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Estimation in the spiked Wigner model:

A short proof of the replica formula

Ahmed El Alaoui∗ Florent Krzakala†

Abstract

We consider the problem of estimating a rank-one perturbation of a Wigner matrix in a
setting of low signal-to-noise ratio. This serves as a simple model for principal component
analysis in high dimensions. The mutual information per variable between the spike and
the observed matrix, or equivalently, the normalized Kullback-Leibler divergence between
the planted and null models are known to converge to the so-called replica-symmetric
formula, the properties of which determine the fundamental limits of estimation in this
model. We provide in this note a short and transparent proof of this formula, based
on simple executions of Gaussian interpolations and standard concentration-of-measure
arguments. The Franz-Parisi potential, that is, the free entropy at a fixed overlap, plays an
important role in our proof. Furthermore, our proof can be generalized straightforwardly
to spiked tensor models of even order.

1 Introduction

Extracting low-rank information from a data matrix corrupted with noise is a fundamental
statistical task. Spiked random matrix models have attracted considerable attention in statis-
tics, probability and machine learning as rich testbeds for theoretical investigation on this
problem [Joh01, Péc14, Péc06, BAP05]. A basic such model is the spiked Wigner model in
which one observes a rank-one deformation of a Wigner matrix W :

Y =

√
λ

N
x
∗
x
∗⊤ +W , (1)

where Wij = Wji ∼ N (0, 1) and Wii ∼ N (0, σ2) are independent for all 1 ≤ i ≤ j ≤ N .
The spike vector x

∗ ∈ R
N represents the signal to be recovered, and λ ≥ 0 plays the role of

a Signal-to-Noise Ratio (SNR) parameter. The entries of x∗ come i.i.d. from a (Borel) prior
Px on R with bounded support, so that the scaling in the above model puts the problem in
a high-noise regime where only partial recovery of the spike is possible. A basic statistical
question about this model is for what values of the SNR λ is it possible to estimate the spike
x
∗ with non-trivial accuracy? Spectral methods, or more precisely, estimation using the top

eigenvector of Y , are know to succeed above a spectral threshold and fail below [BGN11].
Since the posterior mean is the estimator with minimal mean squared error, this question
boils down to the study of the posterior distribution of x∗ given Y , which by Bayes’ rule, can
be written as

dPλ(x|Y ) =
e−H(x)dP⊗N

x
(x)∫

e−H(x)dP⊗N
x (x)

, (2)
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versités et Université Pierre & Marie Curie, Paris, France.

1

http://arxiv.org/abs/1801.01593v2


where H is the (random) Hamiltonian

−H(x) :=
∑

i<j

√
λ

N
Yijxixj −

λ

2N
x2ix

2
j (3)

=
∑

i<j

√
λ

N
Wijxixj +

λ

N
xixjx

∗
ix

∗
j −

λ

2N
x2i x

2
j .

Let us define the free entropy1 of the model as the expected log-partition function (i.e.,
normalizing constant) of the posterior Pλ(·|Y ):

FN =
1

N
E log

∫
e−H(x)dP⊗N

x
(x), (4)

By heuristically analyzing an approximate message passing (AMP) algorithm for this problem,
Lesieur et al. [LKZ15] derived an asymptotic—so-called replica-symmetric (RS)—formula for
the above quantity. This formula is defined as follows: for r ∈ R+, let

ψ(r) := Ex∗,z log

∫
exp

(√
rzx+ rxx∗ − r

2
x2
)
dPx(x),

where z ∼ N (0, 1) and x∗ ∼ Px are mutually independent. Define the RS potential

F (λ, q) := ψ(λq)− λq2

4
.

The conjectured limit of (4) is the RS formula

φRS(λ) := sup
q≥0

F (λ, q).

This conjecture was then proved shortly after in a series of papers [KXZ16, BDM+16, DAM16,
LM16] (see also [KM09]):

Theorem 1. For all λ ≥ 0,
lim

N→∞
FN = φRS(λ).

