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The Explicit Coding Rate Region of

Symmetric Multilevel Diversity Coding
Tao Guo and Raymond W. Yeung

Abstract—It is well known that superposition coding, namely
separately encoding the independent sources, is optimal for
symmetric multilevel diversity coding (SMDC) (Yeung-Zhang
1999) for any L ≥ 2, where L is the number of levels of the
coding system. However, the characterization of the coding rate
region therein involves uncountably many linear inequalities and
the constant term (i.e., the lower bound) in each inequality is
given in terms of the solution of a linear optimization problem.
Thus this implicit characterization of the coding rate region
does not enable the determination of the achievability of a given
rate tuple. In principle, the achievability of a given rate tuple
can be determined by direct computation, but the complexity
is prohibitive even for L = 5. In this paper, for any fixed L,
we obtain in closed form a finite set of linear inequalities for
characterizing the coding rate region. We further show by the
symmetry of the problem that only a much smaller subset of
this finite set of inequalities needs to be verified in determining
the achievability of a given rate tuple. Yet, the cardinality of
this smaller set grows at least exponentially fast with L. We
also present a subset entropy inequality, which together with our
explicit characterization of the coding rate region, is sufficient
for proving the optimality of superposition coding.

Index Terms—Symmetric multilevel diversity coding, super-
position coding, network coding, closed-form, distributed data
storage, robust network communication.

I. INTRODUCTION

Multilevel diversity coding was introduced by Yeung [2]. In

a multilevel diversity coding system, an information source is

encoded by a number of encoders. There are a set of decoders,

which are partitioned into multiple levels. The reconstructions

of the source by decoders within the same level are identical.

Here, we confine our discussion to multilevel diversity

coding systems with symmetrical connectivity between the

encoders and decoders, referred to as symmetrical multilevel

diversity coding (SMDC) [3]–[5]. The SMDC system finds

applications in distributed data storage [6], [7], secret sharing
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[8]–[10], and robust network communication [11], [12]. It

is a special case of multi-source network coding [13]–[15].

This problem can also be regarded as a lossless counterpart

of the multiple descriptions problem [16]–[19]. The SMDC

coding strategy in turn is used for approximating the multiple

descriptions rate region in [20], [21].

In the SMDC problem, there are L (L ≥ 2) indepen-

dent discrete memoryless sources {Xl(t) : t = 1, 2, · · · },

l = 1, 2, · · · , L, where for each l, Xl(t) are independent and

identically distributed copies of a generic random variable

Xl. The importance of the sources is in the order X1(t) >

X2(t) > · · · > XL(t). The sources are encoded by L

encoders. There are totally 2L − 1 decoders, each of which

has access to a distinct subset of the encoders. A decoder

which can access any α encoders, called a Level α decoder,

is required to reconstruct the first α sources. Such a system

is called a symmetric L-level diversity coding system. The

system is symmetric in the sense that the problem is unchanged

by permuting the L encoders, which is evident from the

reconstruction requirements of the decoders.

The SMDC problem was treated for L = 3 in [4] and

in full generality by Yeung and Zhang [5], where a coding

method called superposition coding (to be formally defined

in Section II.B) was proved to be optimal. In this method,

the independent sources {Xl(t)}, l = 1, 2, · · · , L are encoded

separately. Albanese et al. studied the priority encoding trans-

mission (PET) problem in [22], which is almost the same as

SMDC. In [22], they proposed a coding scheme using the

same idea as superposition coding and further obtained a sum-

rate lower bound which is also given in [4]. The problem

has subsequently been generalized in different directions. The

secure communication setting was considered by Balasubra-

manian et al. [23] and Jiang et al. [24]. In [24], they also

extended the original SMDC setting by introducing an all-

access encoder which is accessible by all the decoders. In

both of the above settings, superposition coding is shown to

be optimal. Xiao et al. [25] studied the problem of distributed

multilevel diversity coding where each source is decomposed

into L components, each of which is accessed by one distinct

encoder. Tian and Liu [26] considered the problem with re-

generation, where the storage versus repair-bandwidth tradeoff

was investigated. Mohajer et al. [27] considered the asym-

metric multilevel diversity coding problem and proved that

superposition coding is in general suboptimal. Li et al. [28]

studied the multilevel diversity coding problem with at most 3

sources and 4 encoders in a systematic way and obtained the

exact rate region of each of the over 7,000 instances with the

aid of computation. In the current paper, we focus on some
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fundamental issues pertaining to the original SMDC problem

discussed in [4], [5].

It was proved in [4] that superposition coding is optimal

for L = 3, and the corresponding coding rate region, referred

to as the superposition coding rate region, can be explicitly

characterized by 10 linear inequalities in the coding rates of

the 3 encoders. Thus, the achievability of any given rate triple

can be determined by verifying these 10 inequalities.

However, the optimality proof in [4] is not readily gen-

eralizable to a general L. Here is an outline of the proof

in [4]. The superposition coding rate region is first character-

ized by the aforementioned 10 inequalities. This involves the

determination of the extreme points of the region. Then the

necessity of these 10 inequalities are established by means of

conventional techniques for proving converse coding theorems.

The difficulty for generalizing the proof to a general L is two-

fold:

1) It is observed through computation that both the number

of linear inequalities needed for characterizing the super-

position coding rate region and the number of extreme

points of this region grow with L. As such, it is impos-

sible to determine all of them for a general L.

