On the other hand, a combinatorial optimization

problem is formulated in [6]. But, instead of utilizing the

submodularity of the data compression and routing problem,1

the optimal solution is determined by a centralized subgradient

based algorithm, a discrete optimization technique.

In this paper, we model the sensor cluster by a capacitated

multiple-source-single-sink digraph, where there is a flow

upper bound applied to each communication link, e.g., Fig. 1.

We assume that each source/sensor node observes a component

of a discrete memoryless multiple source (DMMS) in private

and we consider the problem of how to let the source nodes

encode their observations so that the compressed data can be

directed as a feasible flow towards the sink. We show that this

problem can be directly solved by a maximum independent

flow (MIF) algorithm [11] which is based on the submodular

function minimization (SFM) techniques [10, Chapter VI] and

completes in polynomial time. We show how to implement

the MIF algorithm in a distributed manner and explain that

the MIF algorithm in fact determines an optimal solution by

recursively pushing the remaining randomness in the sources

via unsaturated communication links towards the sink. Based

on this interpretation, we propose an integral MIF (IMIF)

algorithm for determining an integral optimal solution when

the capacities are integral and the entropy function of the

DMMS is integer-valued. We show that the complexity of the

IMIF algorithm is much less than the MIF algorithm. Finally,

we point out that the nature of the data compression problem

in a sensor cluster is to seek the maximum independent infor-

1The entropy function in the data compression problem and the cut function,
which determines the maximum flow in a graph, are both submodular, the
minimization of which can be solved in polynomial time [10, Sections 1.2
and 2.2].

http://arxiv.org/abs/1804.01773v1


2

mation flow in the intersection of two submodular polyhedra,

the mathematical results of which can be further utilized to

improve the MIF algorithm in the future.

II. SYSTEM MODEL

For a finite set V with |V | > 1, let G = (V ∪ {t}, E, c) be

a digraph that is connected.2 The node set V ∪ {t} contains

all the indices of the sensors in a cluster with sensor node t
being the cluster header or the sink. The edge set E contains

all the communication links in the cluster: There is an edge

(i, j) ∈ E if j is in the communication range of i. The capacity

function is c : E 7→ R++ and c(i, j) denotes the flow upper

bound on edge (i, j). For node i, the sum inflow capacity
∑

j∈V : (j,i)∈E c(j, i) indicates the processing capability of i,
the maximum inflow information amount (e.g., in bits) that

can be processed by node i. For example, in the digraph G in

Fig. 1, we have
∑

j : (j,2)∈E c(j, 2) = 2 state sensor node 2 can

only relay/process a maximum of 2 bits incoming compressed

data in addition to the randomness in its own observations. A

flow ϕ : E 7→ R+ assigns each edge a nonnegative value. We

say that ϕ is a feasible flow in G if f(i, j) ≤ c(i, j), ∀(i, j) ∈
E.

For each i ∈ V , sensor i observes an i.i.d. n-sequence Zn
i of

the discrete random variable Zi in private. The observations are

in general correlated so that all Zis form a discrete memoryless

multiple source (DMMS) ZV = (Zi : i ∈ V ) with PZV
being

the joint probability mass function. We consider the problem

of how to encode the sources in the DMMS ZV so that the

compressed data can be forwarded as a feasible flow in the

digraph G to the cluster header/sink t. Note, in this problem,

each node i can generate and relay/forward information at the

same time. Therefore, we have the constraints that are imposed

by both the data compression of ZV and the capacity function

c in the digraph G.

III. PROBLEM FORMULATION

For a flow ϕ, define the boundary ∂ϕ : 2V 7→ R by [10,

Section 1.2]

∂ϕ(X) =
∑

(i,j)∈E : i∈X

ϕ(i, j)−
∑

(i,j)∈E : j∈X

ϕ(i, j)

for all X ⊆ V . Here,
∑

(i,j)∈E : i∈X ϕ(i, j) and
∑

(i,j)∈E : j∈X ϕ(i, j) quantify the total incoming and out-

going information flow to and from the node set X , re-

spectively. Note,
∑

(i,j)∈E : j∈X ϕ(i, j) is the amount of the

compressed data flow from V \ X and is supposed to be

forwarded by X . Then, ∂ϕ(X) denotes the source coding

rate that is assigned by the flow ϕ to encode the source ZX

and ∂ϕ = (∂ϕ({i}) : i ∈ V ) is the source coding vector

designated by the flow ϕ to encode the DMMS ZV .

