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Abstract

For any Markov source, there exist universal codes whose normalized codelength approaches
the Shannon limit asymptotically as the number of samples goes to infinity. This paper inves-
tigates how fast the gap between the normalized codelength of the “best” universal compressor
and the Shannon limit (i.e. the compression redundancy) vanishes non-asymptotically in terms
of the alphabet size and mixing time of the Markov source. We show that, for Markov sources

whose relaxation time is at least 1 + (2+c)
√

k
, where k is the state space size (and c > 0 is a con-

stant), the phase transition for the number of samples required to achieve vanishing compression
redundancy is precisely Θ(k2).

1 Introduction

For any data source that can be modeled as a stationary ergodic stochastic process, it is well known
in the literature of universal compression that there exist compression algorithms without any
knowledge of the source distribution, such that its performance can approach the fundamental limit
of the source, also known as the Shannon entropy, as the number of observations tends to infinity.
The existence of universal data compressors has spurred a huge wave of research around it. A large
fraction of practical lossless compressors are based on the Lempel–Ziv algorithms [ZL77, ZL78]
and their variants, and the normalized codelength of a universal source code is also widely used to
measure the compressibility of the source, which is based on the idea that the normalized codelength
is “close” to the true entropy rate given a moderate number of samples.

There has been considerable efforts trying to quantify how fast the codelength of a universal code
approaches the Shannon entropy rate. One of the general statements pertaining to distributions
parametrized by a finite dimensional vector is due to Rissanen [Ris84]. Let Xn be a sequence
of random variables generated from some stationary distribution pθ(x

n) with parameters θ. A
compressor L for the Xn sequence is characterized by its length function L(xn), which is the length
(in bits), of the code corresponding to every realization xn of Xn.

The entropy Hθ(X
n) quantifies the fundamental limit of compression under model pθ, which is

given by

Hθ(X
n) =

∑

xn

pθ(x
n) log2

1

pθ(xn)
(1)

1 The redundancy for a compressor with length function L(Xn) is defined as:

rn(L, θ) =
1

n
(E[L(Xn)|θ]−Hθ(X

n)) (2)

1Throughout the paper, we will work with log ≡ log2.
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Rissanen [Ris84] states that if θ ∈ Θ ⊂ R
d, and if the parameter θ can be estimated with “para-

metric” rate asymptotically (with d, θ fixed), then there exists some compressor L such that

rn(L, θ) =
d log n

2n
+O

(

1

n

)

(3)

as n → ∞. Moreover, fixing d, ǫ > 0, for any uniquely decodable code L, its redundancy satisfies

rn(L, θ) ≥ (1− ǫ)
d log n

2n
(4)

as n → ∞ for all values of θ except for a set whose volume vanishes as n → ∞ while other
parameters are fixed.

The focus of Rissanen [Ris84] was asymptotic, i.e., the characterization of the redundancy as
the number of samples n → ∞ while other parameters remain fixed. There has been considerable
generalizations in the asymptotic realm, such as [Att99,MF95,FM96,XB97,XB00].

In modern applications, the parameter dimension d may be comparable or even larger than
the number of samples n. For example, in the Google 1 Billion Word dataset (1BW) [CMS+13],
the number of distinct words is more than 2 million, and the data distribution is also not i.i.d.,
which makes us wonder whether we are operating in the asymptotics when any universal code
is applied. We emphasize that the implications of (4) may not be correct in the non-asymptotic
setting (i.e. when the paprameter dimension d is comparable to the number of samples n). Indeed,
interpreting (4) in the non-asymptotic way, it implies that it requires at least n ≫ d log d samples
to achieve vanishing redundancy. However, when the data source is i.i.d. with alphabet size d+ 1,
the precisely non-asymptotic computation shows that the phase transition between vanishing and
non-vanishing redundancy is at n ≍ d [JHFHW17].

There exists extensive literature on quantifying the redundancy in the non-asymptotic regime.
Davisson [Dav83] considered the case of memoryless sources and m-Markov sources, and obtained
non-asymptotic upper and lower bounds (i.e. bounds that are explicit in all the parameters involved)
on the average case minimax redundancy, which is defined by

inf
L

sup
θ∈Θ

rn(L, θ), (5)

where the infimum is taken over all uniquely decodable codes [CT12] (section 5.1). However, the
lower bound for Markov sources with alphabet size k in [Dav83] is non-zero only when n ≫ k2 log k
(See Appendix A) and are not tight in the sense that the upper and lower bounds do not match
in scaling in the large alphabet regime. The work [OS04,DS04,SW12] mainly considered a variant
called worst case minimax redundancy, and showed that for i.i.d. sources with alphabet size k,
the worst case minimax redundancy 2 vanishes if and only if the number of samples n ≫ k non-
asymptotically. The problem of worst-case minimax redundancy for Markov sources was considered
in [JS04].

The focus of this paper is on the average case minimax redundancy for Markov chains. We refine
the minimax redundancy in (5) and categorize different Markov chains by how fast it “mixes”.
Informally, we ask the following question:

Question 1. How does the minimum number of samples required to achieving vanishing redundancy
depend on the state space size and mixing time?

2Precisely, the minimax regret with respect to a coding oracle that only uses codes corresponding to i.i.d. distri-

butions.

