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Abstract—Network transfer and disk read are the most time
consuming operations in the repair process for node failures in
erasure-code-based distributed storage systems. Recent develop-
ments on Reed-Solomon codes, the most widely used erasure
codes in practical storage systems, have shown that efficient repair
schemes specifically tailored to these codes can significantly reduce
the network bandwidth spent to recover single failures. However,
the I/O cost, that is, the number of disk reads performed in these
repair schemes remains largely unknown. We take the first step to
address this gap in the literature by investigating the I/O costs of
some existing repair schemes for full-length Reed-Solomon codes.

I. INTRODUCTION

Reed-Solomon (RS) codes [1], although widely used as
erasure codes to protect distributed storage systems (DSS)
from frequent node failures, were believed to have very poor
performance in repairing single failures with respect to the
repair bandwidth. In the conventional/naive repair scheme for
RS codes, the whole file has to be retrieved in order to repair
just one lost data chunk. This drawback of RS codes led to the
proposals of several other repair-efficient families of erasure
codes such as regenerating codes [2], [3], [4] and locally
repairable codes [5], [6], [7].

Despite the introduction of all of those new codes, RS codes
remain to be the most popular codes in practice thanks to
numerous inherent advantages, including optimal storage over-
head, widest range of code parameters, and simple implemen-
tation. They are core components of major distributed storage
systems such as Google’s Colossus, Quantcast File System,
Facebook’s f4, Yahoo Object Store, Baidu’s Atlas, Backblaze’s
Vaults, and Hadoop Distributed File System (see [8, Tab. I]).

In a recent line of research on repairing RS codes [9], [10],
[11], [12], [13], [14], [15], [8], [16], [17], [18], [19], it has been
shown that with carefully crafted repair schemes, the repair
bandwidth can be significantly reduced for several families of
RS codes. In this work, instead of focusing on the repair band-
width, we investigate another important performance criterion
for RS codes during the recovery process, that is, the (read) I/O
cost of the repair schemes1. The I/O cost of a repair scheme
is defined as the total amount of information that needs to be
read from the disks located at the helper nodes during the repair
of one failed node. The open question of how well RS codes
perform when taken into account the I/O cost was originally
raised by Guruswami and Wootters [10].

To motivate the study of the I/O cost for RS codes, let
us consider the toy example in Fig. 1. The 4-node storage
system employs a [4, 2] RS codes over F4 to store the file
(a, b) ∈ F2

4. To reconstruct the two bits stored at Node 3 in
a bandwidth-optimal way, the replacement node may contact
three available nodes and downloads one bit of data from

1As reported in [20], network transfer and disk read constitute more than
98% of the total reconstruction time in the Quantcast File System. It was also
observed in another study [21] that disk read always takes at least nine times
longer than computation during repair or degraded read.
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Fig. 1: Illustration of repair bandwidth and I/O cost during the
repair process of one node failure in a DSS based on a [4, 2]4
Reed-Solomon code (see [8, Ex. 1] for its construction). While
the repair bandwidth is optimal (three bits), the I/O cost is four
bits, which is as expensive as reading the whole file.

each. This results in a repair bandwidth of three bits, saving
one bit compared to the conventional scheme, in which the
replacement node contacts two nodes and downloads two bits
from each. However, the number of bits being read from the
three nodes is four, which is the same as the file size. Thus, in
terms of I/O cost, this bandwidth-efficient repair scheme is as
expensive as the conventional repair scheme. This observation
raises an immediate question: when does this scenario happen?

Our contribution. We show that the bandwidth-optimal
repair schemes proposed in [10], [12], when applied to certain
families of full-length RS codes, incur an I/O cost as high as
that of the naive repair scheme (Section III). We also prove
that such a high I/O cost is a necessary price to pay for the
optimal bandwidth when the base field is F2 and the code has
two parities (Section IV).