For X ⊆ V , let H(X) be the amount of randomness in

ZX measured by Shannon entropy [12]. Then, the maximum

independent information amount that can be obtained by the

source coding rate ∂ϕ(X) is upper bounded by H(X), i.e.,

∂ϕ(X) ≤ H(X), ∀X ⊆ V , and all flows ϕ in the digraph

2In this paper, a digraph is called connected if there is a path between any
two nodes i, j ∈ V in the underlining undirected graph.

G that result in a source coding rate vector ∂ϕ at which we

can source independent randomness from the DMMS ZV is

constrained by ∂ϕ ∈ P (H,≤), where

P (H,≤) = {∂ϕ ∈ R
|V |
+ : ∂ϕ(X) ≤ H(X), ∀X ⊆ V }

is the polyhedron of H . Note, when we set the sum-rate

∂ϕ(V ) = H(V ), the constraints in P (H,≤) can be converted

to ∂ϕ(X) ≥ H(X |V \X), ∀X ⊆ V so that ∂ϕ ∈ P (H,≤)
is equivalent to the Slepian-Wolf constraints [8], [9] for the

lossless data compression of ZV .3

The objective is to find a feasible flow in the digraph G
such that we can source the maximum amount of independent

information from V to t:

max ∂ϕ(V )

s.t. 0 ≤ ϕ(i, j) ≤ c(i, j), ∀(i, j) ∈ E

∂ϕ ∈ P (H,≤).

(1)

IV. MAXIMUM INDEPENDENT FLOW ALGORITHM

The maximization in (1) is called maximum independent

flow (MIF) problem and can be directly solved by a recursive

algorithm [11, Section 7]. In this section, we adapt this

MIF algorithm for solving problem (1) so that it can be

implemented in a distributed manner. We explain that, when

the MIF algorithm applies to (1), it actually repeatedly pushes

the remaining randomness in ZV over the digraph G to the

sink.

For a feasible flow ϕ in the digraph G for the MIF

problem (1), i.e., ϕ satisfies the constraints in (1), and the

resulting source coding rate vector ∂ϕ, the saturation capacity

to each dimension i ∈ V is [10, Section 2.2]

ĉ(∂ϕ, i) = max{α : ∂ϕ+ αχi ∈ P (H,≤)},

where χi ∈ Z
|V | is the characteristic vector with the ith

dimension being 1 and all other dimensions being 0. The sat-

uration capacity ĉ(∂ϕ, i) measures the remaining randomness

in Zi given the compressed data that has flowed to the sink

t via ϕ. So, if ĉ(∂ϕ, i) = 0, dimension i is saturated, i.e.,

we can not source any more randomness from node i. For the

saturated dimensions i, j, we have the exchange capacity [10,

Section 2.2]

ĉ(∂ϕ, i, j) = max{α : ∂ϕ+ α(χi − χj) ∈ P (H,≤)}.

Here, if ĉ(∂ϕ, i, j) > 0, we can transfer at most ĉ(∂ϕ, i, j)
source coding rates from node j to node i. This is apparently

due to the mutual dependence between Zi and Zj : It makes

no difference for either node to reveal the shared information.

See Example 1. Then, the dependence function

dep(∂ϕ, i) =

{

{j ∈ V : ĉ(∂ϕ, i, j) > 0} ĉ(∂ϕ, i) = 0

∅ ĉ(∂ϕ, i) = 0
.

determines all nodes that can exchange source coding rates

with a saturated node i.

3For the data compression problem, the objective is to minimize the infor-
mation redundancy when considering the Slepian-Wolf constraints ∂ϕ(X) ≥
H(X|V \ X), ∀X ⊆ V and to minimize the information loss when
considering the constraints ∂ϕ(X) ≤ H(X), ∀X ⊆ V in the polyhedron
P (H,≤).