2



2 Preliminaries

Consider a first-order Markov chain X1,X2, . . . on a finite state space X = {1, 2, . . . , k} , [k] with
transition kernel K. We denote the entries of K as Kij , that is, Kij = PX2|X1

(j|i) for i, j ∈ X . We
say that a Markov chain is stationary if PX1 , the distribution of X1, satisfies

k
∑

i=1

PX1(i)Kij = PX1(j) for all j ∈ X . (6)

We say that a Markov chain is reversible if there exists a distribution π on X which satisfies
the detailed balance equations:

πiKij = πjKji for all i, j ∈ X . (7)

In this case, π is called the stationary distribution of the Markov chain.
For a reversible Markov chain, its (left) spectrum of the operator K consists of k real eigenvalues

1 = λ1 ≥ λ2 ≥ · · · ≥ λk ≥ −1. We define the spectral gap of a reversible Markov chain as

γ(K) = 1− λ2. (8)

The absolute spectral gap of K is defined as

γ∗(K) = 1−max
i≥2

|λi|, (9)

and it clearly follows that, for any reversible Markov chain,

γ(K) ≥ γ∗(K). (10)

The relaxation time of a Markov chain is defined as

τrel(K) =
1

γ∗(K)
. (11)

The relaxation time of a reversible Markov chain (approximately) captures its mixing time,
which informally is the smallest n for which the marginal distribution of Xn is very close to the
Markov chain’s stationary distribution. We refer to [MT06] for a survey. Intuitively speaking,
the shorter the relaxation time τrel, the faster the Markov chain “mixes”: that is, the shorter its
“memory”, or the sooner evolutions of the Markov chain from different starting states begin to look
similar.

The multiplicative reversibilization of the transition matrix K is defined as:

K∗
ji =

πiKij

πj
(12)

K∗ is infact the transition matrix for the reverse Markov chain Xn → Xn−1 → . . . → X1. Note that
for reversible chains K∗ = K. The pseudo-spectral gap for a non-reversible chain (with transition
matrix K) is defined as:

γps(K) = max
r≥1

γ((K∗)rKr)

r
(13)

The pseudo-spectral gap for a non-reversible chain is related to the mixing time of the non-reversible
Markov chain.
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We denote by M1(k) the set of all discrete distributions with alphabet size k (i.e., the (k− 1)-
probability simplex), and by M2(k) the set of all Markov chain transition matrices on a state space
of size k. LetM2,rev(k) ⊂ M2(k) be the set of transition matrices of all stationary reversible Markov
chains on a state space of size k. We define a class of stationary Markov chains M2,rev(k, τrel) ⊂
M2,rev(k) as follows:

M2,rev(k, τrel) = {Kij ∈ M2,rev(k), τrel(K) ≤ τrel}. (14)

In other words, we consider stationary reversible Markov chains whose relaxation time is upper-
bounded by τrel.

Another probabilistic representation of reversible Markov chains is via random walk on undi-
rected graphs. Consider an undirected graph (without multi-edges) on k vertices. Let the weight
on the undirected edge {i, j} be denoted as wij ≥ 0. Due to the undirected nature of the graph,
wij = wji ≥ 0, ∀i, j ∈ [k]. We also define ρi and ρ as:

ρi =

k
∑

j=1

wij,∀i ∈ [k]

ρ =
∑

i,j

wij

Here, ρi corresponds to the row-sums of the weight matrix W , with entries wij . We can now
consider a Markov chain corresponding to a random walk on this graph. The transition probabilities
and the stationary distribution corresponding to a random walk on this weighted undirected graph
are given by:

Kij =
wij

ρi
(15)

πi =
ρi
ρ

(16)

We can verify that the transition matrix K corresponds to a reversible Markov chain (i.e.
K ∈ M2,rev(k)) as:

πiKij =
wij

ρ
(17)

=
wji

ρ
(18)

= πjKji (19)

Conversely, we can understand any reversible Markov chain K̂ ∈ M2,rev(k), with stationary
distribution π̂ as a random walk on an undirected graph with weights ŵij :

ŵij = π̂iK̂ij (20)

The quantity of interest in this paper is

Rn(k, τrel) = inf
L

sup
K∈M2,rev(k,τrel)

rn(L, θ), (21)

where the infimum is taken over all uniquely decodable codes [CT12] (section 5.1), and the supre-
mum is taken over all stationary reversible Markov chains whose relaxation time is upper bounded
by τrel. We define the quantity n∗(k, τrel, ǫ) as follows:

n∗(k, τrel, ǫ) , min{n : Rn(k, τrel) ≤ ǫ}. (22)
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Notation

The quantity h(X) denotes the differential entropy of the continuous random variable X with
density function fX(x), and is given by:

h(X) =

∫

fX(x) log2
1

fX(x)
dx (23)

We define the KL-divergence D(pX ||qX) between two discrete distributions pX(x) and qX(x) as:

D(pX ||qX) =
∑

x

pX(x) log2
pX(x)

qX(x)
(24)

Thoughout the paper, we will use the notation o(.) and O(.) to denote the asymptotic growth of
a function. Let f(k) and g(k) be non-negative functions. We say that function f(k) = O(g(k)),
if f(k) ≤ Cg(k) for some C > 0 and all n > C. We say that function f(k) = o(g(k)), if the
asymptotic growth of f(k) is strictly slower than that of g(k), i.e.

lim
k→∞

f(k)

g(k)
= 0

3 Main Results

The main theorems in this paper are:

Theorem 1. For τrel ≥ 1 + 2+c√
k
,

Rn(k, τrel) ≥
k(k − 1)

4n
log

2(n− 1)

k(k − 1)
+

k(k − 1)

4n
log

e

16π(1 + 2+c√
k
)
− log k

n
. (25)

for k ≥ kc, where c > 0 is a constant and kc is a constant depending only on c.

Theorem 1 is proved in the section 4.

Theorem 2. The average-case minimax redundancy Rn(k) for Markov sources is defined as:

Rn(k) = inf
L

sup
θ∈M2(k)

rn(L, θ)

Then, the following upper bound holds:

Rn(k) ≤
2k2

n
log2

( n

k2
+ 1
)

+
k2

n
+

log2 k + 3

n

Note that as Rn(k) ≥ Rn(k, τrel), the upper bound in theorem 2 is valid for Rn(k, τrel). Also,
as Rn(k) ≥ Rn(k, τrel), the lower bound in theorem 1 is valid for Rn(k). Theorem 2 is proved in
the section 5. The following corollary is immediate.

