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Abstract

We establish a lower bound on the entropy of weighted sums of (possibly dependent) random
variables (X1, X2, . . . , Xn) possessing a symmetric joint distribution. Our lower bound is in
terms of the joint entropy of (X1, X2, . . . , Xn). We show that for n ≥ 3, the lower bound is
tight if and only if Xi’s are i.i.d. Gaussian random variables. For n = 2 there are numerous
other cases of equality apart from i.i.d. Gaussians, which we completely characterize. Going
beyond sums, we also present an inequality for certain linear transformations of (X1, . . . , Xn).
Our primary technical contribution lies in the analysis of the equality cases, and our approach
relies on the geometry and the symmetry of the problem.

1 Introduction

The Entropy Power Inequality (EPI), first proposed by Shannon [22], states that for any two
independent Rn-valued random variables X and Y ,

e
2h(X)

n + e
2h(Y )

n ≤ e
2h(X+Y )

n , (1)

where h(X) and h(Y ) are the differential entropies of X and Y respectively. Equality holds in
inequality (1) if and only if X and Y are Gaussian random vectors with proportional covariance
matrices. An equivalent form of inequality (1) due to Lieb [14] is also commonly used in the
literature, and is stated as follows:

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ), (2)

where λ ∈ [0, 1]. Here, equality holds if and only if X and Y are Gaussians with identical
covariance matrices. The EPI may be interpreted as a sharp lower bound on the entropy of sums
of independent random variables in terms of their individual entropies. It has been widely used
in communication theory to prove converses of coding theorems for different kinds of Gaussian
channels, such as broadcast channels, wiretap channels, MIMO, etc. [4, 13, 20, 19, 25].

The EPI was first proved in Stam [23], and this proof was later simplified in Blachman [5].
A variety of different proofs of the EPI have been discovered since, and we refer the reader
to Rioul [21] for an informative and in-depth analysis of different proof strategies. Numerous
generalizations of this inequality have been proposed over the years such as Costa’s inequality for
when one of summands is Gaussian [6, 15, 8], a generalization involving subsets random variables
in Madiman and Barron [16], and a strengthened EPI using an auxiliary random variable in
Courtade [7].

In addition to communication theory, the EPI has also found applications in probability
theory for proving the central limit theorem [12]. Barron [3] established an entropic version of
the central limit theorem and conjectured a certain monotonicity property of entropy, which
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states that entropy is monotonically increasing with respect to the number of summands in the
central limit theorem:

h

(∑n
i=1 Xi√
n

)
≤ h

(∑n+1
i=1 Xi√
n+ 1

)
. (3)

This conjecture was established in Arstein et al. [1], and simplified proofs were obtained in Madi-
man and Barron [16]. More recently, a remarkably short and simple proof was also discovered
in Courtade [7]. Our work in this paper is partly motivated by a series of interesting questions
and conjectures made in Ball et al. [2] and Eskenazis et al. [9], which were in turn motivated by
the monotonicity properties of entropy. We briefly describe the work in these papers concerning
directional entropies.

The monotonicity property of entropy may be interpreted as a result comparing directional
entropies ; i.e., entropy of a random vector projected in a certain direction. Indeed, Eskenazis
et al. [9] interpreted the monotonicity property of entropy as follows: For i.i.d. random vari-
ables X1, . . . , Xn, entropy along the direction (1, 1, . . . , 1)T 1√

n
is larger than the entropy along

(1, 1, . . . , 1, 0)T 1√
n−1

. This led them to the natural question (Question 6 in [9]): Along which

direction is the entropy maximized, or equivalently, which direction is most Gaussian-like for
the joint distribution of (X1, . . . , Xn)

T ? A natural guess would be that the optimal direction
is (1, 1, . . . , 1)T 1√

n
, however, this conjecture is not true and it follows from a counterexample

constructed in Ball et al. [2] for the case of n = 2. Ball et al. [2] conjectured that for log-concave
random variables, the entropy maximizing direction for n = 2 should be (1, 1)T /

√
2. In fact,

the conjecture in Ball et al. [2] is stronger—h(
√
λX1 +

√
1− λX2) is a concave function of λ.

Eskenazis et al. [9] were able to prove (Question 6 in [9]) for a special class of symmetric random
variables called Gaussian mixtures. However, in general (Question 6, [9]) and even its special
case of log-concave random variables for n = 2 is as yet open.

One of our contributions in this paper is to establish lower bounds on such directional
entropies, for symmetric random vectors. We call X a symmetric random vector if fX(x) =
fX(|x|), where by |x| we mean taking the absolute value of each coordinate in the x vector.
Stated informally, our result is the following:

Theorem 1. For a symmetric random vector X = (X1, . . . , Xn)
T and the unit vector a =

(1, . . . , 1)T
√
n, the following bound holds:

h(a ·X) = h

(∑n
i=1 Xi√
n

)
≥ h(X)

n

For an arbitrary unit vector a = (a1, . . . , an), we may use the above result to obtain the
bound

h(a ·X) ≥ h(X)

n
+ log

(
nn/2

n∏

i=1

ai

)
.