2) For a fixed L, once the superposition coding rate region

is characterized by a finite set of linear inequalities,

their necessity needs to be proved. With conventional

techniques, this needs to be done for each inequality in

a way that depends on the coefficients of coding rates.

It is observed through computation that the number of

these inequalities grows with L. Therefore, for a general

L, it is not possible to prove the necessity of all of these

inequalities.

For a fixed L, the extreme points of the superposition coding

rate region and the set of linear inequalities characterizing the

region can in principle be found by computation. However,

the complexity grows very quickly with L and becomes

prohibitive even for L = 5. On a notebook computer, by using

the Fourier-Motzkin elimination algorithm [29], we were able

to compute all the linear inequalities needed for characterizing

the superposition coding rate region for L = 4 in less than 2

minutes. However, the computation involved for L = 5 is

already unmanageable.

In [5], the optimality of superposition coding was estab-

lished for a general L by means of a highly sophisticated

method that does not involve any explicit characterization of

the coding rate region. Instead of a fixed L, the problem

is tackled for a general L. As L is not fixed, the number

of linear inequalities needed for the characterization of the

superposition coding rate region may be unbounded. To get

around the problem, the coding rate region is characterized

by an uncountable collection of linear inequalities, where for

each inequality, the coefficients associated with the rates are

arbitrary nonnegative real numbers with at least one of them

being nonzero. The constant terms (i.e., the lower bounds)

in these inequalities are given implicitly in terms of the

solution of a common linear optimization problem with the

coefficients associated with the rates as parameters. In other

words, although the coding rate region is characterized by

uncountably many linear inequalities, they have a common

form and the necessity of these inequalities can be established

in a unified manner.

Although the optimality of superposition coding for a gen-

eral L has been established in [5], this result does not yield

an explicit characterization of the coding rate region for any

fixed L. In particular, it does not enable the determination

of the achievability of a given rate tuple, even for a fixed

L, for the following two reasons. First, the characterization

of the coding rate region in [5] involves uncountably many

inequalities. Second, each inequality in the characterization is

implicit, and can be made explicit only by solving a linear

optimization problem.

In the present paper, we develop fundamental results per-

taining to SMDC. Our main contributions are summarized as

follows:

1) We obtain an explicit characterization of the coding rate

region for a general L. This is done by first solving

in closed form the linear optimization problem in [5]

that gives an implicit characterization of the coding rate

region. Then among all the uncountably many inequalities

involved in characterizing the coding rate region, we

identify a finite subset that is sufficient for characterizing

the coding rate region. It is further proved that there is

no redundancy in this finite set of inequalities. Thus for

a fixed L, the achievability of any given rate tuple can

be determined.

2) By taking advantage of the symmetry of the problem, we

show that in determining the achievability of a given rate

tuple, it suffices to verify a much smaller subset of the set

of inequalities identified in 1). Yet, the cardinality of this

smaller set of inequalities grows at least exponentially

fast with L. This reveals the inherent complexity of the

problem.

3) A subset entropy inequality, which plays a key role in

the converse proof in [5], requires a painstaking and

extremely technical proof. We present a weaker version of

this subset entropy inequality whose proof is considerably

simpler. With our explicit characterization of the coding

rate region, this weaker version of the subset entropy

inequality is sufficient for proving the optimality of

superposition coding.

The rest of the paper is organized as follows. We first

formulate the problem and state some existing results in

Section II. In Section III, we present a closed-form solution of

the linear optimization problem in [5] and establish some basic

properties of the solution. In Section IV, we identify a finite

set of inequalities that characterizes the superposition coding

rate region and show that this set contains no redundancy. In

Section V, we further identify a subset of inequalities we need

to verify in determining the achievability of a given rate tuple.

We also provide a lower bound and an upper bound on the

cardinality of this set. In Section VI, we present a weaker

version of the subset entropy inequality in [5]. We conclude

the paper in Section VII. Some essential proofs can be found

in the appendices.
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II. PROBLEM FORMULATION AND EXISTING RESULTS

A. Problem Formulation

An L-level SMDC system, L ≥ 2, is depicted

in Fig. 1. The problem is defined as follows. Let

X1

X2

XL

D1 X1

D2 X1

.

..

E1 DL X1

D1,2 X1,X2

E2
...

...
D1,L X1,X2

...

EL D2,L X1,X2

...

DL X1,X2,· · · ,XL

Fig. 1: The symmetrical multilevel diversity coding system.

L = {1, 2, · · · , L}. Let t be the time index and
{(

X1(t), X2(t), · · · , XL(t)
)

: t = 1, 2, · · ·
}

be a collection of

L independent discrete memoryless information sources with

an L-tuple of generic random variables (X1, X2, · · · , XL)
taking values in X1 × X2 × · · · × XL, where Xi, i ∈ L are

finite alphabets. There are L encoders, indexed by L, each of

which can access all the L information sources. There are also

2L−1 decoders. For each U ⊆ L such that U 6= ∅, Decoder-U
can access the subset of encoders indexed by U . Without loss

of generality, assume the elements in U are in an ascending

order. For 1 ≤ α ≤ L and U such that |U| = α, Decoder-U
can reconstruct the first α sources {X1(t), X2(t), · · · , Xα(t)}
perfectly asymptotically, which will be defined later.