II. PRELIMINARIES

Let [n] denote the set {1, 2, . . . , n}. Let F = Fq be the finite
field of q elements, for some prime power q. Let E = Fq` be
an extension field of F , where ` ≥ 1, and let E∗ = E \ {0}.
We refer to the elements of E as symbols and the elements
of F as sub-symbols. The field E may also be viewed as a
vector space of dimension ` over F , i.e. E ∼= F `, and hence
each symbol in E may be represented as a vector of length
` over F . We use spanF (U) to denote the F -subspace of E
spanned by a set of elements U of E. The (field) trace of any
symbol α ∈ E over F is defined to be TrE/F (α) =

∑`−1
i=0 α

qi .
When clear from the context, we omit the subscript E/F . The
support of a vector u = (u1, . . . , u`), denoted supp(u), is the
set {j : uj 6= 0}. The (Hamming) weight of u, denoted wt(u),
is |supp(u)|. The support of a set of vectors U is supp(U)

4
=

∪u∈U supp(u). A linear [n, k] code C over E is an E-subspace
of En of dimension k. Each element of a code is referred to
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as a codeword. The dual C⊥ of a code C is the orthogonal
complement of C in En and has dimension r = n− k.

Definition 1. Let E[x] denote the ring of polynomials over E.
A Reed-Solomon code RS(A, k) ⊆ En of dimension k over
a finite field E with evaluation points A = {αj}nj=1 ⊆ E is
defined as

RS(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ E[x], deg(f) < k

}
.

The Reed-Solomon code is full length if n = |E|. It is
well known that the dual of a full-length Reed-Solomon code
RS(A, k) is another Reed-Solomon code RS(A,n − k) (as a
corollary of [22, Chp. 10, Thm. 4]).

Trace repair framework. First, note that each symbol in E
can be recovered from its ` independent traces. More precisely,
given a basis {βi}`i=1 of E over F , any α ∈ E can be
uniquely determined given the values of Tr(βiα) for i ∈ [`],
i.e. α =

∑`
i=1 Tr(βiα)β∗i , where {β∗i }`i=1 is the dual (trace-

orthogonal) basis of {βi}`i=1 (see, e.g. [23, Ch. 2, Def. 2.30]).
Let C be an [n, k] linear code over E and C⊥ its dual. If

c = (c1, . . . , cn) ∈ C and g = (g1, . . . , gn) ∈ C⊥ then c ·
g =

∑n
j=1 cjgj = 0. Suppose cj∗ is erased and needs to

be recovered. In the trace repair framework, choose a set of `
dual codewords g(1), . . . , g(`) such that dimF

(
{g(i)

j∗ }`i=1

)
= `.

Since the trace is a linear map, we obtain the following `
equations

Tr
(
g

(i)
j∗ cj∗

)
= −

∑
j 6=j∗

Tr
(
g

(i)
j cj

)
, i ∈ [`]. (1)

In order to recover cj∗ , one needs to retrieve sufficient infor-
mation from {cj}j 6=j∗ to compute the right-hand sides of (1).
We define, for every j ∈ [n],

Sj→j∗
4
= spanF

({
g

(1)
j , . . . , g

(`)
j

})
(2)

and refer to Sj→j∗ as a column-space of the repair scheme
when j 6= j∗. Then for each j 6= j∗, in order to
determine Tr(g

(i)
j cj) for all i ∈ [`], it suffices to re-

trieve dimF (Sj→j∗) sub-symbols (in F ) only. Indeed, sup-
pose {gitj }st=1 is an F -basis of Sj→j∗ , then by retrieving
just s traces Tr(gi1j cj), . . . ,Tr(g

is
j cj) of cj , all other traces

Tr(g
(i)
j cj) can be computed as F -linear combinations of those

s traces without any knowledge of c. Finally, since {g(i)
j∗ }`i=1

is F -linearly independent, cj∗ can be recovered from its `
corresponding traces on the left-hand side of (1). We refer to
such a scheme as a repair scheme based on {g(i)}`i=1. It was
known that this type of repair schemes includes every possible
linear repair scheme for RS codes [10].

Lemma 1 (Guruswami-Wootters [10]). Suppose E = Fq` ,
F = Fq , C is an [n, k] linear code over E and C⊥ is its
dual. The repair scheme for cj∗ based on ` dual codewords
g(1), . . . , g(`), where dimF

(
{g(i)

j∗ }`i=1

)
= `, incurs a repair

bandwidth of
∑

j 6=j∗ dimF (Sj→j∗) sub-symbols in F , where
Sj→j∗ is defined as in (2).