Notice that unlike most entropy inequalities, our lower bound is in terms of the joint entropy
h(X). To our knowledge, this is the first inequality in which entropies of sums and joint entropies
both make an appearance. We note that similarities between entropy inequalities for joint
distributions [18] and for sums [16] have been observed and explored recently [17]. Interestingly,
our lower bound is maximized in the direction (1, . . . , 1) 1√

n
, which is the conjectured direction

of maximum entropy from [2, 9] for log-concave random vectors.
Another notable point is that our inequality does not require Xi’s to be independent. If Xi’s

are independent, Theorem 1 may be seen as a consequence of the regular EPI stated in Lieb’s
form (2). Another interpretation of our bound follows from the following observation: If A is
an orthonormal matrix with rows aTi , then

∑n
i=1 h(a

i ·X)

n
≥ h(AX)

n
=

h(X)

n
. (4)
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Inequality (4) implies that for any choice of an orthonormal basis, and for any random vector X ,

there is at least one direction ai which satisfies h(ai ·X) ≥ h(X)
n . Theorem 1 explicitly identifies

(1, . . . , 1)T /
√
n as such a direction.

The search for EPI-like inequalities for dependent random variables is an active area of
research, although there are relatively fewer results here. Takano [24] derived conditions on the
joint distribution of (X,Y ) such that the classical form of the EPI in (1) continues to hold.
Under weaker conditions on the joint distribution compared to those in Takano [24], Johnson
[11] showed that inequality (1) continues to hold with a slight modification: h(X) and h(Y ) are
replaced by h(X |Y ) and h(Y |X) respectively. Rioul [21] showed that under stronger conditions
compared to those of Takano [24], the equivalent form of the EPI in inequality (2) can be made
to hold for any choice of λ ∈ [0, 1].

The conditions from [24] and [11] are in terms of the score functions and Fisher informations
of Gaussian perturbed random variables Xt and Yt, where

Xt = X +
√
f1(t)Z1, and

Yt = Y +
√
f2(t)Z2,

where Z1, Z2 ∼ N (0, 1) and f1(·), f2(·) are positive functions that tend to +∞ as t → +∞.
As such, these conditions are not easily interpretable. The conditions from Rioul [21] are in
terms of the mutual information between Gaussian perturbed versions of X and Y and are more
interpretable, although they are not easy to verify. In contrast, we impose the easy to interpret
and easy to verify (albeit strong) condition of symmetry on the distribution of X .

Going beyond directional entropies, it is natural to think about entropies of projections in
subspaces of arbitrary dimensions; i.e., considering h(AX) where A is a k × n matrix with
orthonormal rows. Analogous to (Question 6 in [9]), one may pose the question of identifying
the entropy maximizing k-dimensional subspace for a random vector X . This appears to be a
very interesting and challenging problem even for specific case of Gaussian mixtures considered
in Eskenazis et al. [9]. If X has independent components, Zamir and Feder’s EPI for linear
transformations of X [26] yields lower bounds on h(AX) for a matrix A. However, if X has
dependent components, no such result is known in the literature. 1 We take a step towards
obtaining such a result by showing that for symmetric random vectors, it is possible to obtain
lower bounds on h(AX) similar to those in Theorem 1. Stated informally, our result is the
following:

Theorem 4. Let A be an orthogonal k × n matrix with columns a1, . . . , an, and suppose that
A is “balanced”; i.e., ‖ai‖2 = k/n for 1 ≤ i ≤ n. Then for a symmetric random vector X, the
following bound holds:

h(AX) ≥ k

n
h(X). (5)

Equality cases: Equality holds in the classical EPI if and only if the two random vectors are
Gaussian with proportional covariance matrices. We examine conditions for equality in Theorem
1, and notice an interesting phenomenon where equality conditions change when dimension
increases beyond n = 2. Intuitively, this is because the symmetry assumption becomes stronger
in higher dimensions. In Theorem 2, we completely characterize all equality cases for n = 2
by showing that X has to be a 45◦ rotated version of Z, where Z has i.i.d. and symmetric
components:

Theorem 2. If h((X1 + X2)/
√
2) = h(X1, X2)/2, then there exist i.i.d. symmetric random

variables Z1 and Z2 such that

1√
2

(
1 −1
1 1

)(
Z1

Z2

)
=

(
X1

X2

)
.