3

Algorithm 1: Maximum Independent Flow (MIF) Algo-

rithm: A distributed implementation

input : A flow that satisfies the constraints in (1), e.g., a zero
flow ϕ(i, j) = 0,∀(i, j) ∈ E in G.

output: An optimal flow ϕ to problem (1).

1 repeat
2 foreach i ∈ V do
3 ĉ(∂ϕ, i)← max{α : ∂ϕ+ αχi ∈ P (H,≤)};
4 if ĉ(∂ϕ, i) > 0 then search a shortest path ρi from i

to t in Gϕ;
5 end
6 if no ρi is found then terminate iteration and go to step 11;

7 Let ρ̂ be the ρi with shortest length and smallest index î;

8 β ← min{ĉ(∂ϕ, î),min{c(i, j) : (i, j) ∈ ρ̂}};
9 foreach (i, j) ∈ ρ̂ do

ϕ(i, j)←

{

ϕ(i, j) + β (i, j) ∈ E+
ϕ

ϕ(i, j) − β (i, j) ∈ E−

ϕ

;

10 until ∂ϕ(V ) = H(V );
11 return ϕ;

The MIF algorithm is shown in Algorithm 1, where Gϕ =
(V ∪{t}, E+

ϕ ∪E−
ϕ ∪Dϕ, cϕ) is an auxiliary digraph with the

edge sets and capacity function being

E+
ϕ = {(i, j) : (i, j) ∈ E,ϕ(i, j) < c(i, j)};

E−
ϕ = {(j, i) : (i, j) ∈ E,ϕ(i, j) > 0};

Dϕ = {(i, j) : i ∈ dep(∂ϕ, j) \ {j}};

cϕ(i, j) =











c(i, j)− ϕ(i, j) (i, j) ∈ E+
ϕ

ϕ(j, i) (i, j) ∈ E−
ϕ

ĉ(∂ϕ, j, i) (i, j) ∈ Dϕ

.

The edge sets E+
ϕ and E−

ϕ are due to the edge capacities in the

digraph G: The flow ϕ remains feasible if we increase ϕ(i, j)
by c(i, j)− ϕ(i, j) or reduce ϕ(i, j) by ϕ(i, j). The edge set

Dϕ is due to the nonzero exchange capacity ĉ(∂ϕ, j, i). So,

Gϕ characterizes all increments on flow ϕ and the exchanges

of source coding rates between nodes such that the resulting

flow remains feasible for problem (1).

If, for some node i such that ĉ(∂ϕ, i) > 0, there

exists a directed path ρi in Gϕ from i to the sink t,
we can push the remaining randomness in Zi towards t
over path ρi and the maximum flow increment is β =
min{ĉ(∂ϕ, i),min{c(i, j) : (i, j) ∈ ρi}} [11, Theorem 2].

Also, for all edges (i, j) in the path ρi such that (i, j) ∈ Dϕ,

i.e., i ∈ dep(∂ϕ, j), there are β source coding rates transferred

from i to j. See Example 1. A flow ϕ is the optimal solution

to (1) if there does not exist any directed path from any

unsaturated node i to t [11, Theorem 4]. So, the MIF algorithm

recursively push the remaining randomness in the source nodes

via the increment of the flow and/or the exchange of the source

coding rates until it reaches the optimal flow.4

4Steps 6 and 7 in Algorithm 1 seek the lexicographically shortest path in
Gϕ. It ensures the finiteness of the recursions in the MIF algorithm [10,
Theorem 4.11] [13].