An (n,M1,M2, · · · ,ML) code is defined by the encoding

functions

El :
L
∏

i=1

Xn
i → {1, 2, · · · ,Ml}, for l ∈ L

and decoding functions

DU :
∏

l∈U

{1, 2, · · · ,Ml} →

|U|
∏

i=1

Xn
i , for U ⊆ L and U 6= ∅.

For 1 ≤ α ≤ L, let Xα = (Xα(1), Xα(2), · · · , Xα(n)). Let

Wl = El(X1,X2, · · · ,XL) be the output of Encoder-l and

WU = (Wi : i ∈ U) for U ⊆ L.1 A nonnegative rate tuple

(R1, R2, · · · , RL) is achievable if for any ǫ > 0, there exists

1Here El(X1,X2, · · · ,XL) is a function of random vectors and hence
Wl is a random variable. The reader should not confuse El with the
expectation of a random variable.

for sufficiently large n an (n,M1,M2, · · · ,ML) code such

that
1

n
logMl ≤ Rl + ǫ, ∀ l ∈ L,

and

Pr{DU(WU ) 6= (X1,X2, · · · ,Xα)} ≤ ǫ,

for all α = 1, 2, · · · , L and U ⊆ L such that |U| = α. The

achievable rate region R is defined as the collection of all

achievable rate tuples.

B. Existing Results

We adopt the terminologies and notations in [5]. Let Rsup

be the rate region induced by superposition coding. Then Rsup

is the set of nonnegative rate tuples R = (R1, R2, · · · , RL)
such that

Rl =

L
∑

α=1

rαl , for l ∈ L (1)

for some rαl ≥ 0, 1 ≤ α ≤ L, satisfying
∑

l∈U

rαl ≥ H(Xα), for all U ⊆ L and |U| = α. (2)

For an elaborative discussion on superposition coding for the

3-level SMDC system, we refer the reader to [4].

For a fixed L, based on (1) and (2), one can apply the

Fourier-Motzkin algorithm to eliminate rαl for l, α ∈ L. The

output is a set of linear inequalities involving Rl, l ∈ L
that gives an explicit characterization of Rsup. However, as

mentioned in Section I, the computation involved for L ≥ 5
is unmanageable.

Let λ = (λ1, λ2, · · · , λL) and

R
L
+ = {λ : λ 6= 0 and λi ∈ R, λi ≥ 0 for i ∈ L}. (3)

Let Ωα
L =

{

v ∈ {0, 1}L : |v| = α
}

, where |v| is the Hamming

weight of a vector v = (v1, v2, · · · , vL). Note that there is a

one-to-one correspondence between a vector v ∈ {0, 1}L and

Decoder-U , where U = {i : vi = 1}. For any v ∈ Ωα
L, let

cα(v) be any nonnegative real number. For any λ ∈ R
L
+ and

α ∈ L, let fα(λ) be the optimal solution to the following

optimization problem:

fα(λ) , max
∑

v∈Ωα
L

cα(v) (4)

s.t.
∑

v∈Ωα
L

cα(v)v ≤ λ (5)

cα(v) ≥ 0, ∀v ∈ Ωα
L. (6)

Note that the functions fα(·) and cα(·) above depend on L,

but for simplicity we omit this dependency in the notations.

Thus, if the length of λ is given, then fα(λ) can be defined

accordingly. A set {cα(v) : v ∈ Ωα
L} is called an α-resolution

for λ if (5) and (6) are satisfied and it will be abbreviated as

{cα(v)} if there is no ambiguity. Furthermore, an α-resolution

is called optimal if it achieves the optimal value fα(λ).

Remark 1. Here is an intuitive explanation of fα(λ): Consider

a set of items from L different types indexed by L, where the

number of items of type i (i ∈ L) is λi. An α-type group is
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defined as a group of α items of different types. The goal is to

cluster the items into α-type groups so that the total number

of such groups is maximized. This maximum is defined as

fα(λ).

Let Rh be the collection of nonnegative rate tuples R such

that

L
∑

l=1

λlRl ≥
L
∑

α=1

fα(λ)H(Xα), for all λ ∈ R
L
+. (7)

It was proved in [5] that the superposition region Rsup can be

alternatively characterized by Rh. This means that in addition

to being the optimal value of the optimization problem in (4),

for every fixed λ ∈ R
L
+, fα(λ) also gives a tightest possible

linear outer bound on Rsup via (7). It was further proved in

[5] that Rh is an outer bound on R. Then

Rsup ⊆ R ⊆ Rh

which implies

R = Rh = Rsup, (8)

i.e., superposition coding is optimal.

The following lemma is a direct consequence of Lemma 4

and 7 in [5]. It will be used in the proof of our main result in

the next section.

Lemma 1. Assume λ1 ≥ λ2 ≥ · · · ≥ λL. For α ≥ 2, if

λ1 ≤ λ2+λ3+···+λL

α−1 , then fα(λ) =
1
α

∑L

i=1 λi.

III. OPTIMAL α-RESOLUTION

For any λ ∈ R
L
+ and any permutation ω on

{1, 2, · · · , L}, with an abuse of notation, we denote
(

λω(1) ,

λω(2), · · · , λω(L)

)

by ω(λ). For each α ∈ L, due to the

symmetry of the system, it is intuitive that the values of

fα(ω(λ)) are the same for all ω. This important property of

fα(λ) is formally proved in the following lemma.