The above statement contains precious statistical information. It can be written in at
least two other equivalent ways, in terms of the mutual information between x

∗ and Y :

lim
N→∞

1

N
I(Y ,x∗) =

λ

4

(
EPx

[X2]
)2 − φRS(λ),

or, denoting by Pλ the probability distribution of the matrix Y as per (1), in terms of the
Kullback-Liebler divergence between Pλ and P0:

lim
N→∞

1

N
DKL(Pλ,P0) = φRS(λ).

Furthermore, the point q∗(λ) achieving the maximum in the RS formula (which can be shown
to be unique and finite for almost every λ) can be interpreted as the best overlap any estimator
θ̂(Y ) can have with the spike x

∗. Indeed, the overlap of a draw x from the posterior Pλ(·|Y )
with x

∗ concentrates about q∗(λ). See [BDM+16, LM16, EKJ17] for various forms of this
statement.

1The term “free energy” is also used, although the physics convention requires to put a minus sign in front
of the expression in this case.

2



2 Comment on the existing proofs

The proof of the lower bound lim inf FN ≥ φRS(λ) relies on an application of Guerra’s interpo-
lation method [Gue01, GT02], and is fairly short and transparent. (See [KXZ16].) Available
proofs of the converse bound lim supFN ≤ φRS(λ) (as well as overlap concentration) are on the
other hand highly involved. Barbier et al. [BDM+16] and Deshpande et al. [DAM16] adopt
an algorithmic approach: they analyze an approximate message passing procedure and show
that the produced estimator asymptotically achieves an overlap of q∗(λ) with the spike. Thus
the posterior mean, being the optimal estimator, must also achieve the same overlap. This
allows to prove overlap convergence and thus show the converse bound. A difficulty one has
to overcome with this method is that AMP (and supposedly any other algorithm) may fail to
achieve the optimal overlap in the presence of first-order phase transitions, which traps the
algorithm in a bad local optimum of the RS potential. Spatial coupling, an idea from coding
theory, is used in [BDM+16] to overcome this problem. Lelarge and Miolane [LM16] on the
other hand use the Aizenman-Sims-Starr scheme [ASS03], a relative of the cavity method
developed within spin-glass theory, to prove the upper bound. Barbier and Macris [BM17]
prove the upper bound via a adaptive version of the interpolation method that proceeds via
a sequence of intermediate interpolation steps. Recently, the optimal rate of convergence and
constant order corrections to the RS formula were proved in [EKJ17] using a rigorous incar-
nation of the cavity method due to Talagrand [Tal11]. However, all the current approaches
(perhaps to a lesser extent for [BM17]) require the execution of long and technical arguments.

In this note, we show that the upper bound in Theorem 1 admits a fairly simple proof based
on the same interpolation idea that yielded the lower bound, combined with an application of
the Laplace method and concentration of measure. The main idea is to consider a version of
the free entropy (4) of a subsystem of configurations x having a fixed overlap with the spike x∗.
We then proceed by applying the Guerra bound and optimize over this fixed overlap (which
is a free parameter) to obtain an upper bound in the form of a saddle (max-min) formula. A
small extra effort is needed to show that this last formula is another representation of the RS

formula. The idea of restricting the overlap dates back to Franz and Parisi [FP95, FP98] who
introduced it in order to study the relaxation properties of dynamics in spin-glass models.
The free entropy at fixed overlap bears the name of the Franz-Parisi potential. Our proof
thus hinges on a upper bound on this potential, which is may be of independent interest.
We first start by presenting the proof of the lower bound, which is a starting point for our
argument. We present the proof in the case σ = ∞, i.e., we omit the diagonal terms of Y .
This is only done to keep the displays concise; recovering the general case is straightforward
since the diagonal has vanishing contribution to the overall free entropy. Finally, the method
presented here can be easily generalized to all spiked tensor models of even order [RM14],
thus recovering the main results of [LML+17].