Corollary 1. If n ≫ k2, then Rn(k, τrel) → 0 uniformly over τrel. For τrel ≥ 1 + 2+c√
k
, where c > 0

is a positive constant, there exists a constant c1 such that if n = c1k
2, then Rn(k, τrel) is bounded

away from zero as k → ∞.

5



Analyzing Rn(k, τrel) over reversible Markov chains, gives us a more refined understanding of
the compression redundancy. From theorem 2, we observe that for any Markov distribution, we can
achive ǫ redundancy (for any constant ǫ > 0) using n ∝ k2 samples. On the other hand, theorem 1
tells us that, even for the small family of fast mixing reversbile chains, in the worst case, at least
O(k2) samples are necessary to obtain ǫ redundancy.

Figure 1 provides a pictorial illustration of n∗(k, τrel, ǫ) when ǫ is a small constant. The case
τrel = 1 corresponds to i.i.d. distribution, and it follows from [JHFHW17] that n∗(k, τrel, ǫ) = Θ(k)
for small constant ǫ. Interestingly, when the Markov chain becomes slightly “non-i.i.d.”, the required
sample size immediately jumps to Θ(k2) and remains there no matter how large the τrel is. Similar
phenomena exist in the literature of entropy rate estimation for Markov chains [HJL+18], where

the phase transitions for consistent entropy rate estimation happens at k
log k for i.i.d. data, and k2

log k

when the relaxation time is above 1 + Ω
(

log2 k√
k

)

. In other words, even if we use the codelength

of the “best” universal code to estimate the entropy rate of the Markov source, it still requires
considerably more samples than the information theoretically optimal entropy rate estimator that
does not go through the construction of a code.

1

Θ(k2)

Θ(k)

1 + 2+c√
k

τrel = (γ∗)−1

n∗(k, τrel, ǫ) for constant ǫ

Figure 1: The figure plots the n∗(k, τrel, ǫ) for a fixed small enough ǫ > 0, against the relax-
ation time constraint τrel. Note that τrel = 1 corresponds to i.i.d data, and hence n∗(k, 1, ǫ) =
Θ(k) [JHFHW17].

4 Theorem 1 Proof Roadmap

We first conduct the continuous approximation of the redundancy, which is given by the following
lemma.

Lemma 1. For any uniquely decodable code L, we have

rn(L, θ) ≥
1

n
D(pθ(x

n)‖qL(xn)), (26)

where qL(x
n) = 2−L(xn)

∑
xn 2−L(xn) .
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Proof. Consider the redundancy rn(L, θ):

rn(L, θ) =
1

n
[E(L(Xn)|θ)−Hθ(X

n)] (27)

=
1

n

[

∑

xn

pθ(x
n)L(xn)−

∑

xn

pθ(x
n) log

1

pθ(xn)

]

(28)

=
1

n

[

∑

xn

pθ(x
n) log

pθ(x
n)
∑

xn 2−L(xn)

2−L(xn)
+ log

1
∑

xn 2−L(xn)

]

(29)

As L is a uniquely decodable code [CT12] (section 5.1), we can now use the Kraft inequality [CT12]
(Theorem 5.5.1) for the lengths L(xn) to obtain:

rn(L, θ) ≥
1

n

[

∑

xn

pθ(x
n) log

pθ(x
n)
∑

xn 2−L(xn)

2−L(xn)

]

(30)

=
1

n

[

∑

xn

pθ(x
n) log

pθ(x
n)

qL(xn)

]

(31)

=
1

n
D(pθ(x

n)||qL(xn)). (32)

We then use the strategy of lower bounding the minimax risk by Bayes risk, which is given by
the following lemma.

Lemma 2. For any prior distribution Φ(θ) supported on the parameter space M2,rev(k, τrel), we
have

Rn(k, τrel) ≥
1

n
I(θ;Xn). (33)

Proof. Let p(xn) =
∫

θ Φ(θ)pθ(x
n)dθ, then:

Rn(k, τrel) = inf
L

sup
K∈M2,rev(k,τrel)

rn(L, θ) (34)

≥ inf
L

∫

θ
Φ(θ)rn(L, θ)dθ (35)

Equation (35) is true because the average is always lower than the supremum. We next use the
Lemma 1 to obtain:

Rn(k, τrel) ≥ inf
qL(xn)

1

n

∫

θ
Φ(θ)D(pθ(x

n)||qL(xn))dθ

= inf
qL(xn)

1

n

[

∫

θ
Φ(θ)

∑

xn

pθ(x
n) log

pθ(x
n)

qL(xn)
dθ

]

= inf
qL(xn)

1

n

[

∫

θ
Φ(θ)

∑

xn

pθ(x
n) log

pθ(x
n)p(xn)

p(xn)qL(xn)
dθ

]

= inf
qL(xn)

1

n

[∫

θ
Φ(θ)D(pθ(x

n)||p(xn))dθ +D(p(xn)||qL(xn))
]

7



finally, the non-negativity of the KL-divergence, completes the proof:

Rn(k, τrel) ≥
1

n

[∫

θ
Φ(θ)D(pθ(x

n)||p(xn))dθ
]

=
1

n
I(θ;Xn)

Lemma 2 suggests that, for any prior distribution Φ(θ):

Rn(k, τrel) ≥
1

n
I(θ;Xn) (36)

=
1

n
[h(θ)− h(θ|Xn)]. (37)

In order to obtain a tight lower bound on Rn(k, τrel), it thus suffices to choose a prior on θ such
that h(θ) is as large as possible, while h(θ|Xn), which quantifies how well we can estimate θ based
on Xn, is as small as possible.