Lemma 2. fα
(

ω(λ)
)

= fα(λ) for any α ∈ L.

Proof. For any α ∈ L, let {cα(v) : v ∈ Ωα
L} be an optimal

α-resolution for λ. Then we have
∑

v∈Ωα
L

cα(v)v ≤ λ, (9)

cα(v) ≥ 0, ∀v ∈ Ωα
L,

and

fα(λ) =
∑

v∈Ωα
L

cα(v).

Let
∑

v∈Ωα
L
cα(v)v = λ̃. Then by (9), we have λ̃ ≤ λ. For

any permutation ω on {1, 2, · · · , L}, we can check that

∑

v∈Ωα
L

cα(v) ω(v) = ω

(

∑

v∈Ωα
L

cα(v)v

)

= ω(λ̃) ≤ ω(λ).

(10)

For any v ∈ Ωα
L, let

c′α
(

ω(v)
)

= cα(v).

It is immediate that for all v ∈ Ωα
L,

c′α
(

ω(v)
)

≥ 0. (11)

Since ω is a one-to-one mapping from Ωα
L to Ωα

L, we have

v ∈ Ωα
L if and only if ω(v) ∈ Ωα

L for any ω. Thus,
∑

ω(v)∈Ωα
L

c′α
(

ω(v)
)

ω(v) =
∑

v∈Ωα
L

c′α
(

ω(v)
)

ω(v)

=
∑

v∈Ωα
L

cα(v) ω(v)

≤ ω
(

λ
)

, (12)

where the inequality follows from (10). By (11) and (12), we

see that {c′α
(

ω(v)
)

: v ∈ Ωα
L} is an α- resolution for ω(λ).

In light of the definition of fα(λ) in (4)-(6), we have

fα
(

ω(λ)
)

≥
∑

ω(v)∈Ωα
L

c′α
(

ω(v)
)

=
∑

v∈Ωα
L

c′α
(

ω(v)
)

=
∑

v∈Ωα
L

cα(v)

= fα(λ),

and so

fα
(

ω(λ)
)

≥ fα(λ). (13)

Let ω−1 be the inverse permutation of ω. By the same

argument, we can obtain

fα
(

ω−1
(

ω(λ)
))

≥ fα
(

ω(λ)
)

. (14)

Since ω−1 (ω(λ)) = λ, we see from (13) and (14) that

fα(λ) = fα
(

ω(λ)
)

for all α ∈ L.

The lemma is proved.

If a vector λ satisfies

λ1 ≥ λ2 ≥ · · · ≥ λL, (15)

we call λ an ordered vector. Throughout this section, except

for Lemma 8, in light of Lemma 2, we assume without loss

of generality that λ is an ordered vector. For any α ∈ L, it is

easy to see that

fα(µλ) = µfα(λ) (16)

for all µ ∈ R such that µ > 0. In view of (7) and (16), we will

consider only λ’s whose minimum nonzero element is equal

to 1. Then there exists a ζ ∈ L such that

λ1 ≥ λ2 ≥ · · · ≥ λζ = 1

and λi = 0 for all i = ζ + 1, ζ + 2, · · · , L.

Fix λ, it is easy to see that

f1(λ) =

L
∑

i=1

λi, (17)

and

fζ(λ) = 1,

and for α ≥ ζ + 1,

fα(λ) = 0.
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For other cases, determining the value of fα(λ) is highly

nontrivial.

For α ∈ L and β = 0, 1, · · · , α− 1, let

gα,λ(β) =
1

α− β

L
∑

i=β+1

λi. (18)

Let β∗
α be a value of β (not necessarily unique) that achieves

the minimum minβ∈{0,1,··· ,α−1} gα,λ(β), i.e.,

gα,λ(β
∗
α) = min

β∈{0,1,··· ,α−1}
gα,λ(β). (19)

The following theorem, a main result of the current paper,

gives a closed-form solution for fα(λ).

Theorem 1. For any α ∈ L, fα(λ) = gα,λ(β
∗
α).

Proof. Fix an α ∈ L, and denote β∗
α by β∗ for simplicity. We

prove the theorem by proving i) fα(λ) ≤ gα,λ(β
∗); ii) there

exists a solution for the optimization problem (4) that achieves

gα,λ(β
∗), so that fα(λ) ≥ gα,λ(β

∗).

i) fα(λ) ≤ gα,λ(β
∗).

For 0 ≤ β ≤ α− 1, let eβ be an L-vector with the first β

components being 0 and the last L−β components being

1. For any v ∈ Ωα
L, since

∑β

i=1 vi ≤ β, we have

v · eβ =

L
∑

i=β+1

vi ≥ α− β.

Then for any solutions {cα(v)} to the optimization prob-

lem in (4), we have

L
∑

i=β+1

λi = λ · eβ

≥





∑

v∈Ωα
L

cα(v)v



 · eβ

=
∑

v∈Ωα
L

cα(v)(v · eβ)

≥
∑

v∈Ωα
L

cα(v)(α − β)

= (α − β)
∑

v∈Ωα
L

cα(v).

This implies that for all 0 ≤ β ≤ α− 1,

fα(λ) ≤
1

α− β

L
∑

i=β+1

λi = gα,λ(β).

Thus, we have

fα(λ) ≤ gα,λ(β
∗).

ii) fα(λ) ≥ gα,λ(β
∗).