3 Proof of Theorem 1

Let t ∈ [0, 1] and consider an interpolating Hamiltonian

−Ht(x) :=
∑

i<j

√
tλ

N
Wijxixj +

tλ

N
xix

∗
ixjx

∗
j −

tλ

2N
x2ix

2
j

+

N∑

i=1

√
(1− t)rzixi + (1− t)rxix

∗
i −

(1− t)r

2
x2i , (5)

3



where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else. For f :
(RN )n+1 7→ R, we define the Gibbs average of f as

〈
f(x(1), · · · ,x(n),x∗)

〉
t
:=

∫
f(x(1), · · · ,x(n),x∗)

∏n
l=1 e

−Ht(x(l))dP⊗N
x

(x(l))∫ ∏n
l=1 e

−Ht(x(l))dP⊗N
x (x(l))

. (6)

This is the average of f with respect to the posterior distribution of n copies x(1), · · · ,x(n) of
x
∗ given the augmented set of observations

{
Yij =

√
tλ
N x

∗
ix

∗
j +Wij, 1 ≤ i ≤ j ≤ N,

yi =
√
(1− t)rx∗i + zi, 1 ≤ i ≤ N.

(7)

The variables x
(l), l = 1 · · · , n are called replicas, and are interpreted as random variables

independently drawn from the posterior. When n = 1 we simply write f(x,x∗) instead of
f(x(1),x∗). We shall denote the overlaps between two replicas as follows: for l, l′ = 1, · · · , n, ∗,
we let

Rl,l′ := x
(l) · x(l′) =

1

N

N∑

i=1

x
(l)
i x

(l′)
i .

A simple consequence of Bayes’ rule is that the n+1-tuples (x(1), · · · ,x(n+1)) and (x(1), · · · ,
x
(n),x∗) have the same law under E〈·〉t (see Proposition 16 in [LM16]). This bears the name

of the Nishimori property in the spin glass literature [Nis01].

3.1 The lower bound

Reproducing the argument of [KXZ16], we prove using Guerra’s interpolation [Gue01] and
the Nishimori property that

FN ≥ φRS(λ)−
K

N
.

We let r = λq in the definition of Ht and let

ϕ(t) :=
1

N
E log

∫
e−Ht(x)dP⊗N

x
(x).

A short calculation based on Gaussian integration by parts shows that

ϕ′(t) =− λ

4
E
〈
(R1,2 − q)2

〉
t
+
λ

4
q2 +

λ

4N2

N∑

i=1

E

〈
x
(1)
i

2
x
(2)
i

2〉
t

+
λ

2
E
〈
(R1,∗ − q)2

〉
t
− λ

2
q2 − λ

2N2

N∑

i=1

E

〈
xi

2x∗i
2
〉
t
,

By the Nishimori property, the expressions involving the pairs (x,x∗) on the one hand and
(x(1),x(2)) on the other in the brackets are equal. We then obtain

ϕ′(t) =
λ

4
E
〈
(R1,∗ − q)2

〉
t
− λ

4
q2 − λ

4N
E

〈
xN

2x∗N
2
〉
t
.

Observe that the last term is O(1/N) since the variables xN are bounded. Moreover, the first
term is always non-negative so we obtain

ϕ′(t) ≥ −λ
4
q2 − K

N
.

Since ϕ(1) = FN and ϕ(0) = ψ(λq), integrating over t, we obtain for all q ≥ 0, FN ≥
F (λ, q)− K

N , and this yields the lower bound.
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3.2 The upper bound

We prove the converse bound

FN ≤ φRS(λ) +O
( logN√

N

)
.