1The second author learnt of this open problem, as well as the conjectures in Ball et al. [2] and Eskenazis et al. [9]
through the Entropy Power Inequalities Workshop sponsored by the American Institute of Mathematics (AIM) held in
May, 2017, in San Jose, CA. A list of open problems may be found at this link: http://aimpl.org/entropypower/2/
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For dimensions n > 2, we show that the only condition under which equality holds in
Theorem 1 is when X has i.i.d. Gaussian components. This result is the most technical part of
our paper and is given by Theorem 3:

Theorem 3. Let X be a symmetric random vector in R
n, where n > 2. Equality holds in The-

orem 1 for the direction (1, . . . , 1)T /
√
n if and only if Xi are i.i.d. Gaussian random variables.

It is interesting to note that the symmetry condition combined with the equality condition
forces X to have independent components, even when we allow for dependence.

The structure of our paper is as follows: The main inequality and its proof will be given
in Section 2. In Section 3, we completely characterize the equality cases for n = 2 and n > 2
separately. In Section 4, we extend the inequality to k−dimensional projections. All supporting
lemmas used in the proof of the main results will be given in Appendix A.

Notation: We denote a random column vector in R
n by X = (X1, X2, . . . , Xn)

T . We will
use the notation x = (x1, x2, . . . , xn)

T and denote the joint density fX1,...,Xn
(x1, . . . , xn) by

fX(x). For an R
n-valued random variable X with a continuous and differentiable density fX ,

the differential entropy of X is given by

h(X) = −
∫

Rn

fX(x) log fX(x)dx

and its Fisher information matrix is defined as

[I(X)] = E
[
(∇ log fX(x))(∇ log fX(x))T

]
.

Note that the (i, j)-th term is given by

[I(X)]i,j = E




∂fX (x)
∂xi

fX(x)
·

∂fX (x)
∂xj

fX(x)




=

∫

Rn

∂fX(x)

∂xi

∂fX(x)

∂xj

1

fX(x)
dx.

The Fisher information of X is defined as

I(X) = Trace([I(X)])

= E




n∑

i=1

(
∂fX (x)
∂xi

fX(x)

)2



=

∫

Rn

‖∇fX(x)‖22
fX(x)

dx.

The quantity ρX(x) := ∇ log fX(x) is called the score function of X , and the Fisher information
is also stated as E[‖ρ(X)‖22].

2 Main results

Definition 1. A random vector X = (X1, X2, . . . , Xn)
T on R

n with a density fX is called a
symmetric random vector if the following holds:

fX(x1, x2, . . . , xi, . . . , xn) = fX(x1, x2, . . . ,−xi, . . . , xn), (6)

for all 1 ≤ i ≤ n and all xi ∈ R. An equivalent way to state this is fX(x) = fX(|x|), where
|x| = (|x1|, . . . , |xn|).
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Theorem 1. Let X = (X1, X2, . . . , Xn)
T be a symmetric random vector on R

n. Then the
following inequality holds:

h

(
n∑

i=1

Xi√
n

)
≥ h(X)

n
=

h(X1, . . . , Xn)

n
. (7)

Following a well-established strategy for proving such inequalities, we first prove a Fisher
information inequality and then use an integral representation of differential entropy to arrive
at the desired inequality. Lemma A.2 gives the Fisher information inequality that we need.

Proof of Theorem 1. Let Y =
∑

n
i=1 Xi√

n
. From Lemma A.2, we have I(Y ) ≤ I(X)/n. Consider

a random Gaussian vector Z with the identity covariance matrix; i.e., Z ∼ N (0, I), and Z is
independent of X . For t ≥ 0, define Xt := X +

√
tZ. Note that

∑n
i=1 Xt(i)√

n
=

∑n
i=1 Xi√
n

+
n∑

i=1

√
tZi√
n

d
= Y +

√
tZ0 := Yt,

where
d
= stands for equality in distribution, and Z0 ∼ N (0, 1) is independent of Y . Note also

that if X has a symmetric joint distribution, Xt also has a symmetric distribution. Hence, we
may apply Lemma A.2 to Xt and Yt to conclude

I(Yt) ≤
I(Xt)

n
. (8)

We now use the integral form of differential entropy in terms of Fisher information [21], which
implies

h(X) =
n

2
log 2πe− 1

2

∫ ∞

0

(
I(Xt)−

n

1 + t

)
dt, and (9)

h(Y ) =
1

2
log 2πe− 1

2

∫ ∞

0

(
I(Yt)−

1

1 + t

)
dt. (10)

This implies

h(X)

n
=

1

2
log 2πe− 1

2

∫ ∞

0

(
I(Xt)

n
− 1

1 + t

)
dt

≤ 1

2
log 2πe− 1

2

∫ ∞

0

(
I(Yt)−

1

1 + t

)
dt

= h(Y ).

This completes the proof.