We now show that there exists a solution that achieves

gα,λ(β
∗). For any α ∈ L and β∗ ∈ {0, 1, · · · , α− 2}, by

(19), we have

1

α− β∗

L
∑

i=β∗+1

λi ≤
1

α− (β∗ + 1)

L
∑

i=β∗+2

λi,

which is equivalent to

λβ∗+1 ≤
1

(α− β∗)− 1

L
∑

i=β∗+2

λi. (20)

Denote the (L − β∗)-vector (λβ∗+1, λβ∗+2, · · · , λL) by

λ′. In view of (20), by Lemma 1, (18), and (19), we have

fα−β∗(λ′) =
1

α− β∗

L
∑

i=β∗+1

λi = gα,λ(β
∗). (21)

In view of (17) and (18) with β = β∗, it is easy to check

that (21) is also satisfied for β∗ = α− 1. Without loss of

generality, let
{

cα−β∗(u) : u ∈ Ωα−β∗

L−β∗

}

be an optimal

(α−β∗)-resolution for λ′. Then it follows from (21) that
∑

u∈Ωα−β∗

L−β∗

cα−β∗(u) = fα−β∗(λ′) = gα,λ(β
∗).

For any v ∈ Ωα
L, let

cα(v) =











cα−β∗(u), if v = (11 · · · 1u)

for some u ∈ Ωα−β∗

L−β∗

0, otherwise.

(22)

Then we have
∑

v∈Ωα
L

cα(v) =
∑

u∈Ωα−β∗

L−β∗

cα−β∗(u) = gα,λ(β
∗). (23)

Again, by (19), we have

1

α− (β∗ − 1)

L
∑

i=β∗

λi ≥
1

α− β∗

L
∑

i=β∗+1

λi.

Then

λβ∗ ≥
1

α− β∗

L
∑

i=β∗+1

λi = gα,λ(β
∗),

where the equality above follows from (18). Thus,

λ1 ≥ λ2 ≥ · · · ≥ λβ∗ ≥ gα,λ(β
∗).

For i = 1, 2, · · · , β∗, since cα(v) = 0 if vi = 0, we have
∑

v∈Ωα
L
:vi=1

cα(v) =
∑

v∈Ωα
L

cα(v) = gα,λ(β
∗) ≤ λi, (24)

where the second equality follows from (23). For i =
β∗ + 1, β∗ + 2, · · · , L,
∑

v∈Ωα
L
:vi=1

cα(v) =
∑

v∈Ωα
L
: vi=1,

(v1,··· ,vβ∗ )=1

cα(v) +
∑

v∈Ωα
L
: vi=1,

(v1,··· ,vβ∗ ) 6=1

cα(v)

=
∑

u∈Ωα−β∗

L−β∗ : ui−β∗=1

cα−β∗(u) + 0

≤ λi, (25)

since
{

cα−β∗(u) : u ∈ Ωα−β∗

L−β∗

}

is an optimal (α− β∗)-

resolution for λ′. From (23), (24), and (25), we can see
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that {cα(v) : v ∈ Ωα
L} defined by (22) is an α-resolution

for λ that achieves gα,λ(β
∗). Thus, we have

fα(λ) ≥ gα,λ(β
∗).

The following lemma provides an important insight into the

minimum in (19).

Lemma 3. For any α ∈ {2, 3, · · · , L} and 0 ≤ β ≤ α− 2,

(i) if gα,λ(β) ≥ gα,λ(β + 1), then

gα,λ(0) ≥ gα,λ(1) ≥ · · · ≥ gα,λ(β + 1);

(ii) if gα,λ(β) ≤ gα,λ(β + 1), then

gα,λ(β) ≤ gα,λ(β + 1) ≤ · · · ≤ gα,λ(α− 1).

Remark 2. In Lemma 3, if all the non-strict inequalities are

replaced by strict inequalities, the lemma remains valid. This

alternative version of Lemma 3 can be proved by modifying

the proof below accordingly.

Remark 3. Lemma 3 reveals the pseudo-convexity [30] of the

function gα,λ(β).

Proof of Lemma 3. In the following, we only prove (ii). The

proof for (i) can be obtained similarly.

For α = 2, the lemma is immediate. For 3 ≤ α ≤ L

and β = α − 2, (ii) is immediate. For 0 ≤ β ≤ α − 3,

from the definition of gα,λ(·) in (18), the condition gα,λ(β) ≤
gα,λ(β + 1) is equivalent to

1

α− β

L
∑

i=β+1

λi ≤
1

α− (β + 1)

L
∑

i=β+2

λi,

or

λβ+1 ≤
1

α− (β + 1)

L
∑

i=β+2

λi.

Then by the assumption in (15), we have

λβ+2 ≤
1

α− (β + 1)

L
∑

i=β+2

λi,

or

λβ+2 ≤
1

α− (β + 2)

L
∑

i=β+3

λi,

which is also equivalent to

1

α− (β + 1)

L
∑

i=β+2

λi ≤
1

α− (β + 2)

L
∑

i=β+3

λi.

From (18), we have

gα,λ(β + 1) ≤ gα,λ(β + 2).

Then we see inductively that for all β + 1 ≤ β′ ≤ α− 2,

gα,λ(β
′) ≤ gα,λ(β

′ + 1).

The lemma is proved.