I/O Cost of a Repair Scheme. Let B = {βi}`i=1 be an
F -basis of E. For each α ∈ E, we may write α =

∑
j αjβj ,

where αj ∈ F . The vector (α1, . . . , α`) ∈ F ` is the vector
representation of α with respect to the basis B. We often
write α = (α1, . . . , α`)B or just α = (α1, . . . , α`) for brevity.
We first define the I/O cost of a function and then proceed
to describe the I/O cost of a repair scheme. The underlying
assumption is that each sub-symbol αi of α can be read
from the storage disk separately without accessing other sub-
symbols.

Definition 2 (I/O cost of functions). The (read) I/O cost of a
function f(·) with respect to a basis B is the minimum number
of sub-symbols of α ∈ E needed to compute f(α). The I/O
cost of a set of functions F is the minimum number of sub-
symbols of α needed for the computation of {f(α) : f ∈ F}.

Lemma 2. The following statements hold.
(a) The I/O cost of a linear function fw(α)

4
= w · α =∑

j wjαj with respect to a basis B is wt(w) = |supp(w)|,
where w = (w1, . . . , w`) ∈ E.

(b) The I/O cost of a set of linear functions w1 ·α, . . . ,ws ·α
with respect to B is | ∪sj=1 supp(wj)|.

(c) The I/O cost of the trace functional Trγ(·), defined by
Trγ(α)

4
= Tr(γα), with respect to B is wt

(
wγ,B

)
, where

wγ,B
4
=
(
Tr(γβ1), . . . ,Tr(γβ`)

)
. (3)

(d) The I/O cost of the set of trace functionals {Trγ(·) : γ ∈
Γ} with respect to B is | ∪γ∈Γ supp(wγ,B)|.

Proof. The statements (a) and (b) follow directly from Defi-
nition 2. Statement (c) holds as Trγ(α) =

∑
i Tr(γβi)αi =

wγ,B ·α. The last statement follows from (b) and (c). �

The following lemma is due to the linearity of trace.

Lemma 3. Let Γ
4
= spanF

(
{γi}`i=1

)
, {γ′i}si=1 be an F -basis

of Γ, wγ,B defined as in (3). The following statements hold.
(a) If γ=

∑`
i=1 aiγi, for ai ∈ F , then wγ,B=

∑`
i=1 aiw

γi,B,
and therefore, supp(wγ,B) ⊆ ∪`i=1supp(wγi,B).

(b) ∪`i=1supp(wγi,B)=∪γ∈Γsupp(wγ,B)=∪st=1supp(wγ
′
i,B).

The I/O cost of the repair scheme based on a set of dual
codewords {g(i)}`i=1 is the minimum number of sub-symbols
of cj’s needed in the computation of the right-hand sides of
(1). We provide the formal definition below.

Definition 3 (I/O cost of a repair scheme). The I/O cost of
the repair scheme based on a set of dual codewords {g(i)}`i=1

with respect to a basis B is the sum of the I/O costs of the
sets of trace functionals Fj =

{
Tr
g
(i)
j

(·)
}`
i=1

, j ∈ [n] \ {j∗}.

Lemma 4. Suppose cj∗ is lost and needs to be recovered.
The I/O cost of the repair scheme based on ` dual codewords
g(i) =

(
g

(i)
1 , . . . , g

(i)
n

)
, i ∈ [`], with respect to a basis B is∑

j 6=j∗

∣∣supp(WBj→j∗
)∣∣,

where wγ,B is defined as in (3) and

WBj→j∗
4
=
{
wγ,B : γ ∈ Sj→j∗

}
. (4)

Proof. By Lemma 2 (d), the I/O cost of the set of trace
functionals Fj =

{
Tr
g
(i)
j

(·)
}`
i=1

is
∣∣ ∪`i=1 supp

(
wg

(i)
j ,B)∣∣ for

each j 6= j∗. According to Lemma 3 (b) and the definition
of Sj→j∗ , this quantity is equal to | ∪γ∈Sj→j∗ supp(wγ,B)|,
which is the same as |supp(WBj→j∗)|. The lemma follows by
summing up the I/O costs of the sets Fj , j ∈ [n] \ {j∗}. �

III. I/O COST OF ROTATIONAL REPAIR SCHEMES

A. Fixed Basis

Suppose cj∗ is lost and needs to be recovered, and a basis
B is fixed for all storage nodes, which is the usual situation
in practice. The ultimate goal is to find Pareto solutions to the
following multiobjective optimization problem.

min
g(1),...,g(`)∈C⊥
dimF (Sj∗→j∗ )=`

( ∑
j 6=j∗

dimF (Sj→j∗),
∑
j 6=j∗

∣∣supp(WBj→j∗
)∣∣),

(5)



where Sj→j∗ and WBj→j∗ are defined in (2) and (4), respec-
tively.

Note that if we ignore the second objective function on
the I/O cost, the problem reduces to the previously studied
problem of minimizing the repair bandwidth. Ignoring the first
objective function instead, it reduces to the one minimizing
the I/O cost only. The problem (5), which seeks to minimize a
multiobjective function consisting of bandwidth and I/O cost,
appears to be challenging even for very particular sets of code
parameters. Hence, we start with a simpler task: to study the
I/O costs of those repair schemes that achieve optimal repair
bandwidth for certain families of full-length RS codes.

Definition 4 (Rotational repair scheme). Let n = |E| = q`.
The repair scheme for cj∗ based on a set of dual codewords
{g(i)}`i=1 is called rotational if there exists an F -subspace S
of E such that Sj→j∗ = ρjS for every j 6= j∗ and moreover,
{ρj}j 6=j∗ = E∗.

In other words, a repair scheme for cj∗ is rotational if
each of its column-space Sj→j∗ , j 6= j∗, is a translate of a
common F -subspace S of E with a different multiplier. As
a consequence, in a rotational repair scheme, every column-
space has the same F -dimension. This common dimension is
referred to as the column-dimension of the rotational repair
scheme. Before presenting our main theorem on the I/O cost
of a rotational repair scheme for full-length RS codes, a few
auxiliary lemmas are needed.

Lemma 5. Let K 4
= ker(Tr(·)) = {α ∈ E : Tr(α) = 0}. If

{γt}st=1 ⊆ E is F -linearly independent then
dimF

(
∩st=1 K/γt

)
= `− s.

Proof. Set Ks = ∩st=1K/γt. We prove that dimF (Ks) = `−
s by induction in s. Clearly, dimF (K1) = dimF (K/γ1) =
dimF (ker(Tr)) = `−1. Suppose that dimF (Ks−1) = `−s+1.
We aim to show that dimF (Ks) = `− s.

Let L be the vector space of all q` linear mappings from E
to F and define an equivalence relation ↔ on L as follows:
f ↔ g if f |Ks−1 ≡ g|Ks−1 . As dimF (Ks−1) = ` − s + 1,
there are precisely q`−s+1 distinct linear mappings from Ks−1

to F . Therefore, there are q`−s+1 equivalence classes with
respect to the relation ↔. Each of such classes contains qs−1

mappings. Hence, there are precisely qs−1 linear mappings
f ∈ L satisfying f |Ks−1 ≡ 0, which consitute the equivalence
class E0 containing the trivial mapping f ≡ 0.

One can easily verify that Trγ(·) ∈ E0 for every
γ ∈ spanF

(
{γt}s−1

t=1

)
. As {γt}s−1

t=1 is F -linearly inde-
pendent, there are qs−1 such trace functionals. Therefore,
E0 =

{
Trγ(·) : γ ∈ spanF

(
{γt}s−1

t=1

)}
. Hence, for γs /∈

spanF
(
{γt}s−1

t=1

)
, we have Trγs

(·) /∈ E0. That implies
ker(Trγs

) 6⊇ Ks−1. Equivalently, K/γs 6⊇ Ks−1. Thus,

dimF (Ks)=dimF

(
Ks−1

⋂ K

γs

)
<dimF (Ks−1)=`−s+1,

which implies that dimF (Ks) ≤ `−s. To conclude, it remains
to show that dimF (Ks) ≥ ` − s. Indeed, consider the linear
mapping σ : Ks−1 → F , defined as σ(κ) = Tr(γsκ) for κ ∈
Ks−1. Then ker(σ) = Ks−1 ∩ (K/γs) = Ks. Therefore,

dimF (Ks) = dimF (ker(σ)) ≥ dimF (Ks−1)− 1 = `− s.
This completes the proof. �

Lemma 6. Suppose {γt}st=1 ⊆ E is an F -linearly independent
set and ξ is a primitive element of E. Set

bj =

{
0, if Tr(γ1ξ

j) = · · · = Tr(γsξ
j) = 0,

1, otherwise.