Example 1. For the digraph in Fig. 1 with V = {1, . . . , 4},

let dimensions in the DMMS ZV be

Z1 = (Wa,Wb), Z2 = (Wb,Wc),

Z3 = (Wc), Z4 = (Wb,Wd)

where, for all m ∈ {1, . . . , 4}, Wm is an independent random

bit with H(Wa) = 1, H(Wb) = 0.2 and H(Wc) = H(Wd) =
0.4. We start the MIF algorithm with zero flow ϕ, ϕ(i, j) =
0, ∀(i, j) ∈ E as shown in Fig. 2(a). The source coding rate

vector determined by the boundary is ∂ϕ = (0, 0, 0, 0).
At the 1st iteration, since we have not pushed any infor-

mation to the sink t, the saturation capacity is ĉ(∂ϕ, i) =
H({i}) > 0 for all i ∈ V , i.e., we have nonzero remaining

randomness at all source nodes. Also, Gϕ = G and ρ̂ = ρ2 =
(2, t) is the shortest source-to-sink path over all i ∈ V and

β = min{ĉ(∂ϕ, 2), c(2, t)} = 0.6. We increase f(2, t) by 0.6
which results in a flow in Fig. 2(b). The corresponding source

coding rate vector is ∂ϕ = (0, 0.6, 0, 0).
At the 2nd iteration, we have ĉ(∂ϕ, 1) = 1, ĉ(∂ϕ, 4) = 0.4

and ĉ(∂ϕ, 2) = ĉ(∂ϕ, 3) = 0. The auxiliary digraph Gϕ is

shown in Fig. 3(a). We have ρ̂ = ρ1 = (1, 3) → (3, t) being

the shortest path from unsaturated source set {1, 4} to t and

β = 1. We increase ϕ(1, 3) and ϕ(3, t) by 1, i.e., push 1 bit of

randomness from node 1 to t, and results in a flow in Fig. 2(c).

At the 3rd iteration, we have node 4 being the only unsatu-

rated source node with the remaining randomness ĉ(∂ϕ, 4) =
0.4 and Gϕ in Fig. 3(b). Note, the edge (2, 3) ∈ Dϕ with

the exchange capacity ĉ(∂ϕ, 3, 2) = 0.4 is because of the

mutual information I({2} ∧ {3}) = 0.4: There are 0.4 bit of

shared information that can be transmitted by either 2 or 3
and, therefore, node 2 can transfer at most 0.4 source coding

rates to node 3. In Gϕ, ρ̂ = ρ4 = (4, 2) → (2, 3) → (3, t) is

the only, and also shortest, path from 4 to t and β = 0.4.

Since the edge (2, 3) ∈ ρ̂, when we push β = 0.4 over

ρ̂, what happens in the original graph G is that we reduce

∂ϕ({2}) by 0.4 and increase ∂ϕ({3}) by 0.4, which results

in a flow in Fig. 2(c) with the source coding rate vector being

∂ϕ = (1, 0.2, 0.4, 0.4). Now, we have ∂ϕ(V ) = 2 = H(V )
and the MIF algorithm terminates with the flow ϕ updated to

the optimum.5

A. Complexity and Distributed Implementation

In the MIF algorithm, the saturation and exchange capac-

ities, ĉ(∂ϕ, i) and ĉ(∂ϕ, i, j), ∀i, j ∈ V , can be determined

by set function minimization problems [10, Section 2.2]

max{α : ∂ϕ+ αχi ∈ P (H,≤)}

= min{H(X)− ∂ϕ(X) : X ⊆ V, i ∈ X};

max{α : ∂ϕ+ α(χi − χj) ∈ P (H,≤)}

= min{H(X)− ∂ϕ(X) : X ⊆ V, i ∈ X, j /∈ X},

where the two minimizations can be solved by the submodular

function minimization (SFM) algorithms [10, Chapter VI] due

to the submodularity of the entropy function H [14]. Since we

need to obtain ĉ(∂ϕ, i, j) for each pair (i, j) when ĉ(∂ϕ, i) 6=

5One can verify that the source coding rate vector ∂ϕ = (1, 0.2, 0.4, 0.4)
also satisfies the Slepian-Wolf constraints [8], [9].
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Fig. 2. The updates of the flow ϕ, presented as f(i, j)/c(i, j) on each
edge, and the resulting source coding vector ∂ϕ at each iteration of the
MIF algorithm when it is applied to digraph in Fig. 1 where the sensors in
V = {1, . . . , 4} observes a DMMS ZV in Example 1. The flows in red are
the updated ones from the last iteration.
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Fig. 3. The auxiliary digraph Gϕ at the 2nd and 3rd iterations of the MIF
algorithm in Example 1, where the edge (2, 3) ∈ Dϕ is due to the nonzero
exchange capacity ĉ(∂ϕ, 3, 2) = 0.4. Note, ĉ(∂ϕ, 3, 2) = 0.4 is resulted
from the mutual dependence between Z2 and Z3: I({2} ∧ {3}) = 0.4.