The transition matrix has about k2 degrees of freedom. In order to prove the lower bound
corresponding to n∗(k, τrel, ǫ) ≈ k2, we need nearly k2 degrees of freedom in the prior construction,
but would also like the Markov chain to mix fast under this prior. In other words, we want the
Markov chain to be similar to the memoryless scenario. It naturally motivates a prior construction
using random matrix theory. Indeed, if the transition matrix can be viewed as a combination of the
rank one matrix corresponding to the stationary distribution and a “noise” matrix with nearly i.i.d.
entries, it would be expected from randommatrix theory that the second largest eigenvalue would be
close to zero as the matrix size increases. However, the technical difficulty appears in constructing
a prior which is completely supported on M2,rev(k, τrel) with desirable spectral properties and also
in ensuring that the prior has large enough differential entropy. The concrete construction is below.

4.1 Prior Construction

Consider M̃2,rev(k) ⊂ M2,rev(k) be the space of Markov distributions which have the following
properties:

M̃2,rev(k) = {Kij ∈ M2,rev(k),Kii = 0, ∀i ∈ [k]} (38)

The space M̃2,rev(k) corresponds to transition matrices of random walks over undirected graphs
that do not have self loops. We also define a class of stationary Markov chains M̃2,rev(k, τrel) ⊂
M̃2,rev(k) as follows:

M̃2,rev(k, τrel) = {Kij ∈ M̃2,rev(k), τrel(K) ≤ τrel}. (39)

In other words, we consider stationary reversible Markov chains in M̃2,rev(k) whose relaxation time
is upper-bounded by τrel.

Definition 1. Let π(i, j) = πiKij denote the stationary distribution over the tuples (X1,X2). Then
we can consider a parametrization θ for M̃2,rev(k) as:

θ = (2π(1, 2), . . . , 2π(1, k), 2π(2, 3), . . . , 2π(k − 1, k))

≡ (θ1,2, θ1,3, . . . , θ1,k, θ2,3, . . . , θ2,k, . . . , θk−1,k)

8



The scaling by factor 2 (e.g. θ1,2 = 2π(1, 2)) is considered to ensure that the sum of the
parameters is 1.

∑

i<j

θi,j = 1 (40)

Note that, we can obtain the transition matrix K from the parametrization θ as follows:
Let θ̃i,j be defined as:

θ̃i,j =















θi,j , if i < j

0 , if i = j

θj,i , if i > j

(41)

Then, the transition matrix K can be obtained as:

Kij =
θ̃i,j

∑

j′ θ̃i,j′
(42)

We also define priors Φ̃u(θ) and Φ̃u(θ; τrel) that are uniform distributions on spaces M̃2,rev(k)
and M̃2,rev(k, τrel), respectively, under the parametrization of θ. We can obtain the distribution
Φ̃u(θ) over the space M̃2,rev(k), by considering transition matrices corresponding to random walk
over undirected graphs with random weights.

Lemma 3. Consider a simple complete graph (complete graph, without self loops) on k vertices,
with random weights wij distributed i.i.d as wij = wji ∼ Exp(1) (wii = 0). Then, the corresponding
transition matrix K is distributed as Φ̃u(θ), i.e. uniformly distributed over the space M̃2,rev(k).

Proof. We recall a well-known property [FKG10] (Section 2.3) of exponential distributions: Let
U = {u1, u2, . . . , ur} be such that every ui ∼ i.i.d Exp(λ). Then, for u =

∑

i ui and vi = ui/u, the
vector V = {v1, v2, . . . , vr} is uniformly distributed over the probability simplex

∑r
i=1 vi = 1.

Lemma 3 is a special case, and can be proved by considering:

U = {2w12, 2w13, . . . , 2w1k, 2w23, . . . , 2w2k, . . . , 2wk−1,k}
V = θ ≡ {θ1,2, θ1,3, . . . , θ1,k, θ2,3, . . . , θ2,k, . . . , θk−1,k}

Then V = θ is uniformly distributed over M̃2,rev(k), the probability simplex of dimension k(k−1)
2 .

Lemma 3 provides a nice gateway to use tools from random matrix theory. We will first
understand some properties of the weight matrix W , consisting of random weights wij = wji ∼
Exp(1), ∀i 6= j and wii = 0, ∀i ∈ [k]. Recall the following definition of a Wigner’s Matrix [Tao]

Definition 2. We say a random symmetric matrix A is a Wigner’s matrix, if the upper-triangular
entries Aij , i > j are distributed i.i.d with zero mean and unit variance, while the diagonal entries
Aii are i.i.d. real variables with bounded mean and variance, distributed independently of the upper-
triangular entries.

Consider the matrix Ŵ , where ŵij = wij − 1. Ŵ is a symmetric random matrix, where the
off-diagonal entries are i.i.d. with 0 mean, while the diagonal entries are constants. This implies
that, the matrix Ŵ is a Wigner’s random matrix. Then, the Strong Bai-Yin theorem, upper bound
(Theorem 2.3.24, Exercise 2.3.15 of [Tao]) implies that the eigenvalues of Ŵ are bounded as:

|λi(Ŵ )| ≤ 2
√
k + o(

√
k) a.s., ∀i ∈ [k] (43)

(here, by a.s. we mean that the sequence of events is true infinitely often as k → ∞)
We can also bound the row sums ρi of the matrix W as:

9



Lemma 4. The following properties are true for the weight matrix W .

max
1≤i≤k

∣

∣

∣

ρi
k

− 1
∣

∣

∣
= o(1) a.s. (44)

∑

1≤i≤k

(ρi
k

− 1
)2

= O(1) a.s. (45)

Proof. Let V be a matrix so that vij = wij,∀i 6= j and vii ∼ Exp(1),∀i. Then, using Lemma 2.3
of [BCC10], we get that:

max
1≤i≤k

∣

∣

∣

ρi
k

− 1
∣

∣

∣
≤ o(1) +

1

k
max
1≤i≤k

vii a.s. (46)

Let Ak,ǫ be the event such that:

Ak,ǫ =

{

1

k
max
1≤i≤k

vii ≤ ǫ

}

(47)

As vii are independent exponential random variables, we obtain:

P (Ac
k,ǫ) = 1− P

(

1

k
max
1≤i≤k

vii ≤ ǫ

)

= 1−
k
∏

i=1

P (vii ≤ kǫ)

= 1− (1− e−kǫ)k

≤ ke−kǫ

We can now obtain a bound on the sum of the probability of events:

∞
∑

k=1

P (Ac
k,ǫ) ≤

∞
∑

k=1

ke−kǫ

< ∞

By using Borel-Cantelli lemma, this proves the equation (44).
From equation (43), we know that largest eigenvalue of Ŵ is bounded as:

|λ1(Ŵ )| ≤ 2
√
k + o(

√
k) a.s (48)

Thus:

∑

1≤i≤k

(ρi
k

− 1
)2

=
〈Ŵ1, Ŵ1〉

k2

≤ λ1(Ŵ )2

k

≤ 4k

k
+ o(1) a.s.