Then we have
∑q`−2

j=0 bj = q` − q`−s.

Proof. It suffices to show that |{j : bj = 0}| = q`−s − 1. We
have

bj = 0⇐⇒ Tr(γ1ξ
j) = · · · = Tr(γsξ

j) = 0⇐⇒ ξj ∈
s⋂

t=1

K

γt
,

where K = ker(Tr). According to Lemma 5,

dimF

( s⋂
t=1

K

γt

)
= `− s.

Therefore,

|{j : bj = 0}| =

∣∣∣∣∣
{
j : ξj ∈

s⋂
t=1

K

γt

}∣∣∣∣∣ = q`−s − 1,

as desired. The proof follows. �

Theorem 1. The I/O cost of a rotational repair scheme with
column-dimension s for a full-length Reed-Solomon code over
Fq` is `(q` − q`−s).

Proof. Given a rotational repair scheme based on {g(i)}`i=1

with column-dimension s, according to Lemma 4, we need to
show that

∑
j 6=j∗ |supp(WBj→j∗)| = `(q` − q`−s).

To simplify the notation, without loss of generality, we may
assume that j∗ = n and Sj→j∗ = ξj−1S, j ∈ [n − 1],
where S is an s-dimensional F -subspace of E and ξ is a
primitive element of E. Let {γt}st=1 be an F -basis of S. Then
{ξj−1γt}st=1 forms an F -basis of Sj→j∗ for every j ∈ [n−1].
Therefore, by Lemma 3 (b), we have

supp(WBj→j∗) =
⋃

γ∈Sj→j∗

supp
(
wγ,B

)
=

s⋃
t=1

supp
(
wξ

j−1γt,B
)
.

Recall that
wξ

j−1γt,B =
(
Tr(ξj−1γtβ1), . . . ,Tr(ξj−1γtβ`)

)
∈ F `.

Then |supp(WBj→j∗)| is precisely the number of nonzero
columns in the s× ` maxtrix Wj whose rows are wξ

j−1γt,B,
t ∈ [s],

Wj
4
=


wξ

j−1γ1,B

wξ
j−1γ2,B

...
wξ

j−1γs,B



=


Tr(ξj−1γ1β1) · · ·Tr(ξj−1γ1βi) · · ·Tr(ξj−1γ1β`)
Tr(ξj−1γ2β1) · · ·Tr(ξj−1γ2βi) · · ·Tr(ξj−1γ2β`)

...
...

...
...

...
Tr(ξj−1γsβ1) · · · Tr(ξj−1γsβi) · · · Tr(ξj−1γsβ`)

 .

Therefore, the I/O cost of the repair scheme is equal to the total
number of nonzero columns in the matrices W1, . . . ,Wn−1.
Thus, setting

bi,j =

{
0, if Tr(ξj−1γ1βi) = · · · = Tr(ξj−1γsβi) = 0,

1, otherwise,
the I/O cost of the repair scheme can be computed as

n−1∑
j=1

|supp(WBj→j∗)| =
n−1∑
j=1

∑̀
i=1

bi,j =
∑̀
i=1

n−1∑
j=1

bi,j

=
∑̀
i=1

(q` − q`−s) = `(q` − q`−s),

where the third equality follows by applying Lemma 6 to the
F -linearly independent set {γtβi}st=1 and by setting bj

4
=

bi,j+1, j = 0, . . . , q`−2 = n−2. This completes the proof. �

The bandwidth-optimal repair schemes for full-length RS
codes proposed by Dau and Milenkovic [12], one of which
directly generalizes the scheme proposed by Guruswami and



Wootters [10], are both rotational. As a consequence, their I/O
costs can be explicitly determined. We conclude that although
these schemes achieve optimal repair bandwidth for RS codes,
the I/O cost required is as high as that of the naive repair.