0, the complexity in each iteration of the MIF algorithm is

upper bounded by O(|V |2 ·SFM(|V |)).6 Also, the total number

of iterations in the MIF algorithm is no greater than |V |3

[10, Theorem 4.11]. The MIF algorithm completes in O(|V |5 ·
SFM(|V |)) time.

The MIF algorithm in Algorithm 1 implies a decentralized

computation method: Each node i obtains its own capacities

ĉ(∂ϕ, i) and ĉ(∂ϕ, i, j); Most of the shortest path algorithms,

e.g., [15], allows distributed implementation where each node

only needs to know the connection in the neighborhood; The

nodes can negotiate with each other to determine ρ̂. Then, the

complexity at each node is O(|V |4 · SFM(|V |)).

V. INTEGRAL MAXIMUM INDEPENDENT FLOW

ALGORITHM

It can be seen from Section IV-A that calculating the

saturation and exchange capacities consumes most of the

computation capacity in the MIF algorithm. Thus, it is worth

discussing how to simplify or avoid the computation of

ĉ(∂ϕ, i) and ĉ(∂ϕ, i, j). We show in this section that this is

possible if the capacities c(i, j) in the digraph G are integral

and the entropy H of the DMMS ZV is integer-valued. In

6O(SFM(|V |)) denotes the complexity of solving problem min{H(X)−
∂ϕ(X) : X ⊆ V } and ranges from O(|V |5) to O(|V |8) [10, Chapter VI].
Note, we neglect the complexity of the shortest path algorithm since it is much
less complex than solving the SFM problem, e.g., the Dijkstra’s algorithm [15]
searches a shortest path in O(|V |2) time.

Algorithm 2: Integral Maximum Independent Flow (IMIF)

Algorithm

input : A zero flow ϕ(i, j) = 0, ∀(i, j) ∈ E in G.
output: An integral optimal flow ϕ to problem (1).

1 repeat
2 foreach i ∈ V such that ĉ(∂ϕ, i) > 0 do search a shortest

path ρi from i to t in GI
ϕ;

3 if no ρi is found then terminate iteration and go to step 7;
4 Let ρ̂ be the ρi with shortest length and smallest index i;
5 foreach (i, j) ∈ ρ̂ do

ϕ(i, j)←

{

ϕ(i, j) + 1 (i, j) ∈ E+
ϕ

ϕ(i, j) − 1 (i, j) ∈ E−

ϕ

;

6 until ∂ϕ(V ) = H(V );
7 return ϕ;

fact, the integrity of c and H reduces (1) to a network coding

problem in a network.

For the digraph G = {V ∪ {t}, E, c} with c : E 7→ Z++

and the DMMS ZV with H : 2V 7→ Z+, there exists a flow

ϕ : E 7→ Z+ that optimizes problem (1) [11, Theorem 5].

Inspired by the idea of the MIF algorithm, we can obtain this

optimal integral flow by starting with the zero flow and keep-

ing pushing unit remaining randomness until we cannot do so

any more. By doing so, we can reduce the auxiliary digraph

Gϕ to an uncapacitated one GI
ϕ = (V ∪{t}, E+

ϕ ∪E−
ϕ ∪Dϕ).

Then, we have the integral maximum independent flow (IMIF)

algorithm in Algorithm 2.

Example 2. For the digraph in Fig. 1, we replace the capacity

c(2, t) by 2 and assume that all Wm observed in the DMMS

ZV are independent uniformly random bit, i.e., H(Wm) =
1, ∀m ∈ {a, b, c, d}. We start the IMIF algorithm with zero

flow ϕ. The flow updates are shown in Fig. 4, where we can

see that the IMIF recursively pushes a unit randomness to the

sink t until an optimal integral flow in Fig. 4(e) is fetched.