The following corollary is an immediate consequence of Theorem 1 and the scaling properties
of the entropy function:

Corollary 2.1. Let a = (a1, . . . , an)
T be any unit vector in R

n; i.e., ‖a‖2 = 1. Then the
following inequality holds:

h(a ·X) = h

(
n∑

i=1

aiXi

)
≥ h(X)

n
+ log

(
nn/2

n∏

i=1

ai

)
.
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3 Equality cases

Let v1 =
(

1√
n
, · · · , 1√

n

)T
. Extend v1 to an orthogonal basis {v1, · · · , vn}. Denote

A = (v1, · · · , vn)

Let Z = (Z1, · · · , Zn)
T := ATX , then X = AZ. In particular, Z1 = 1√

n

∑n
i=1 Xi. Let z = ATx,

we have

fZ(z) = fX(x) ·
∣∣∣ det

(
dx

dz

) ∣∣∣ = fX(x) · |A| = fX(x),

and
∂fZ(z)

z1
=

n∑

i=1

1√
n

∂fX(x)

∂xi

Denote Ẑi = (Z1, · · · , Zi−1, Zi+1, Zn). We will show Z1 is independent with Ẑ1 using Lemma
A.3, which is a general result on the independence of random variables.

Lemma 3.1. For equality to hold in inequality (7), Z1 must be independent of Ẑ1.

Proof of Lemma 3.1. For equality to hold in Theorem 1, the only condition we need is that
inequality (26) from Lemma A.2 is an equality for all y. The only way this can happen is if

∑n
i=1

∂fX (x)
∂xi

fX(x)

is constant for all x on the hyperplane x · (1, . . . , 1)T /√n = y. An equivalent way to express

this is ∂fZ(z)
∂z1

/fZ(z) is a function of z1. This is equivalent to

∂2

∂zk∂z1
log fZ(z) = 0, ∀k 6= 1.

Applying Lemma A.3, we conclude that Z1 is independent of Ẑ1.

The symmetry assumption may be combined with Lemma 3.1 to yield a stronger indepen-
dence result:

Lemma 3.2. Let X be a symmetric random variable that achieves equality in Theorem 1. Let
A = {x ∈ R

n such that |x| = (1, . . . , 1)T /
√
n}. Let B = (b1, . . . , bn) be any orthogonal basis

such that b1 ∈ A. If Y = BTX, then Y1 is independent of (Y2, . . . , Yn).

Proof of Lemma 3.2. Define

S = {1 ≤ i ≤ n|b1(i) = −1/
√
n}.

where b1(i) is the ith coordinate of bi. For i ∈ S, define X̃i = −Xi, and otherwise X̃i = Xi.

Define B̃ to be equal to the B matrix, except the i-th row is flipped in sign if i ∈ S. Note that
B̃ is now an orthogonal matrix with its first column being (1, . . . , 1)T /

√
n. Clearly, Y = B̃T X̃ .

Using symmetry, it is clear that if X satisfies Theorem 1 with equality, then so does X̃. Applying
Lemma 3.1, we conclude Y1 is independent of (Y2, . . . , Yn).
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3.1 Equality conditions for n = 2

When n = 2, the only orthonormal basis with one vector being (1, 1)T /
√
2 is

A =
1√
2

(
1 −1
1 1

)
.

Define Z = ATX . We first show that Z1 and Z2 are independent and identically distributed:

Lemma 3.3. If X is a symmetric random vector in R
2 such that inequality (7) from Theorem

1 is satisfied with equality, then Z1 and Z2 are independent, identically distributed, symmetric
random variables.

Proof of Lemma 3.3. By Lemma 3.1, we obtain the independence of Z1 and Z2. Since X is
symmetric, we see that X1+X2, X1−X2, −X1+X2, and −X1−X2 have the same distributions.
This means that Z1, Z2,−Z1 and −Z2 have identical distributions, and this concludes the proof.

Theorem 2. For a symmetric random vector X in R
2, equality holds in inequality (7) for

Theorem 1 if and only if Z1 = X1+X2√
2

and Z2 = X1−X2√
2

are independent, identically distributed

symmetric random variables.

Proof. The “only if” part was established in Lemma 3.3, so we need to check the “if” part. If
Z1 = X1+X2√

2
and Z2 = X1−X2√

2
are i.i.d. according to a symmetric distribution fZ(·), then

fX(x1, x2) = fZ

(
x1 + x2√

2

)
fZ

(
x1 − x2√

2

)
.

It is easy to check that X is indeed a symmetric random variable. Furthermore, we may also
check that inequality (7) from Theorem 1 holds with equality:

h(X1, X2)

2
=

h(Z1, Z2)

2
=

h(Z1) + h(Z2)

2
= h(Z1) = h

(
X1 +X2√

2

)
.

This completes the proof.