Corollary 1. The repair schemes for full-length Reed-Solomon
codes with n = q` and r = n−k = qm, 1 ≤ m < `, proposed
in [12], have the I/O cost k` sub-symbols in F .

Proof. There are two repair schemes presented in [12], both
of which are based on the subspace polynomial LW (x) =∏
ω∈W (x−ω), where W is an m-dimensional F -subspace of

E. In their Construction III, the set of dual codewords used to
repair cj∗ is given below, where {βi}`i=1 is an F -basis of E.

g(i) =

(
LW (βi(α1−αj∗))

α1−αj∗
, . . . ,

LW

(
βi(αn−αj∗)

)
αn−αj∗

)
, i ∈ [`].

Let S = im(LW ), which is an (`−m)-dimensional F -subspace
of E. The column-spaces in this repair scheme are (j 6= j∗)

Sj→j∗ = spanF

({
LW (βi(αj−αj∗))

αj−αj∗
: i ∈ [`]

})
=

S
αj−αj∗

.

For the last equality, note that as {βi(αj−αj∗)}`i=1 forms an
F -basis of E and LW is a linear mapping from E to itself,
the set

{
LW

(
βi(αj − αj∗)

)}`
i=1

indeed spans the subspace
S = im(LW ). As for n = |E| we have

{1/(αj −αj∗) : j ∈ [n] \ {j∗}} = E∗,

the corresponding repair scheme is a rotational one with
column-dimension s = dimF (S) = ` − m. Thus, according
to Theorem 1, the repair scheme in [12, Construction III] has
an I/O cost of

`
(
q` − q`−(`−m)

)
= `
(
q` − qm

)
= `(n− r) = k`.

The same conclusion applies to the repair scheme in [12,
Construction II] using similar arguments. �

B. Flexible Bases

The choice of bases used to represent finite field elements,
which clearly does not affect the repair bandwidth, may have
an impact on the I/O cost of the repair scheme. For instance,
suppose j, j∗ ∈ [n] such that j 6= j∗, and Rj∗ is a repair
scheme for cj∗ . Node j can easily choose a suitable basis B
that minimizes the amount of data it needs to read according
to Rj∗ as follows. Let Sj→j∗ be the column-space of Rj∗ and
{γt}st=1 one of its F -basis. We can extend this basis of Sj→j∗

to a basis of E, namely {γi}`i=1, and select B = {βi}`i=1 as
its dual, i.e., Tr(γiβj) = 1 if i = j and 0 otherwise. Then
wγt,B=

(
Tr(γtβ1), . . . ,Tr(γtβ`)

)
=et=(0, . . . , 0, 1︸ ︷︷ ︸

t

, 0, . . . , 0).

The number of sub-symbols of cj that Node j has to read is∣∣supp(WBj→j∗
)∣∣ =

∣∣ s⋃
t=1

supp
(
wγt,B

)∣∣ = s = dim(Sj→j∗).

Note that the I/O cost incurred at a particular node is always
bounded from below by the bandwidth used at that node,
i.e.

∣∣supp(WBj→j∗
)∣∣ ≥ dim(Sj→j∗). Therefore, selecting this

basis, Node j is able to minimize the I/O cost incurred in
repairing Node j∗. This particular choice of basis, however,
may not work well for Node j in the repair process of other
nodes. Therefore, given a collection of n repair schemes for
every node, one could seek to minimize the average I/O cost
at each storage node in the repair process of all other n − 1
nodes. The average I/O cost of a collection of repair schemes
is defined as follows.

I (R)
4
=

1

n

n∑
j=1

min
B

∑
j∗ 6=j

∣∣supp(WBj→j∗
)∣∣ , (6)

where WBj→j∗ is defined as in (4) and the collection of repair
schemes R = {Rj∗}nj∗=1 is given. Given that bandwidth is
usually the most expensive resource, we find it reasonable to
start out with a collection of repair schemes that are bandwidth
efficient and then proceed to optimize its average I/O cost.

Definition 5 (Symmetric repair schemes). A collection of n
repair schemes R = {Rj∗}nj∗=1 is said to be symmetric if
Sj∗→j = Sj→j∗ , for every j 6= j∗, j, j∗ ∈ [n].