We introduce the Franz-Parisi potential [FP95, FP98]. For x∗ ∈ R
N fixed, m ∈ R and ǫ > 0

we define

Φǫ(m,x
∗) :=

1

N
E log

∫
1{R1,∗ ∈ [m,m+ ǫ)}e−H(x)dP⊗N

x
(x),

where the expectation is over W . This is the free entropy of a subsystem of configura-
tions having an overlap close to a fixed value m with a planted signal x∗. It is clear that
Ex

∗ Φǫ(m,x
∗) ≤ FN . We will argue via the Laplace method and concentration of measure

that supm∈R Ex
∗ Φǫ(m,x

∗) ≈ FN , then use Guerra’s interpolation to upper bound Φǫ(m,x
∗)

(notice that this method yielded a lower bound on FN due to the Nishimori property). Let
us define a bit of more notation. For r ∈ R+, s ∈ R, let

ψ̂(r, s) := Ez log

∫
exp

(√
rzx+ sx− r

2
x2
)
dPx(x),

where z ∼ N (0, 1), and ψ(r, s) = Ex∗ ψ̂(r, sx∗) where x∗ ∼ Px. Moreover, let

F̂ (λ,m, q,x∗) :=
1

N

N∑

i=1

ψ̂(λq, λmx∗i )−
λm2

2
+
λq2

4
,

and similarly define F (λ,m, q) = Ex
∗ F̂ (λ,m, q,x∗) = ψ(λq, λm)− λm2

2 + λq2

4 .

Proposition 2. There exist K > 0 such that for all ǫ > 0, we have

FN ≤ Ex
∗

[
max

l∈Z,|l|≤K/ǫ
Φǫ(lǫ,x

∗)
]
+

log(K/ǫ)√
N

.

Now we upper bound Φǫ in terms of F̂ :

Proposition 3 (Interpolation upper bound). There exist K > 0 depending on λ ≥ 0 such
that for all m ∈ R and ǫ > 0 we have

Φǫ(m,x
∗) ≤ inf

q≥0
F̂ (λ,m, q,x∗) +

λ

2
ǫ2 +

K

N
.

Remark: This simple upper bound on the Franz-Parisi potential—which may be of inde-
pendent interest—can be straightforwardly generalized to spiked tensor models of even order.
Indeed, as will be apparent from the proof in the present matrix case, a crucial step in ob-
taining the inequality is the positivity of a certain hard-to-control remainder term2. Tensor
models of even order enjoy a convexity property that ensures the positivity of this remainder.

2We note that the adaptive interpolation method of Barbier and Macris [BM17] is able to bypass this issue
of positivity of the remainder term along the interpolation path, as long as this interpolation “stays on the
Nishimori line”, i.e., corresponds to an inference problem for every t (this is however not true in the case of
the FP potential.) They are thus able to compute the free entropy of (asymmetric) spiked tensor models of
odd order. See [BMM17, BKM+17].
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From Propositions 2 and 3, an upper bound on FN in the form of a saddle formula begins
to emerge. For a fixed m ∈ R let q̄ = q̄(λ,m) be any minimizer of q 7→ F (λ,m, q) on R+. (By
differentiating F , we can check that q̄ is bounded uniformly in m.) Then we have

FN ≤ Ex
∗

[
max
m=lǫ

|l|≤K/ǫ

F̂ (λ,m, q̄(λ,m),x∗)
]
+
λ

2
ǫ2 +

log(K/ǫ)√
N

. (8)

At this point we need to push the expectation inside the supremum. This will be done using
a concentration argument.

Lemma 4. There exists K > 0 such that for all λ ≥ 0, m ∈ R, q ≥ 0 and t ≥ 0,

Pr
x
∗

(∣∣∣F̂ (λ,m, q,x∗)− F (λ,m, q)
∣∣∣ ≥ t

)
≤ 2e

− Nt2

λ2K(|m|+q)2 .