= O(1) a.s.

This proves the equation (45).
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The lemma 4 essentially says that, every ρi is close to k, i.e.:

ρi ≤ k(1 + δ), where δ = o(1) (49)

Equation (49) then implies that that entries of the matrix K, are proportional to that of the
matrix W .

Kij =
wij

ρi
=

wij

k
(1 + o(1)) (50)

This suggests that the eigenvalues of matrix K are close to those of W/k.

Lemma 5. Let W be a random matrix on k vertices, with random weights wij distribted i.i.d as
wij = wji ∼ Exp(1) (wii = 0). Then the corresponding transition matrix K has the following
spectral properties:

λ1(K) = 1 (51)

max
2≤i≤k

|λi(K)| ≤ 2 + c√
k

a.s (52)

for some constant c > 0. (here, by ”a.s.” we mean that the sequence of events is true infinitely
often as k → ∞)

The proof for the lemma 5 follows from lemma 4, and is proved in the Appendix B. The following
corollary is immediate.

Corollary 2. Let θ ∈ M̃2,rev(k) be distributed according to the prior Φ̃u(θ). Also, let τ0rel = 1+ 2+c√
k
,

where c > 0 is a positive constant. Then,

P (θ ∈ M̃2,rev(k, τ
0
rel)) → 1, (53)

as k → ∞.

From now on we denote τ0rel = 1 + 2+c√
k
. We next analyze h(θ) and h(θ|Xn) under the prior

Φ̃u(θ; τ0rel).

Lemma 6. Let θ ∼ Φ̃u(θ; τ0rel) and τ0rel = 1 + 2+c√
k
. Then, the differential entropy h(θ) is lower

bounded as

h(θ) ≥ k(k − 1)

2
log

2

k(k − 1)
+

k(k − 1) log e

2
− log k

for k ≥ kc, where kc only depends on c > 0.

Proof. Corollary 2 implies that there exists some kc such that for k ≥ kc,

Vol(M̃2,rev(k, τ
0
rel)) ≥

1

2
Vol(M̃2,rev(k))

=
1

2





1
[

k(k−1)
2

]

!





As the distribution Φ̃u(θ; τ0rel) is uniform, we know

h(θ) = logVol(M̃2,rev(k, τ
0
rel))

≥ logVol(M̃2,rev(k))− 1

≥ k(k − 1)

2
log

2

k(k − 1)
+

k(k − 1) log e

2
− log k

We used Stirling approximation for factorial to simplify the bound on the entropy.

11



The next step in the proof is to upper bound the term h(θ|Xn), which quantifies how well
we can estimate the parameter θ from Xn. Let θ̂ = θ(Xn) be a deterministic estimator for the
parameter θ. Then,

h(θ|Xn) = h(θ − θ̂|Xn) (54)

≤ h(θ − θ̂) (55)

Utilizing the fact that Gaussian distribution maximizes the differential entropy under variance
constraints, we have

h(θ − θ̂) ≤
∑

i,j

h(θi,j − θ̂i,j) (56)

≤ 1

2

∑

i,j

[

log
(

2πeVar(θ̂i,j)
)]

(57)

≤ 1

2

∑

i,j

[

log

(

2πe

∫

θ
Φ̃u(θ; τ0rel)Var(θ̂i,j|θ)dθ

)]

(58)

Let N(i, j) =
∑n−1

r=1 1[(Xr,Xr+1) = (i, j)] represent the number of occurrences of the tuple (i, j)
in the Xn sequence. Then, a natural estimator for parameter θi,j = 2π(i, j) = π(i, j) + π(j, i) is

the empirical estimator θ̂i,j:

θ̂i,j =
N(i, j) +N(j, i)

n− 1
(59)

We prove the following bound on the variance of the empirical estimator θ̂i,j.

Lemma 7. Let θ ∼ Φ̃u(θ; τ0rel). Then the variance of the estimator θ̂i,j = N(i,j)+N(j,i)
n−1 can be

bounded as:

Var(θ̂i,j|θ) ≤
8θi,jτ

0
rel

n− 1
(60)

Proof. LetX1 → X2 . . . → Xn be a reversible Markov chain with transition matrixK ∈ M̃2,rev(k, τ
0
rel).

Consider the Markov chain over the tuples (X1,X2) → (X2,X3) . . . → (Xn−1,Xn). Let K̃ be the
corresponding transition matrix. It is interesting to note that, although the original Markov chain
is reversible, the chain over the tuples is generally not reversible. Let:

fi,j(Xr−1,Xr) =
1[(Xr−1,Xr) = (i, j)] + 1[(Xr−1,Xr) = (j, i)]

n− 1

then, the estimator θ̂i,j can be written as:

θ̂i,j =

n−1
∑

r=1

fi,j(Xr−1,Xr)

We can now use Theorem 3.7 of [P+15] on the function fi,j(Xr−1,Xr) corresponding to the
Markov chain over the tuples (X1,X2) → (X2,X3) . . . → (Xn−1,Xn), to obtain:

Var(θ̂i,j |θ) ≤
4θi,j

γps(K̃)(n− 1)

We next use the lemma 8 (proved in the Appendix C) to bound γps(K̃) in terms of τrel(K):

12



Lemma 8. Let X1 → X2 . . . → Xn be a reversible Markov chain with transition matrix K, then the
Markov chain over tuples, (X1,X2) → (X2,X3) . . . → (Xn−1,Xn) has pseudo-spectral gap γps(K̃)
given by:

γps(K̃) ≥ γ∗(K)

2
(61)

Using lemma 8, we obtain the variance bound:

Var(θ̂i,j|θ) ≤
8θi,j

γ∗(K)(n − 1)

=
8θi,jτrel(K)

(n− 1)

≤ 8θi,jτ
0
rel(K)

(n− 1)

which proves the lemma.