Theorem 2. The average I/O cost of a symmetric collection
of rotational repair schemes with column-dimension s for a
Reed-Solomon code of full length q` is `(q` − q`−s).

Proof. As the collection is symmetric, Sj∗→j = Sj→j∗ , which
implies WBj∗→j = WBj→j∗ . Hence, the total I/O cost incurred
at Node j∗ during the repair of all other nodes is∑
j 6=j∗

∣∣supp(WBj∗→j

)∣∣= ∑
j 6=j∗

∣∣supp(WBj→j∗
)∣∣= `(q` − q`−s),

where the last equality is due to Theorem 1, regardless of the
choice of basis B at Node j∗. Thus, I (R) = `(q`−q`−s). �

Since Sj∗→j = S/(αj∗ − αj) = S/(αj − αj∗) = Sj→j∗ ,
the collection of repair schemes proposed in [12, Construction
III] is symmetric. Hence, even if different storage nodes are
allowed to optimize their own bases, the average I/O cost is
still k`. The same conclusion holds for [12, Construction II].

Corollary 2. The collection of repair schemes for full-length
Reed-Solomon codes with n = q` and r = n − k = qm,
1 ≤ m < `, proposed in [12], have the average I/O cost k`.

IV. BANDWIDTH OPTIMALITY REQUIRES HIGH I/O COST

In this section, we show that when r = q = 2, every
bandwidth-optimal linear repair scheme for a full-length RS
code over Fq` must be rotational, which in turn implies that
high I/O cost is necessary to achieve optimal bandwidth. Note
that as proved in [10], every linear repair scheme for an
RS code can be described as in Section II. A fixed basis is
assumed.

A characterization of rotational repair schemes with column-
dimension s = `− 1 is presented in Lemma 7.

Lemma 7. A linear repair scheme for a full-length RS code
over Fq` is rotational with column-dimension `−1 if and only
if every (` − 1)-dimensional subspace of Fq` appears among
the column-spaces of the scheme exactly q − 1 times.

Proof. Note that there are precisely (q` − 1)/(q − 1) Fq-
subspaces of Fq` of dimension ` − 1. Therefore, for any Fq-
subspace S of dimension `−1, the collection of Fq-subspaces
{γS : γ ∈ F∗q`} covers each (`− 1)-dimensional Fq-subspace
of Fq` precisely q − 1 times. That explains the lemma. �

Lemma 8 states the fact that for full-length RS codes, to
study repair bandwidth and I/O cost, it suffices to just examine
repair schemes for the first component c1 = f(0), deg(f) < k.
This will significantly simplify our study. Recall that the dual
of a full-length RS code is another RS code with dimension r.

Lemma 8. Let g(i) =
(
gi(α1), . . . , gi(αn)

)
, i ∈ [`], where

n = q`, Fq` = {0 = α1,α2, . . . ,αn}, and gi(x) ∈ Fq` [x] are
polynomials of degree at most r− 1. Let hi(x)

4
= gi(x+αj∗)

and h(i) =
(
hi(α1), . . . , hi(αn)

)
. Then {g(i)}`i=1 forms a

repair scheme for cj∗ if and only if {h(i)}`i=1 forms a repair



scheme for c1 and moreover, these two schemes will have the
same repair bandwidth and I/O cost.

Proof. Since hi(α1) = hi(0) = gi(αj∗), the set {gi(αj∗)}`i=1

is an Fq-basis of Fq` if and only if the set {hi(α1)}`i=1 is an
Fq-basis of Fq` . This explains the first statement of the lemma.
For the second statement on repair bandwidth and I/O cost,
note that as the code is full length, we have {α1, . . . ,αn} ≡
Fq` . Moreover, hi(αj) = gi(αj+αj∗), for j ∈ [n]. Hence, the
collection of column-spaces of the repair scheme for c1 based
on {h(i)}`i=1 is simply a rearrangement of the column-spaces
of the repair scheme for cj∗ based on {g(i)}`i=1. �

Lemma 9. Suppose B = {bi}`i=1 is an Fq-basis of Fq` while
A = {ai}`i=1 is not. Then there exists γ ∈ F∗q` so that A +

γB
4
= {ai + γbi}`i=1 is also an Fq-basis of Fq` .