It is a routine computation to deduce from Lemma 4 (and boundedness of both m and
q) that the expected supremum is bounded by the supremum of the expectation plus a small
term (a similar argument is given in the proof of Proposition 2):

E sup
m=lǫ

|l|≤K/ǫ

F̂ (λ,m, q̄(λ,m),x∗) ≤ sup
m=lǫ

|l|≤K/ǫ

F (λ,m, q̄(λ,m)) + δ,

where δ = K log(K/ǫ)/
√
N . Since q̄ is a minimizer of F , it follows from (8) that

FN ≤ sup
m∈R

inf
q≥0

F (λ,m, q) +
λ

2
ǫ2 +

K log(K/ǫ)√
N

. (9)

We now let ǫ = N−1/4, and conclude by noticing that the above saddle formula is another
expression for φRS:

Proposition 5. φRS(λ) = supm∈R infq≥0 F (λ,m, q).

Proof. One inequality follows from (9) and the lower bound FN ≥ φRS(λ) − oN (1). For the
converse inequality, we notice that for all m ∈ R

inf
q≥0

F (λ,m, q) ≤ F (λ,m, |m|) = ψ(λ|m|, λm) − λ

4
|m|2.

Now we use the fact that the function ψ is largest when its second argument is positive:

Lemma 6. For all r ≥ 0 we have ψ(r,−r) ≤ ψ(r, r).

This implies infq≥0 F (λ,m, q) ≤ F (λ, |m|) − λ
4 |m|2. Taking the supremum over m yields

the converse bound. �

Proof of Proposition 2. Let ǫ > 0. Since the prior Px has bounded support, we can grid
the set of the overlap values R1,∗ by 2K/ǫ many intervals of size ǫ for some K > 0. This
allows the following discretization, where l runs over the finite range {−K/ǫ, · · · ,K/ǫ}:

FN =
1

N
E log

∑

l

∫
1{R1,∗ ∈ [lǫ, (l + 1)ǫ)}e−H(x)dP⊗N

x
(x)

≤ 1

N
E log

2K

ǫ
max

l

∫
1{R1,∗ ∈ [lǫ, (l + 1)ǫ)}e−H(x)dP⊗N

x
(x)

=
1

N
Emax

l
log

∫
1{R1,∗ ∈ [lǫ, (l + 1)ǫ)}e−H(x)dP⊗N

x
(x) +

log(2K/ǫ)

N
. (10)
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In the above, E is w.r.t. both W and x
∗. We use concentration of measure to push the

expectation over W to the left of the maximum. Let

Zl :=

∫
1{R1,∗ ∈ [lǫ, (l + 1)ǫ)}e−H(x)dP⊗N

x
(x).

We show that each term Xl =
1
N logZl concentrates about its expectation (in the randomness

of W ). Let E′ denote the expectation w.r.t. W .

Lemma 7. There exists a constant K > 0 such that for all γ ≥ 0 and all l,

E
′ eγ(Xl−E

′[Xl]) ≤ Kγ√
N
eKγ2/N .

Therefore, the expectation of the maximum concentrates as well:

E
′max

l
(Xl − E

′[Xl]) ≤
1

γ
logE′ exp

(
γmax

l
(Xl − E

′[Xl])

)

=
1

γ
logE′max

l
eγ(Xl−E

′[Xl])

≤ 1

γ
logE′∑

l

eγ(Xl−E
′[Xl])

≤ 1

γ
log

(
2K

ǫ

γK√
N
eγ

2K/N

)

=
log(2K/ǫ)

γ
+

1

γ
log

γK√
N

+
γK

N
.

We set γ =
√
N and obtain

E
′max

l
(Xl − E

′[Xl]) ≤
log(K/ǫ)√

N
.

Therefore, plugging the above estimates into (10), we obtain

FN ≤ Ex
∗ max

l
E
′Xl +

log(K/ǫ)√
N

+
log(K/ǫ)

N

≤ Ex
∗ max

l
Φǫ(lǫ,x

∗) + 2
log(K/ǫ)√

N
.