3.2 Equality conditions for n ≥ 3

Theorem 3. Let X = (X1, . . . , Xn)
T be a symmetric R

n-valued random vector. Then equality
holds in Theorem 1 if and only if Xi’s are i.i.d. 0-mean Gaussian random variables.

Proof. Let A be the set of all unit vectors where each coordinate is ±1√
n
, that is

A = {x ∈ R
n such that |x| = (1, . . . , 1)T /

√
n}.

From A, choose any n vectors v1, v2, . . . , vn such that span(v1:n) = R
n. Here, the notation v1:n

is shorthand for the set {v1, . . . , vn}. Furthermore, choose v1 and v2 such that v1 6⊥ v2. Note
that it is always possible to make such a choice for n > 2, but not for n = 2. For example, we
can let

vi(j) =

{
1/

√
n if i 6= j

−1/
√
n if i = j

where vi(j) is the jth coordinate of vi. Let M be the matrix with the ith column as vi, then
M = (N − 2I)/

√
n where N is the n by n matrix with all entries equal to 1. Clearly, N satisfy

N2 = nN

7



and

M(N + (2− n)I) =
1√
n
(N − 2I)(N + (2− n)I) =

−4 + 2n√
n

I

Since n 6= 2, M is invertible, and so v1, · · · , vn are linearly independent. v1 ·v2 = n−4
n , therefore

v1 6⊥ v2 when n 6= 4. For n = 4, change v1 to 1√
n
[1, 1, 1, 1], explicit computations can show they

satisfy our conditions.
By Lemma 3.2 we know that X · vi is independent of Proj(X, (vi)⊥). Here, Proj(X, (vi)⊥)

stands for the projection of X on to the (n− 1)-dimensional subspace that is orthogonal to vi.
We first construct an orthonormal basis by applying the Gram-Schmidt procedure to v1, . . . , vn

in that order. Denote this basis by A1 = (a11, a12, . . . , a1n), where each a1j is a vector in R
n.

Observe that since we used the Gram-Schmidt procedure, we must have span(a11:1j) = span(v1:j)
for all j. In particular, we have a11 = v1.

In a similar manner, for each i ≥ 2 denote by Ai = (ai1, ai2, . . . , ain) the orthogonal basis
obtained by using the Gram-Schmidt procedure on the permutation with vi used first; i.e., on
vi, v1, . . . , vn. Note that as for i = 1, we have that ai1 = vi. We also have that the last n − i
columns of A1 and Ai are identical, because

span(a11:1i) = span(ai1:ii) = span(v1:i).

This is illustrated in the below diagram:

[v1, v2, · · · , vn] A1 := [a11 = v1, a12, · · · , a1n]

[v2, v1, v3, · · · , vn] A2 := [a21 = v2, a22, a23 = a13, · · · , a2n = a1n]

[v3, v1, v2, v4, · · · , vn] A3 := [a31 = v3, a32, a33, a34 = a24, · · · , a3n = a2n]

...
...

[vn, v1, · · · , vn−1] An := [an1 = vn, an2, · · · , ann]

G−S

carry over last n−2

G−S

carry over last n−3

G−S

G−S

We now define new random variables which are the projections of X on to the basis given
by the bases Ai’s. For 1 ≤ i ≤ n, define

Zi = AT
i X.

Denote Zi(j) as the jth components of Zi. Our strategy is to show that the components of
Z1 are independent and Gaussian with the same variance. Note that this implies that X is a
spherically symmetric Gaussian, and concludes the proof of Theorem 3.

Let Ri be a rotation matrix such that Ai = A1Ri, for 1 ≤ i ≤ n. Since the last n− i columns
of Ai and A1 are identical, we have that

Ri =

(
R̂i 0i×n−i

0n−i×i In−i×n−i

)

for some i× i rotation matrix R̂i. We can express Zi in terms of Z1 via the relation

Zi = AT
i X

= RT
i A

T
1 X

= RT
i Z

1.
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For i = 2 in particular, let

R̂T
2 =

(
α11 α12

α21 α22.

)
.

Since we chose v1 and v2 to be non-orthogonal, all entries of R̂T
2 are non-zero. Furthermore, we

have
(
Z2(1)
Z2(2)

)
= R̂T

2

(
Z1(1)
Z1(2)

)
.

Additionally, we may apply Lemma 3.2 to write the following independence relations:

Z1(1) ⊥⊥ Z1(2), and

Z2(1) ⊥⊥ Z2(2).

This shows that (Z1(1), Z1(2)) has independent components even after rotating by a matrix

R̂2. Since R̂T
2 has all non-zero entries, we may use the characterization theorem of Gaussian

distributions [10] to conclude that Z1(1) and Z1(2) are normally distributed with 0 mean and
identical variances.