For any α ∈ {2, 3, · · · , L} and any β ∈ {0, 1, · · · , α − 1},

we can readily see from Lemma 3 that β∗
α = β if and only if

gα,λ(0) ≥ gα,λ(1) ≥ · · · ≥ gα,λ(β)

and

gα,λ(β) ≤ gα,λ(β + 1) ≤ · · · ≤ gα,λ(α− 1).

This provides a method to find the optimal value β∗
α conve-

niently. We only need to compare gα,λ(β) and gα,λ(β + 1)
for β = 0, 1, · · · , α − 2 successively and stop at the first β

such that gα,λ(β) ≤ gα,λ(β + 1). Then this β gives a value

of β∗
α that achieves the minimum in (19).

Lemma 4. 0 = β∗
1 ≤ β∗

2 ≤ · · · ≤ β∗
L.

Proof. It is easy to see from (17) that β∗
1 = 0. This implies

that β∗
1 ≤ β∗

2 . Now, we prove the lemma by showing that

β∗
α−1 ≤ β∗

α for any 3 ≤ α ≤ L. If β∗
α ∈ {α−2, α−1}, since

for a fixed α ∈ L we have 0 ≤ β ≤ α− 1, it is obvious that

β∗
α−1 ≤ α− 2 ≤ β∗

α.

Otherwise, β∗
α ∈ {0, 1, · · · , α − 3}. Since β∗

α achieves the

minimum in (19), we have

1

α− β∗
α

L
∑

i=β∗

α+1

λi ≤
1

α− (β∗
α + 1)

L
∑

i=β∗

α+2

λi,

which is equivalent to

λβ∗

α+1 ≤
1

α− (β∗
α + 1)

L
∑

i=β∗

α+2

λi.

This implies that

λβ∗

α+1 ≤
1

α− (β∗
α + 2)

L
∑

i=β∗

α+2

λi,

which is equivalent to

1

α− (β∗
α + 1)

L
∑

i=β∗

α+1

λi ≤
1

α− (β∗
α + 2)

L
∑

i=β∗

α+2

λi.

Thus, we have

1

(α− 1)− β∗
α

L
∑

i=β∗

α+1

λi ≤
1

(α− 1)− (β∗
α + 1)

L
∑

i=β∗

α+2

λi,

which by (18) implies that

gα−1,λ(β
∗
α) ≤ gα−1,λ(β

∗
α + 1).

By the discussion following Lemma 3, we conclude that

β∗
α−1 ≤ β∗

α.

The following lemma will be used for proving Lemma 6.

Lemma 5. Let λ1 = (λ1,1, λ1,2, · · · , λ1,L) and λ2 =
(λ2,1, λ2,2, · · · , λ2,L) be two vectors such that λ1,1 > λ2,1

and λ1,i = λ2,i for all 2 ≤ i ≤ L. For any α0 ∈ L, if

fα0(λ1) = fα0(λ2), then fα(λ1) = fα(λ2) for all α ≥ α0.
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Proof. For α ∈ L, let β1
α and β2

α be the values (not necessarily

unique) that achieve fα(λ1) and fα(λ2), respectively. We first

prove the claim that among all the possible values of β1
α0

and

β2
α0

, there exists a pair of
(

β1
α0
, β2

α0

)

such that β1
α0

≥ 1 and

β2
α0

≥ 1. Consider the following four cases for all the possible

values of
(

β1
α0
, β2

α0

)

:

i) β1
α0

= β2
α0

= 0;

ii) β1
α0

≥ 1, β2
α0

= 0;

iii) β1
α0

= 0, β2
α0

≥ 1;

iv) β1
α0

≥ 1, β2
α0

≥ 1.

Since fα0(λ1) = fα0(λ2), it is easy to see that i) and ii) are

impossible. If iii) is true, we have

1

α0

L
∑

i=1

λ1,i =
1

α0 − β2
α0

L
∑

i=β2
α0

+1

λ2,i =
1

α0 − β2
α0

L
∑

i=β2
α0

+1

λ1,i,

where the second equality follows from β2
α0

≥ 1. This implies

that

fα0(λ1) =
1

α0 − β2
α0

L
∑

i=β2
α0

+1

λ1,i,

i.e.
(

β2
α0
, β2

α0

)

is a possible pair. This proves the claim. For

all α ≥ α0, by Lemma 4, we have β1
α ≥ 1 and β2

α ≥ 1. Then

by Theorem 1, we have

fα(λ1) = fα(λ2) = min
β∈{1,2,··· ,α−1}

gα,λ1(β).

The lemma is proved.

Let λ[1] be the L-vector with the first component being 1

and the rest being 0, i.e.,

λ[1] = (1, 0, 0, · · · , ). (26)

Lemma 6. If λ1 >
∑L

i=2 λi, let λ′ =
(
∑L

i=2 λi, λ2, λ3, · · · , λL

)

. Then for all α ∈ L,

fα(λ) =

(

λ1 −
L
∑

i=2

λi

)

fα
(

λ[1]
)

+ fα(λ
′). (27)

Proof. By Theorem 1, we have

f2(λ
′) =

L
∑

i=2

λi.

The condition λ1 >
∑L

i=2 λi implies that

g2,λ(0) > g2,λ(1).

Thus by Theorem 1, we have

f2(λ) = g2,λ(1) =

L
∑

i=2

λi.