Proof of Proposition 3. Let t ∈ [0, 1] and consider a slightly modified interpolating Hamil-
tonian that has two parameters r = λq ≥ 0 and s = λm ∈ R:

−Ht(x) :=
∑

i<j

√
tλ

N
Wijxixj +

tλ

N
xix

∗
i xjx

∗
j −

tλ

2N
x2ix

2
j (11)

+

N∑

i=1

√
(1− t)rzixi + (1− t)sxix

∗
i −

(1− t)r

2
x2i ,

where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else. Let

ϕ(t) :=
1

N
E log

∫
1{R1,∗ ∈ [m,m+ ǫ)}e−Ht(x)dP⊗N

x
(x),

7



where E is over the Gaussian disorder W and z (x∗ is fixed). Let 〈·〉t be the corresponding
Gibbs average, similarly to (6). By differentiation and Gaussian integration by parts,

ϕ′(t) =− λ

4
E
〈
(R1,2 − q)2

〉
t
+
λ

4
q2 +

λ

4N2

N∑

i=1

E

〈
(x

(1)
i x

(2)
i )2

〉
t

+
λ

2
E
〈
(R1,∗ −m)2

〉
t
− λ

2
m2 − λ

2N2

N∑

i=1

E
〈
(xix

∗
i )

2
〉
t
,

Notice that by the overlap restriction, E
〈
(R1,∗ −m)2

〉
t
≤ ǫ2. Moreover, the last terms in the

first and second lines in the above are of order 1/N since the variables xi are bounded. Next,
since E

〈
(R1,2 − q)2

〉
t
has non-negative sign (this is a crucial fact), we can ignore it and obtain

an upper bound:

ϕ′(t) ≤ −λ
2
m2 +

λ

4
q2 +

λ

2
ǫ2 +

K

N
.

Integrating over t, we obtain

Φǫ(m,x
∗) ≤ −λ

2
m2 +

λ

4
q2 +

λ

2
ǫ2 + ϕ(0) +

K

N
.

Now we use a trivial upper bound on ϕ(0):

ϕ(0) =
1

N
E log

∫
1{R1,∗ ∈ [m,m+ ǫ)}e−H0(x)dP⊗N

x
(x)

≤ 1

N
E log

∫
e−H0(x)dP⊗N

x
(x)

=
1

N

N∑

i=1

ψ̂(λq, λmx∗i ).

Hence,

Φǫ(m,x
∗) ≤ F̂ (λ,m, q,x∗) +

λ

2
ǫ2 +

K

N
.

Proof of lemma 4. The random part of F̂ (λ,m, q̄,x∗) is the average of i.i.d. terms

ψ̂(λq, λmx∗i ). Since
∣∣∣∂sψ̂(r, sx∗)

∣∣∣ ≤ K2,
∣∣∣∂rψ̂(r, sx∗)

∣∣∣ ≤ K2/2 and ψ̂(0, 0) = 0, where K

is a bound on the support of Px, we have
∣∣∣ψ̂(r, sx∗)

∣∣∣ ≤ K2(r/2 + |s|). For bounded r and s,

the claim follows from concentration of the average of i.i.d. bounded r.v.’s.

Proof of Lemma 7. We notice that Xl seen as a function of W is Lipschitz with constant

K
√

λ
N . By Gaussian concentration of Lipschitz functions (the Tsirelson-Ibragimov-Sudakov

inequality [BLM13]), there exist a constant K depending only on λ such that for all t ≥ 0,

Pr
(
Xl − E

′Xl ≥ t
)
≤ e−Nt2/K .

Then we conclude by means of the identity

E
′ eγ(Xl−E

′[Xl]) = γ

∫ +∞

−∞
Pr(Xl − E

′[Xl] ≥ t) eγtdt,

8



and integrate the tail.