Proof. Set SA = spanFq
(A) and τ a mapping from Fq` to SA

defined by τ(
∑`

i=1 ηibi) =
∑`

i=1 ηiai, for every ηi ∈ Fq .
Since A is linearly dependent over Fq , there exists u′ ∈ F∗q`
such that τ(u′) = 0. Therefore, the set C 4

= {−u−1τ(u) : u ∈
F∗q`} contains 0. Moreover, it is clear that |C| ≤ |F∗q` | = q`−1.
Therefore, there exists a nonzero element γ 6∈ C. We now
show that A+ γB is linearly independent over Fq . Indeed, it
suffices to show that for every (η1, . . . , η`) 6≡ (0, . . . , 0), we
have

∑`
i=1 ηi(ai+γbi) 6= 0. Let u =

∑`
i=1 ηibi, then because

B is a basis, u 6= 0. As γ 6∈ C, we have γu 6= −τ(u), which
implies that

∑`
i=1 ηi(ai + γbi) 6= 0, as desired. �

Lemma 10 is due to Proposition 1 and Corollary 1 in [12].
Lemma 10. In every bandwidth-optimal linear repair scheme
for a full-length Reed-Solomon code with n = q`, r = qm, and
m ∈ [`− 1], the column-spaces all have dimension `−m.

We are now ready to prove the main theorem of this section.

Theorem 3. Every bandwidth-optimal linear repair scheme for
full-length Reed-Solomon codes with n = 2` and r = 2 must
be rotational. Thus, such a scheme must incur an I/O cost k`.

Proof. By Lemma 8, it suffices to consider a bandwidth-
optimal repair scheme for c1. Supposed that this scheme is
based on the dual codewords g(i) =

(
gi(α1), . . . , gi(αn)

)
,

i ∈ [`], where n = 2`, F2` = {0 = α1,α2, . . . ,αn}, and
gi(x) ∈ F2` [x] are polynomials of degree at most one. Set
bi = gi(0), then {bi}`i=1 is an F2-basis of F2` since {g(i)}`i=1

forms a repair scheme for c1. As the scheme is bandwidth-
optimal, by Lemma 10, dimF2

(Sj→1) = `−1, for every j 6= 1.
To prove by contradiction, we assume that the scheme is not

rotational. Due to Lemma 7, as q = 2, this means that there
exist two identical column-spaces. Without loss of generality,
we may assume that S23

4
= S2→1 ≡ S3→1. Then gi(α2) =

g
(i)
2 ∈ S23 and gi(α3) = g

(i)
3 ∈ S23, for i ∈ [`]. Note that

dimF2
(S23) = `− 1. By interpolation,

gi(x) =
α3g

(i)
2 +α2g

(i)
3

α2 +α3
+
g

(i)
2 + g

(i)
3

α2 +α3
x = bi + ai

x

α2 +α3
,

where ai
4
= g

(i)
2 + g

(i)
3 ∈ S23 and bi = gi(0). Then

A = {ai}`i=1 ⊆ S23 and B = {bi}`i=1 satisfy the condition
of Lemma 9. Hence, there exists γ 6=0 such that A+γB is an
F2-basis of F2` , which implies that B+γ−1A is also a basis.
Take j ∈ [n] such that αj

α2+α3
= γ−1. Then αj 6= α1 = 0 and

Sj→1= spanF2

(
{gi(αj)}`i=1

)
= spanF2

(
{bi+γ−1ai}`i=1

)
=F2` .

This contradicts the earlier statement that dimF2
(Sj→1) = `−1

whenever j 6= 1. Thus, such a scheme must be rotational. The
conclusion on the I/O cost follows from Theorem 1. �

Finally, we remark that the conclusion of Theorem 3 does
not extend to full-length MDS codes. Indeed, one can easily
find a repair scheme for a [4, 2]4 MDS code that is bandwidth
optimal but not rotational. For instance, take g(1) = (1, 0, 1, 1)
and g(2) = (ξ, 1, 0, 1), where F4 = {0, 1, ξ, ξ + 1}.
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