We will continue the proof using induction. Assume Z1(1), · · · , Z1(k−1) are i.i.d. Gaussian
and independent of Z1(k), · · · , Z1(n). This certainly is true for k = 1. We are going to show
that Z1(1), · · · , Z1(k) are i.i.d. Gaussian as well, and independent of Z1(k + 1), . . . , Z1(n).
Express Zk(1) as a linear combination of Z1(1), · · · , Z1(k),

Zk(1) = α11Z
1(1) + · · ·+ α1,kZ

1(k),

for some α11 through α1k. By Lemma 3.2 and our induction assumption, we have the following
independence relations:

α11Z
1(1) + · · ·+ α1,k−1Z

1(k − 1) ⊥⊥ (Z1(k + 1), . . . , Z1(n)), and

α11Z
1(1) + · · ·+ α1,k−1Z

1(k − 1) + α1,kZ
1(k) ⊥⊥ (Z1(k + 1), . . . , Z1(n))

Note that α1,k 6= 0 because α1,k corresponds to the projection of X onto vk which does not live
in the span of v1, · · · , vk−1. We may therefore apply Lemma A.5 to conclude that

Z1(k) ⊥⊥ (Z1(k + 1), . . . , Z1(n)).

Furthermore, we also know that Zk(1) ∼ Z1(1) = N (0, σ2) because of the symmetry assumption.
We also have

α11Z
1(1) + · · ·+ α1,k−1Z

1(k − 1) ∼ N (0, α2
11σ

2 + · · ·+ α2
1,k−1σ

2),

Note that
∑k

i=1 α
2
1,i = 1. Applying Lemma A.6, we conclude that Z1(k) ∼ N (0, σ2). By induc-

tion, all the Z1(i)’s are independent and identically distributed as Gaussian random variables
and completes the proof.

Remark 3.1. Note that we use the Lemma A.5 only for the case when X is a Gaussian random
variable, in which case φX has no roots.

4 Extensions

The proof of Theorem 1 may be adapted to obtain a version of the same with k-dimensional
projections:
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Theorem 4. Let X be a symmetric R
n-valued random vector. Let A be a k × n matrix with

orthonormal rows. The matrix A is assumed to be balanced; i.e. all columns of A have the same
ℓ2-norm:

k∑

i=1

a2ij =
k

n
for all 1 ≤ j ≤ n.

Then the following bound holds for h(AX):

h(AX) ≥ k

n
h(X). (11)

Proof. Lemma A.1 from Appendix A gives

∇fY (y)

fY (y)
= E

[
A

(∇fX(X)

fX(X)

) ∣∣∣Y = y

]
. (12)

Taking the squared norm on both sides and using Cauchy-Schwartz inequality, we see that

‖ρ(y)‖22 ≤ E

[∥∥∥∥A
(∇fX(X)

fX(X)

)∥∥∥∥
2

2

∣∣∣Y = y

]
. (13)

Taking an expectation with respect to Y , we conclude

I(Y ) ≤ E

[∥∥∥∥A
(∇fX(X)

fX(X)

)∥∥∥∥
2

2

]
. (14)

Notice that upon expanding, the right hand side contains cross terms of the form

E




∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 ,

which are all equal to 0 due to Lemma A.4 in Appendix A. Furthermore, the coefficient of each
term of the form

E




(
∂fX (X)

∂xj

)2

fX(X)2




is given by
∑k

i=1 a
2
ij , which is k/n since A is assumed to be a balanced matrix. Thus, we arrive

at the bound

I(Y ) ≤ k

n
I(X). (15)

As in Theorem 1, we now use the integral form of differential entropy in terms of Fisher infor-
mation [21], which implies

h(X) =
n

2
log 2πe− 1

2

∫ ∞

0

(
I(Xt)−

n

1 + t

)
dt, and (16)

h(Y ) =
k

2
log 2πe− 1

2

∫ ∞

0

(
I(Yt)−

k

1 + t

)
dt. (17)

This implies

kh(X)

n
=

k

2
log 2πe− 1

2

∫ ∞

0

(
kI(Xt)

n
− k

1 + t

)
dt

≤ k

2
log 2πe− 1

2

∫ ∞

0

(
I(Yt)−

k

1 + t

)
dt

= h(Y ).

This completes the proof.
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5 Conclusion

In this paper, we discovered a new lower bound for directional entropies of symmetric random
variables. Our bounds are different from similar bounds in the literature in two key aspects.
Firstly, the lower bound is in terms of the joint entropy h(X) instead of being in terms of a linear
combination of h(Xi)’s. And secondly, the lower bound holds for dependent random variables
as well, as long as the joint distribution is symmetric. Our proof strategy involves proving a
Fisher information inequality and then deriving a corresponding entropy inequality.