Then

f2(λ) = f2(λ
′),

and by Lemma 5, we have

fα(λ) = fα(λ
′), for all 2 ≤ α ≤ L. (28)

For 2 ≤ α ≤ L, since fα(λ
[1]) = 0, the equation (27) is

satisfied by virtue of (28). For α = 1, we can check that

f1(λ) =
L
∑

i=1

λi

=

(

λ1 −
L
∑

i=2

λi

)

· 1 + 2
L
∑

i=2

λi

=

(

λ1 −
L
∑

i=2

λi

)

f1(λ
[1]) + f1(λ

′),

so that (27) is also satisfied. This proves the lemma.

Lemma 7. For any η ∈ {1, 2, · · · , L− 1},

(i) if λ1 ≤ 1
η

∑L

i=2 λi, then fα(λ) = gα,λ(0), for α =
1, 2, · · · , η + 1;

(ii) if λ1 ≥ 1
η

∑L
i=2 λi, then fα(λ) = fα−1(λ2, λ3, · · · , λL),

for α = η + 1, η + 2, · · · , L.

Remark 4. If λ1 = 1
η

∑L

i=2 λi, we have from the lemma that

fη+1(λ) = fη(λ2, λ3, · · · , λL) =
1

η + 1

L
∑

i=1

λi.

In this case,

fα(λ) =

{

1
α

∑L

i=1 λi, for α ≤ η + 1

fα−1(λ2, λ3, · · · , λL), for α ≥ η + 1.

Proof. We first prove (i). For α ≤ η + 1, it is easy to check

that
1

α

(

1 +
1

η

)

≤
1

α− 1
. (29)

Thus,

1

α

L
∑

i=1

λi =
1

α
λ1 +

1

α

L
∑

i=2

λi

≤
1

α

(

1

η

L
∑

i=2

λi

)

+
1

α

L
∑

i=2

λi (30)

=
1

α

(

1 +
1

η

) L
∑

i=2

λi

≤
1

α− 1

L
∑

i=2

λi, (31)

where (30) follows from the assumption that λ1 ≤ 1
η

∑L

i=2 λi

and (31) follows from (29). Then by the discussion following

Lemma 3, we have

fα(λ) =
1

α

L
∑

i=1

λi = gα,λ(0).

Next, we prove (ii). For α ≥ η + 1, it is easy to check that

1

α

(

1 +
1

η

)

≥
1

α− 1
. (32)
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Similar to the derivation of (31), with the assumption that

λ1 ≥ 1
η

∑L

i=2 λi, (32) implies that

1

α

L
∑

i=1

λi ≥
1

α− 1

L
∑

i=2

λi. (33)

Thus, we have

fα(λ) = min
β∈{0,1,··· ,α−1}







1

α− β

L
∑

i=β+1

λi







= min
β∈{1,2,··· ,α−1}







1

α− β

L
∑

i=β+1

λi







(34)

= min
β∈{0,1,··· ,α−2}







1

(α− 1)− β

L
∑

i=β+2

λi







= fα−1(λ2, λ3, · · · , λL),

where (34) follows from (33). This proves the lemma.

The following lemma implies that fα(λ) is a concave

function of λ ∈ R
L
+ for all α ∈ L. Note that the vectors

in this lemma are not necessarily ordered.

Lemma 8. For any α ∈ L,

fα(µ1λ1 + µ2λ2) ≥ µ1fα(λ1) + µ2fα(λ2)

for any λ1,λ2 ∈ R
L
+ and µ1, µ2 ≥ 0.

Proof. Let λ1 = (λ1,1, λ1,2, · · · , λ1,L) and λ2 =
(λ2,1, λ2,2, · · · , λ2,L). Let π1(·), π2(·) be two permutations

of {1, 2, · · · , L} such that

λ1,π1(1) ≥ λ1,π1(2) ≥ · · · ≥ λ1,π1(L)

and

λ2,π2(1) ≥ λ2,π2(2) ≥ · · · ≥ λ2,π2(L).

Denote the ordered vectors by π1(λ1) and π2(λ2), respec-

tively. For any β = 0, 1, · · · , α− 1, it is easy to see that

1

α− β

L
∑

i=β+1

λ1,i ≥
1

α− β

L
∑

i=β+1

λ1,π1(i)

and

1

α− β

L
∑

i=β+1

λ2,i ≥
1

α− β

L
∑

i=β+1

λ2,π2(i).

Thus, we have

1

α− β

L
∑

i=β+1

(µ1λ1,i + µ2λ2,i)

≥
1

α− β

L
∑

i=β+1

(µ1λ1,π1(i) + µ2λ2,π2(i)).

This implies that

fα(µ1λ1 + µ2λ2) ≥ fα(µ1π1(λ1) + µ2π2(λ2)).

For any α ∈ L, it is easy to check that

fα(π1(λ1)) = fα(λ1)

and

fα(π2(λ2)) = fα(λ2).

Therefore, if the lemma holds for any ordered vectors λ1 and

λ2, then the lemma holds for any vectors λ1 and λ2 (not

necessarily ordered), because

fα(µ1λ1 + µ2λ2) ≥ fα(µ1π1(λ1) + µ2π2(λ2))

≥ µ1fα(π1(λ1)) + µ2fα(π2(λ2))

= µ1fα(λ1) + µ2fα(λ2).