We next use the variance bound on the estimator to obtain an upper bound on h(θ|Xn).

Lemma 9. Let θ ∼ Φ̃u(θ; τ0rel), then the conditional differential entropy h(θ|Xn) is upper bounded
by:

h(θ|Xn) ≤ k(k − 1)

4
log

16πeτ0rel
n− 1

+
k(k − 1)

4
log

2

k(k − 1)
(62)

Proof. From equation (58), and lemma 8 we obtain:

h(θ|Xn) ≤ 1

2

∑

i,j

[

log

(

2πe

∫

θ
Φ̃u(θ; τ0rel)Var(θ̂i,j|θ)dθ

)]

(63)

≤ 1

2

∑

i,j

[

log

(

2πe

∫

θ
Φ̃u(θ; τ0rel)

8θi,jτ
0
rel

n− 1
dθ

)]

(64)

=
k(k − 1)

4
log

16πeτ0rel
n− 1

+
1

2

∑

i,j

[

log

∫

θ
Φ̃u(θ; τ0rel)θi,jdθ

]

(65)

≤ k(k − 1)

4
log

16πeτ0rel
n− 1

(66)

+
k(k − 1)

4



log
∑

i,j

2

k(k − 1)

∫

θ
Φ̃u(θ; τ0rel)θi,jdθ



 (67)

=
k(k − 1)

4
log

16πeτ0rel
n− 1

+
k(k − 1)

4
log

2

k(k − 1)
(68)

Equation (68) is true because
∑

i,j θi,j = 1. This proves the upper bound on the term h(θ|Xn).
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4.2 Proof of Theorem 1

Using lemma 2 for the prior Φ̃u(θ; τ0rel), and lemma 6, 9, we have

Rn(k, τrel) ≥
1

n
I(θ;Xn) (69)

=
1

n
[h(θ)− h(θ|Xn)] (70)

≥ k(k − 1)

4n
log

2(n − 1)

k(k − 1)
+

k(k − 1)

4n
log

e

16πτ0rel
− log k

n
(71)

for k ≥ kc, where τ0rel = 1 + 2+c√
k
. This completes the proof of the lower bound.

5 Theorem 2 Proof

For any sequence xn over the alphabet X = [k], let N(a), N(a, b) be defined as:

N(a) =
n−1
∑

i=1

1[xi = a] (72)

N(a, b) =

n−1
∑

i=1

1[(xi, xi+1) = (a, b)] (73)

Before we prove the theorem, we consider some simple lemmas.

Lemma 10. There exists a prefix code [CT12] (Section 5.1) on non-negative integers N ∪ {0} =
{0, 1, 2, . . .}, such that every integer m has a codeword of length lm ≤ 2 log2(m+ 1) + 1.

Proof. Let q be such that: 2q ≤ (m+ 1) < 2q+1. Thus, (m+ 1) can be written as:

(m+ 1) = 2q + r (74)

where, 0 ≤ r < 2q. Let Uq = 000 . . . 001 be a unary code with q zeros, and Br be the binary
representation of r using q bits. Then the following code Cm is prefix-free:

Cm = Uq1Br (75)

Thus, the length of the code l(Cm):

l(Cm) = 2q + 1 (76)

≤ 2 log2(m+ 1) + 1 (77)

This completes the proof.

Lemma 11. We can store the parameters N(a), N(a, b),∀a, b ∈ [k] for a sequence xn using Lparam

number of bits, which is upper bounded as:

Lparam(xn) ≤ 2k2 log2

( n

k2
+ 1
)

+ k2 (78)
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Proof. Note that, we only need to store N(a, b),∀a, b ∈ [k] as the parameters N(a) can be derived.
Using the prefix coding from lemma 10 for the parameters N(a, b):

Lparam(xn) ≤
∑

a,b

[2 log2(N(a, b) + 1) + 1] (79)

= 2k2
∑

a,b

1

k2
log2(N(a, b) + 1) + k2 (80)

≤ 2k2 log2





1

k2

∑

a,b

(N(a, b) + 1)



 + k2 (81)

= 2k2 log2

( n

k2
+ 1
)

+ k2 (82)

Equation (81) is true due to concavity of the log function and the Jensen’s inequality.

Lemma 12. We can use arithmetic coding [WNC87] to encode a sequence xn using Lseq(x
n) bits,

which is bounded as:
Lseq(x

n) ≤ log2 k + (n− 1)H1(x
n) + 3 (83)

where H1(x
n) is the 1st order empirical entropy of sequence xn:

H1(x
n) =

k
∑

a=1

k
∑

b=1

N(a, b)

n− 1
log2

N(a)

N(a, b)
(84)

Proof. We first encode the sequence x1 using fixed ⌈log2 k⌉ bits. Next, we encode the remaining
(n−1) symbols using arithmetic coding [WST95] (section IV) with the first order model distribution
q(b|a) = N(a, b)/N(a). Using theorem 1 of [WST95], the codelength of xn is:

Lseq(x
n) ≤ ⌈log2 k⌉+

(

n−1
∑

i=1

log2
1

q(xi+1|xi)
+ 2

)

(85)

= log2 k + 1 +

k
∑

a=1

k
∑

b=1

N(a, b) log2
N(a)

N(a, b)
+ 2 (86)

= log2 k + (n− 1)H1(x
n) + 3 (87)

This completes the proof.