Our main technical contribution is the analysis of the equality cases. For n = 2, we com-
pletely characterized all possible equality cases, and showed that unlike the regular EPI, equal-
ity may hold even for non-Gaussian random variables. For dimensions great than 2, we showed
that equality holds if and only if the random variables are i.i.d. Gaussian. Although this is
the same equality condition for the regular EPI, our proof techniques are novel and rely on cer-
tain independence properties of the joint distribution combined with the symmetry assumption.
Lastly, we also proved a generalization that yields entropy bounds for certain projections into
k-dimensional subspaces.

There are a number of open problems that we would like to consider in future work. For k-
dimensional projections, our lower bound only holds for certain “balanced” projection matrices.
It would be interesting to see if these bounds can yield bounds for projections in arbitrary k-
dimensional subspaces as well. Analyzing equality cases for such k-dimensional projections also
appears to be a challenging problem. It would be quite surprising if there are equality cases other
that i.i.d. Gaussian random variables in these problems. Yet another direction to pursue would
be to examine joint distributions corresponding to i.i.d. Gaussian mixture random variables as
in Eskenazis et al. [9], and identify which k-dimensional projections have the largest entropy.
The current results in [9] hold only for 1-dimensional projections. Our analysis in this paper
heavily relies on the symmetry assumption. It is easy to construct examples of non-symmetric
random variables that do not satisfy the bounds in this paper. It would be interesting to see we
can establish similar bounds for other classes of joint distributions, such as those corresponding
to certain symmetric graphical models.

A Proofs of lemmas

Lemma A.1. Let X be an R
n-valued random variable. Let A be any k × n orthogonal matrix,

and let Y = AX. Then we have the equality

∇fY (y)

fY (y)
= E

[
A

(∇fX(X)

fX(X)

) ∣∣∣Y = y

]
. (18)

Proof of Lemma A.1. Let the rows ofA be AT
1 , . . . , A

T
k . By finding orthogonal rowsA

T
k+1, . . . , A

T
n ,

we extend the set of rows of A to a complete orthogonal basis. For a point y = (y1, . . . , yk)
T ,

we have that y0 = A1y1 + · · ·+Akyk is vector satisfying Ay0 = y. Thus, we may write fY (y) as

fY (y) =

∫

t

fX(y0 +Ak+1t1 + · · ·+Antn−k)dt, (19)

where t = (t1, . . . , tn−k)
T . Define yt = y0 + Ak+1t1 + · · · + Antn−k. Taking the gradient with

respect to y on both sides of equation (19), it is easy to check that

∇fY (y) =

∫

t

A∇fX(yt)dt. (20)

Dividing both sides of equation (20) by fY (y),

∇fY (y)

fY (y)
=

∫

t

A
∇fX(yt)

fX(yt)
· fX(yt)

fY (yt)
dt. (21)

11



Noting that fX|Y (yt|y) = fX (yt)
fY (yt)

, we conclude that

∇fY (y)

fY (y)
=

∫

t

A
∇fX(yt)

fX(yt)
fX|Y (yt|y)dt (22)

= E

[
A

(∇fX(X)

fX(X)

) ∣∣∣Y = y

]
. (23)

Lemma A.2. Let X = (X1, X2, . . . , Xn) be a symmetric R
n-valued random vector, and let

Y =
∑n

i=1 Xi√
n

. Then we have

I(Y ) ≤ I(X)

n
. (24)

Proof of Lemma A.2. Lemma A.1 from Appendix A gives that

∇fY (y)

fY (y)
= E

[
1√
n

∑n
i=1

∂fX (X)
∂xi

fX(x)

∣∣∣∣∣Y = y

]
. (25)

Using Cauchy-Schwartz inequality, we have

ρ(y)2 ≤ E



(

1√
n

∑n
i=1

∂fX (X)
∂xi

fX(X)

)2 ∣∣∣∣∣Y = y


 . (26)

Averaging with respect to y,

I(Y ) = E[ρ(y)2] (27)

≤ E



(

1√
n

∑n
i=1

∂fX (X)
∂xi

fX(X)

)2

 (28)

= E




n∑

i=1

1

n

(
∂fX (X)

∂xi

fX(X)

)2

+ 2
∑

1≤i<j≤n

1

n

∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 (29)

= E




n∑

i=1

1

n

(
∂fX (X)

∂xi

fX(X)

)2

+

2

n
E


 ∑

1≤i<j≤n

∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 (30)

=
I(X)

n
+

2

n
E


 ∑

1≤i<j≤n

∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 . (31)

Lemma A.4 from Appendix A shows that since X is symmetric, each term of the form

E




∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 = 0,

and thus the second term in expression (31) vanishes, and this concludes the proof.

Lemma A.3. Let X = (X1, · · · , Xn) be a random vector and fX is its density function. Define

X̂i := (X1, · · · , Xi−1, Xi+1, · · · , Xn).