A. Complexity and Distributed Implementation

The saturation capacity ĉ(∂ϕ, i) and the edge set Dϕ can

be both determined by solving the SFM problem

min{H(X)− ∂ϕ(X) : X ⊆ V, i ∈ X} : (2)

ĉ(∂ϕ, i) is the maximum of (2); dep(∂ϕ, i) is the minimal

minimizer of (2), based on which, Dϕ can be constructed.

There are at most H(V ) iterations in Algorithm 2. Therefore,

the IMIF algorithm completes in O(H(V ) · |V | · SFM(|V |))
time. It can also be implemented in a distributed manner so

that the complexity at each node is O(H(V ) · SFM(|V |)).

VI. SUBMODULAR INTERSECTION PROBLEM

It can be seen that we cannot always direct the total

information H(V ) of the DMMS to the sink. When the

iteration terminates at step 6 in the MIF algorithm, or step 3

in the IMIF algorithm, it means that we still have remaining

randomness in the source nodes that is unable to be pushed

to the sink t. For example, for the digraph G in Fig. 1, if
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Fig. 4. The updates of the flow ϕ, presented as f(i, j)/c(i, j) on each
edge, and the resulting source coding vector ∂ϕ at each iteration of the IMIF
algorithm in Example 2.

c(3, t) = 1, the maximum information amount that we can

source from V to t is only 1.6.

Let κ(X) =
∑

(i,j)∈E : i∈X c(i, j), ∀X ∈ V be the cut

function of the digraph G [10, Section 1.2]. Define the

characteristic function [16, Section 3]

f(X) = min{κ(Y ) : X ⊆ Y ⊆ V }, ∀X ⊆ V,

which can be considered as the min-cut between the super

source node X and the sink t. It is shown in [16, Lemmas

4.1 and 3.2] that the boundary of any feasible flow ϕ in G
is upper bounded by ∂ϕ(X) ≤ f(X), ∀X ⊆ V , i.e., ∂ϕ ∈
P (f,≤), and f is submodular. For instance, in Example 1, one

can verify that ∂ϕ = (1, 0.2, 0.4, 0.4) determined by the MIF

algorithm also belongs to the polyhedron P (f,≤), where f is

the characteristic function that is determined by the capacities

in the digraph in Fig. 1.

So, the problem (1) is equivalent to

max{∂ϕ(V ) : ∂ϕ ∈ P (H,≤) ∩ P (f,≤)}. (3)

If the maximum of (3) is strictly less than H(V ), e.g., when

f(V ) = κ(V ) < H(V ), then it is not possible to source all

the information in ZV to t. Therefore, it is worth discussing

how to characterise the maximum of (3) (without running the

MIF algorithm), which is useful when we want to select the

cluster header that can collect the most of sensing data in the

cluster header.

In fact, problem (3) maximizes the independent flow in

the intersection of polyhedra P (H,≤) and P (f,≤), where

both H and f are submdodular functions. This is called the

submodular intersection problem and there exist results based

on this problem that can be utilized to further improve the

efficiency of solving the MIF problem (1).

VII. CONCLUSION

We studied the problem of how to source maximum ran-

domness from multiple sources to a sink node as a feasible

flow in a digraph. It describes the data compression problem in

a sensor network/cluster. We adapted the MIF algorithm in a

distributed manner to solve this problem and explained that the

MIF algorithm recursively pushes the remaining randomness

in the sources to the sink or cluster header until it cannot

do so any more. We also showed that an integral optimal

solution is less complex to determine and provided a novel

IMIF algorithm to do so. We pointed out that the nature of the

data compression problem in a sensor network is to maximize

the flow in the intersection of two submodular polyhedra.

Finally, the study also directly leads to several directions

for future work. By assigning each edge a weight that denotes

the wireless link quality, it is of interest to determine a

flow that minimize the sum-weight among the solutions to

problem (1). On the other hand, as the source coding solution

that satisfies the Slepian-Wolf constraints is not unique, it is

worth discussing how to attain the fairness in the solution set

of (1). Also, as pointed out in Section VI, one can address how

to utilize the existing submodular intersection techniques, e.g.

[17], to enhance the efficiency of solving problem (1).
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