Let xn be a given sequence over the alphabet X = [k]. Consider the following compressor:

1. Store all the parameters N(a, b),∀a, b ∈ [k] using the universal prefix-free code in lemma 10.

2. Use the parameters N(a, b) to compress xn using first-order Markov arithmetic coding as in
lemma 12.

Then, the codelength L̂(xn) is bounded as:

L̂(xn) = Lparam(xn) + Lseq(x
n) (88)

≤
[

2k2 log2

( n

k2
+ 1
)

+ k2
]

+ [log2 k + (n− 1)H1(x
n) + 3] (89)
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We now take a look at redundancy Rn(k):

Rn(k) = inf
L

sup
θ∈M2(k)

rn(L, θ) (90)

≤ sup
θ∈M2(k)

1

n

(

Eθ[L̂(X
n)]−Hθ(X

n))
)

(91)

= sup
θ∈M2(k)

1

n

(

Eθ[L̂(X
n)]−Hθ(X1)− (n− 1)Hθ(X2|X1)

)

(92)

≤ sup
θ∈M2(k)

1

n

(

Eθ[L̂(X
n)]− (n− 1)Hθ(X2|X1)

)

(93)

≤ 2k2

n
log2

( n

k2
+ 1
)

+
k2

n
+ sup

θ∈M2(k)

n− 1

n
(Eθ[H1(X

n)]−Hθ(X2|X1)) +
log2 k + 3

n
(94)

≤ 2k2

n
log2

( n

k2
+ 1
)

+
k2

n
+

log2 k + 3

n
(95)

Where equation (95) is true because of the concavity of entropy. This completes the proof of
the upper bound.
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A Existing Minimax Redundancy Lower Bounds

We analyze the existing lower bound by [Dav83].

Rn(k) ≥ g(k, n) =
k(k − 1)

2n
log n+

k(k − 1)

n
log

1

k4
− k(k − 1)

2n
log





C

1−
(

1− 1
4k4

)
1
2



 (96)

We can simplify g(k, n), to get the lower bound:

g(k, n) =
k(k − 1)

2n
log n+

k(k − 1)

n
log

1

k4
− k(k − 1)

2n
log





C

1−
(

1− 1
4k4

)
1
2



 (97)

=
k(k − 1)

2n
log

n

k2
− 5k(k − 1)

2n
log k2 − k(k − 1)

2n
logC + o

(

k(k − 1)

n

)

(98)

Thus, the effective lower bound on Rn(k) is:

Rn(k) ≥
k(k − 1)

2n
log

n

k2
− 5k(k − 1)

2n
log k2 − k(k − 1)

2n
logC +

(

k(k − 1)

n

)

(99)

We observe that the lower bound on redundancy Rn(k) is non-zero only when n ≫ k2 log k. We
aim to improve the lower bound when n ≍ k2.

B Proof of Lemma 5

To analyze the spectrum of the transition matrix K, we construct a symmetric matrix S, which
has the same spectrum as K almost surely.

Lemma 13. (Spectral Equivalence) Almost surely, for a large k, the spectrum of the transition
matrix K coincides with the spectrum of the symmetric matrix S defined as:

Sij =

√

ρi
ρj

Kij =
wij√
ρiρj

(100)

The lemma is proved in lemma 2.1 [BCC10].
We now use the lemma 4, which allows us to estimate ρi = k(1+o(1)), to compare the spectrum

of the matrix
√
kK with the matrix W√

k
.

Lemma 14. (Bulk behavior) The ESD (empirical spectral density) of
√
kK weakly converges to the

Wigner’s semi-circle law W2.
µ√

kK
w−−−→

k→∞
W2 (101)

where the Wigner’s semi-circle law W2 is given by:

x 7→ 1

2π

√

4− x21[−2,2](x)

18



Proof. First of all, from the lemma 13, the spectrum of S is equivalent to that of K a.s. (for large
k). Thus, it is sufficient to analyze the spectrum of

√
kS. To show the weak convergence, we bound

the Levy distance between the cumulative distributions corresponding to the ESD of matrices
√
kS

and W/
√
k. Let F√

kS and FW/
√
k be the cumulative distributions, then:

L3(F√
kS , FW/

√
k) ≤

1

k
Tr((

√
kS −W/

√
k)2) (102)

=
1

k

k
∑

i,j

w2
ij

k

(

k
√
ρiρj

− 1

)2

(103)

≤ O(δ2)





1

k2

k
∑

i,j

w2
ij



 (104)

→ 2O(δ2) a.s, as k → ∞ (105)

This proves the weak convergence of the µ√
kK to the wigner semi-circle law W2.

Note that, even though λ1(
√
kK) =

√
k → ∞ as k → ∞, the weak limit of of µ√

kK is not

affected since λ1(
√
kK) has weight 1/k. The theorem thus implies that the bulk of the spectrum

σ(K) collapses as k−1/2, but does not give a characterization for λ2(
√
kK), which is what is required.

To prove lemma 5, we represent the symmetric matrix S as a combination of a rank one matrix
P corresponding to the stationary distribution, and a ”noise” matrix S−P with nearly i.i.d entries.
Bounding the spectral norm of the ”noise” matrix S − P gives us the result.