Then Xi is independent of X̂i if and only if

∂2

∂xk∂xi
log fX(x) = 0, ∀k 6= i

12



Proof. If Xi is independent of X̂i, then

fX(x) = fXi
(xi)fX̂i

(x̂i).

Taking the logarithm and differentiating with respect to xi, we obtain

∂

∂xi
log fX(x) =

f ′
Xi

(xi)

fXi
(xi)

.

Differentiating again with respect xk for k 6= i gives

∂2

∂xk∂xi
log fX(x) = 0, ∀k 6= i. (32)

On the other hand, if condition (32) is true, then ∂
∂Xi

log fX(x) is a function of xi, and we can
write log fX(x) as the sum of a function on xi and a function on x̂i, i.e.

log fX(x) = g(xi) + h(x̂i)

for some function g and h. Then
fX(x) = eg(xi)eh(x̂i)

Since g and h are unique up to a constant, we can normalize g, s.t.
∫
eg(xi)dxi = 1. Notice that

also forces
∫
eh(x̂i)dx̂i = 1. Therefore eg(xi) and eh(x̂i) are the density functions of Xi and x̂i

respectively, and so
fX(x) = fXi

(xi)fX̂i
(x̂i).

From this we conclude that Xi is independent of X̂i.

Lemma A.4. If X is symmetric R
n-valued random vector, then for any 1 ≤ i, j ≤ n, i 6= j,

the following holds:

E




∂fX (X)
∂xi

fX(X)
·

∂fX (X)
∂xj

fX(X)


 = 0. (33)

Proof of Lemma A.4. Since fX(x1, . . . , xi, . . . , xn) = fX(x1, . . . ,−xi, . . . , xn), we have

∂fX
∂xi

(x1, . . . ,−xi, . . . , xn) = −∂fX
∂xi

(x1, . . . , xi, . . . , xn), and (34)

∂fX
∂xj

(x1, . . . ,−xi, . . . , xn) =
∂fX
∂xj

(x1, . . . , xi, . . . , xn). (35)

Therefore
∂fX
∂xi

(x1, . . . ,−xi, . . . , xn) · ∂fX
∂xj

(x1, . . . ,−xi, . . . , xn)

f2
X(x1, . . . ,−xi, . . . , xn)

= −
∂fX
∂xi

(x1, . . . , xi, . . . , xn) · ∂fX
∂xj

(x1, . . . , xi, . . . , xn)

f2
X(x1, . . . , xi, . . . , xn)

.

Since the joint density is symmetric, we have

E




∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2

∣∣∣∣∣X1, · · · , Xi−1, Xi+1, · · · , Xn


 = 0 (36)

Taking an expectation again, we conclude

E




∂fX(X)
∂xi

· ∂fX (X)
∂xj

fX(X)2


 = E


E




∂fX (X)
∂xi

· ∂fX (X)
∂xj

fX(X)2

∣∣∣∣∣X1, . . . , Xi+1, Xi+1, · · · , Xn




 , (37)

= 0. (38)

This concludes the proof.
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Lemma A.5. Let X and Y be real-valued random variables, and let Z be an R
n-valued random

variable. We have the independence relations X ⊥⊥ (Y, Z), and X + Y ⊥⊥ Z. Furthermore, the
characteristic function of X, denoted by φX , is assumed to have no zeros. Then X,Y, Z are
mutually independent.

Proof. Note that it is enough to show that Y ⊥⊥ Z. In terms of characteristic functions, we
need to show that φY,Z(t1, t2) = φY (t1)φZ(t2) for all t1 ∈ R and t2 ∈ R

n. Using the fact that
X is independent of (Y, Z), we have

E(et1X+t1Y +tT2 Z) = φX(t1)φY,Z(t1, t2).

Using the independence of (X + Y ) and Z, we have

E(et1X+t1Y+t2TZ) = φX+Y (t1)φZ(t2)

(a)
= φX(t1)φY (t1)φZ(t2),

where (a) follows becauseX ⊥⊥ (Y, Z). Since φX has no zeros, we may divide it out and conclude

φY,Z(t1, t2) = φY (t1)φZ(t2).

This shows that Y ⊥⊥ Z and concludes the proof.

Lemma A.6. If X and Y are real-valued random variables such that:

1. X ∼ N (0, σ2
1)

2. X ⊥⊥ Y

3. X + Y ∼ N (0, σ2
1 + σ2

2)

Then Y ∼ N (0, σ2
2).

Proof. Since X and Y are independent, we have

E(etX+tY ) = φX(t)φY (t),

and using the definition of φX+Y , we have

E(etX+tY ) = φX+Y (t).

Since φX has no zeros owing to X being Gaussian, we have

φY (t) =
φX+Y (t)

φX(t)
.

The right hand side is precisely the characteristic function of a N (0, σ2
2) random variable. This

implies Y ∼ N (0, σ2
2) and concludes the proof.
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