Proof of Lemma 6. Let ν = Px, and let µ be the symmetric part of Px, i.e., µ(A) =
(Px(A)+Px(−A))/2 for all Borel A ⊆ R. Observe that ν is absolutely continuous with respect
to µ. The argument relies on a linearly interpolating between the two measures µ and ν. Let
t ∈ [0, 1] and let ρt = (1− t)µ+ tν. Further, let r > 0 be fixed, and

ϕ±(t) := Ez

∫ (
log

∫
exp

(√
rzx± rxx∗ − r

2
x2
)
dρt(x)

)
dρt(x

∗),

where z ∼ N (0, 1). Now let φ(t) = ϕ+(t) − ϕ−(t). We have φ(1) = ψ(r, r) − ψ(r,−r) on the
one hand, and since µ is a symmetric distribution, φ(0) = 0 on the other. We will show that
φ is a convex increasing function on the interval [0, 1]. Then we deduce that φ(1) ≥ 0. First,
we have

d

dt
ϕ+(t) = Ez

∫
log

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x) d(ν − µ)(x∗)

+ Ez

∫ ∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

dρt(x
∗),

and

d2

dt2
ϕ+(t) = 2Ez

∫ ∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

d(ν − µ)(x∗)

− 2Ez

∫ (∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

)2

dρt(x
∗).

Similar expressions holds for ϕ− where x∗ is replaced by −x∗ inside the exponentials. We
see from the expression of the first derivative at t = 0 that ϕ+′

(0) = ϕ−′
(0). This is because

ρ0 = µ is symmetric about the origin, so a sign change (of x for the first term, and x∗ for the
second term) does not affect the value of the integrals. Hence φ′(0) = 0. Now, we focus on the
second derivative. Observe that since µ is the symmetric part of ν, ν − µ is anti-symmetric.
This implies that the first term in the expression of the second derivative changes sign under
a sign change in x∗ and keeps the same modulus. As for the second term, a sign change in x∗

induces integration against dρt(−x∗). Hence we can write the difference (ϕ+ − ϕ−)′′ as

φ′′(t) = 4Ez

∫ ∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

d(ν − µ)(x∗)

− 2Ez

∫ (∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

)2

(dρt(x
∗)− dρt(−x∗)).

For any Borel A, we have ρt(A)− ρt(−A) = (1− t)(µ(A)− µ(−A)) + t(ν(A)− ν(−A)) =
2t(ν − µ)(A). Therefore the second term in the above expression becomes

−4tEz

∫ (∫
e
√
rzx+rxx∗− r

2
x2
d(ν − µ)(x)

∫
e
√
rzx+rxx∗− r

2
x2
dρt(x)

)2

d(ν − µ)(x∗).
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Since both µ and ν are absolutely continuous with respect to ρt for all 0 ≤ t < 1 we can write

φ′′(t) = 4Ez,x∗

〈
d(ν − µ)

dρt
(x)

d(ν − µ)

dρt
(x∗)

〉
− 4tEz,x∗

〈
d(ν − µ)

dρt
(x)

〉2

,

where the Gibbs average is with respect to the posterior of x given z, x∗ under the Gaussian
channel y =

√
rx∗+z, and the expectation is under x∗ ∼ ρt and z ∼ N (0, 1). By the Nishimori

property, we simplify the above expression to

φ′′(t) = 4(1− t)E

[〈
d(ν − µ)

dρt
(x)

〉2
]
≥ 0,

where the expression is valid for all 0 ≤ t < 1. From here we see that the function φ is convex
on [0, 1]. Since φ(0) = φ′(0) = 0, φ is also increasing on [0, 1].

Acknowledgments. Florent Krzakala acknowledges funding from the ERC under the Eu-
ropean Union 7th Framework Programme Grant Agreement 307087-SPARCS.
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[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[BM17] Jean Barbier and Nicolas Macris. The stochastic interpolation method: A simple scheme
to prove replica formulas in bayesian inference. arXiv preprint arXiv:1705.02780, 2017.
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