Proof. (lemma 5) Since K is almost surely irreducible, for large enough k, the eigenspace of S of
eigenvalue 1 is a.s. of size 1. and is the span of the vector [

√
ρ1,

√
ρ2, . . . ,

√
ρk]. Consider the

symmetric matrix P :

Pij =

√
ρiρj

ρ
(106)

By removing P from S, we are essentially removing the largest eigenvalue 1, without touching
the other eigenvalues. Thus, the spectrum of the matrix S − P is given by:

{λ2(S), λ3(S), . . . , λk(S)} ∪ {0} (107)

To find
√
kλ2(S), we now bound the spectral norm of matrix A =

√
k(S − P ). Lemma 2.4

of [BCC10] along with lemma 4 gives us the result:

max
1≤i≤k

√
k|λi(S − P )| ≤ 2 + o(1) a.s. (108)

Equation (106) and lemma 13 together imply that:

max
2≤i≤k

√
k|λi(S)| ≤ 2 + o(1) a.s. (109)

max
2≤i≤k

√
k|λi(K)| ≤ 2 + o(1) a.s. (110)

max
2≤i≤k

|λi(K)| ≤ 2 + c√
k

a.s. (111)

for some constant c ≥ 0. This completes the proof.
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C Proof of Lemma 8

Consider the Markov chain over the tuples (X1,X2) → (X2,X3) . . . → (Xn−1,Xn) with transition
matrix K̃. We first analyze some properties of the transition matrix K̃.

Lemma 15. Let X1 → X2 . . . → Xn be a reversible Markov chain with transition matrix K,
then the transition matrix K̃ for the chain: (X1,X2) → (X2,X3) . . . → (Xn−1,Xn) and its matrix
reversibilization K̃∗ are:

K̃((a, b), (c, d)) = 1[b = c]K(c, d)

K̃∗((a, b), (c, d)) = 1[a = d]K(d, c)

Proof. The transition matrix for the chain (X1,X2) → (X2,X3) . . . → (Xn−1,Xn) is given by:

K̃((a, b), (c, d)) = P (X2 = c,X3 = d|X1 = a,X2 = b) (112)

= P (X2 = c|X1 = a,X2 = b)P (X3 = d|X1 = a,X2 = b,X2 = c) (113)

= 1[b = c]P (X3 = d|X2 = c) (114)

= 1[b = c]K(c, d) (115)

where, equation(114) holds because of the Markovity condition.
As the Markov chain (X1,X2) → (X2,X3) . . . → (Xn−1,Xn) is in general non-reversible, the

multiplicative reversibilization of K̃ is:

K̃∗((c, d), (a, b)) = K̃((a, b), (c, d))
π(a, b)

π(c, d)
(116)

= 1[b = c]K(c, d)
π(a)K(a, b)

π(c)K(c, d)
(117)

= 1[b = c]
π(b)K(b, a)

π(c)
(118)

= 1[b = c]
π(b)K(b, a)

π(b)
(119)

K̃∗((c, d), (a, b)) = 1[b = c]K(b, a) (120)

K̃∗((a, b), (c, d)) = 1[a = d]K(d, c) (121)

This proves the lemma.

Lemma 16. Let T be the k × k matrix corresponding to the transformation:

T M((a, b), (c, d)) = M((b, a), (c, d)) (122)

Then, K̃ and K̃∗ have the property:

((K̃∗)rK̃r) = (T K̃r)2 (123)

Proof. The matrix T also has the properties:

M((a, b), (c, d))T = M((a, b), (d, c)) (124)

T 2 = I (125)
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Then we can show that:

T K̃((a, b), (c, d))T = T 1[b = c]K(c, d)T (126)

= 1[a = c]K(c, d)T (127)

= 1[a = d]K(d, c) (128)

= K̃∗((a, b), (c, d)) (129)

Using equation (129) we can show that, for any r:

((K̃∗)rK̃r) = (T K̃T )rK̃r (130)

= T K̃rT K̃r (131)

= (T K̃r)2 (132)

This completes the proof.

Lemma 17. Matrices K̃2 and T K̃2 have the form:

K̃2((a, b), (c, d)) = K(b, c)K(c, d) (133)

T K̃2((a, b), (c, d)) = K(a, c)K(c, d) (134)

Proof. Using lemma 15, we obtain:

K̃2((a, b), (c, d)) =
∑

e,f

K̃((a, b), (e, f))K̃((e, f), (c, d)) (135)

=
∑

e,f

1[b = e]K(e, f)1[f = c]K(c, d) (136)

= K(b, c)K(c, d) (137)

This proves the equation (133). We now use the definition of T to obtain:

T K̃2((a, b), (c, d)) = K̃2((b, c), (c, d)) (138)

= K(a, c)K(c, d) (139)

This proves the lemma.

Lemma 18. Matrices K and T K̃2 have identical non-zero eigenvalues.

Proof. Let V be an eigenvector of the matrix T K̃2 with a non-zero eigenvalue η. This implies that:

ηV ((a, b), 1) =
∑

c,d

T K̃2((a, b), (c, d))V ((a, b), 1) (140)

=
∑

c,d

K(a, c)K(c, d)V ((a, b), 1) (141)

=
∑

c

K(a, c)V ((a, b), 1)
∑

d

K(c, d) (142)

=
∑

c

K(a, c)V ((a, b), 1) (143)
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Thus, this shows that for any b ∈ [k], the vector V ((., b), 1) is an eigenvector of matrix K with
eigenvalue η.

Conversely, let v = [v1, v2, . . . , vk]
T be an eigenvector of the matrix K with non-zero eigenvalue

η. Then, the vector V ((a, b), 1) = va is an eigenvector of the matrix T K̃2. Thus, together this
implies that the non-zero eigenvalues of matrices K and T K̃2 are identical.

We now come to the proof of lemma 8.

Proof. (lemma 8) Using lemma 18 and lemma 16 we get:

λ2((T K̃2)2) = max(λ2(K)2, λk(K)2)

γ((K̃∗)2K̃2) = 1−max(λ2(K)2, λk(K)2)

≥ 1−max(|λ2(K)|, |λk(K)|)
= γ∗(K)

Now using the definition of the pseudo-spectral gap γps(K̃), we obtain:

γps(K̃) ≥ γ((K̃∗)2K̃2)

2

≥ γ∗(K)

2

This proves the lemma.
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