Thus without loss of generality, we assume that λ1 and λ2

are ordered. Then for any β = 0, 1, · · · , α− 1, we have from

Theorem 1 that

1

α− β

L
∑

i=β+1

λ1,i ≥ fα(λ1)

and

1

α− β

L
∑

i=β+1

λ2,i ≥ fα(λ2),

which implies

1

α− β

L
∑

i=β+1

(µ1λ1,i + µ2λ2,i) ≥ µ1fα(λ1) + µ2fα(λ2).

By taking the minimum over all β = 0, 1, · · · , α−1, we obtain

min
β∈{0,1,··· ,α−1}







1

α− β

L
∑

i=β+1

(µ1λ1,i + µ2λ2,i)







≥ µ1fα(λ1) + µ2fα(λ2),

which by Theorem 1 is equivalent to

fα(µ1λ1 + µ2λ2) ≥ µ1fα(λ1) + µ2fα(λ2).

This proves the lemma.

IV. THE MINIMUM SUFFICIENT SET OF INEQUALITIES

Even though the superposition region Rsup (cf. (7) and (8))

can be explicitly characterized by solving fα(λ) in Theorem 1,

an uncountable number of inequalities are involved. For a fixed

L, among all these inequalities, only a finite number of them

are needed because Rsup is a polytope. In this section, we

provide a method to determine this minimum sufficient set of

inequalities.

For any λ ∈ R
L
+, let π(·) be a permutation of {1, 2, · · · , L}

such that

λπ(1) ≥ λπ(2) ≥ · · · ≥ λπ(L). (35)

Recall that we consider only λ’s whose minimum nonzero

element is equal to 1. Let ζ ∈ L be such that

λπ(ζ) = 1 (36)

and for j = ζ + 1, ζ + 2, · · · , L,

λπ(j) = 0. (37)
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Toward listing all the inequalities defining Rsup, we consider

a certain finite subset of RL
+ defined as follows. Let GL be the

collection of all λ ∈ R
L
+ such that for j = ζ−1, ζ−2, · · · , 1,

λπ(j) ∈







L
∑

i=j+1

λπ(i),
1

2

L
∑

i=j+1

λπ(i), · · · ,
1

θj+1 + 1

L
∑

i=j+1

λπ(i)







,

(38)

where θζ = 0 and for j = ζ − 2, · · · , 1, θj+1 is the integer

such that

λπ(j+1) =
1

θj+1

L
∑

i=j+2

λπ(i). (39)

λ1 · · · λζ−3 λζ−2 λζ−1 λζ λζ+1 · · · λL

· · · 1 0 · · · 011

2

1

3
2

3

2

4

Fig. 2: Recursive generation of vectors in G0
L

Here, (36)-(39) not only defines GL but in fact provides a

method to exhaust all λ ∈ GL. For ζ = 1, the only possible λ

are λ[1] = (1, 0, 0, · · · ) and its permutations. For ζ ≥ 2, start-

ing with λπ(ζ) = 1, the values of λπ(ζ−1), λπ(ζ−2), · · · , λπ(1)

can be chosen recursively according to (38). It is easy to check

that

θj ∈ {1, 2, · · · , θj+1 + 1} (40)

and

1 ≤ θj ≤ ζ − j (41)

for 1 ≤ j ≤ ζ − 1. Furthermore, for the last element of the

set in (38) which is the smallest in the set, we have

1

θj+1 + 1

L
∑

i=j+1

λπ(i)

=
1

θj+1 + 1





1

θj+1

L
∑

i=j+2

λπ(i) +

L
∑

i=j+2

λπ(i)





=
1

θj+1 + 1

θj+1 + 1

θj+1

L
∑

i=j+2

λπ(i)

=
1

θj+1

L
∑

i=j+2

λπ(i)

= λπ(j+1),

so that λπ(j) ≥ λπ(j+1) as required by (35). Also, we see from

(38) that

1) for ζ ≥ 2, λπ(ζ−1) = λπ(ζ) = 1;

2) for ζ ≥ 3, λπ(j+1) is always a possible choice for λπ(j)

for 1 ≤ j ≤ ζ − 2.

Denote the cardinality of GL by SL. Let G0
L =

{λ ∈ GL : λ is ordered}, and denote its cardinality by

|G0
L| = S0

L. (42)

The vectors in G0
L are generated recursively as illustrated in

Fig. 2. For the ease of notation, we let

G0
L =

{

λ(1),λ(2), · · · ,λ(S0
L)
}

(43)

with λ(1) = λ[1] (cf. (26)) and

GL = G0
L ∪

{

λ(S0
L+1),λ(S0

L+2), · · · ,λ(SL)
}

.

In other words, the set GL is the collection of all possible

permutations of the vectors in G0
L.

For i = 1, 2, · · · , SL, let πi(·) be a permutation of

{1, 2, · · · , L} such that

λ
(i)
πi(1)

≥ λ
(i)
πi(2)

≥ · · · ≥ λ
(i)
πi(L). (44)

For any λ ∈ R
L
+, let f(λ) =

(

f1(λ), f2(λ), · · · , fL(λ)
)

. The

following technical lemma will be instrumental for the proof

of our main theorem.

Lemma 9. Consider any ordered vector λ ∈ R
L
+ such that

λ 6= λ[1]. Assume there exists ci ≥ 0, i = 1, 2, · · · , SL such

that

(

λ,f(λ)
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

. (45)

Let I =
{

i ∈ {1, 2, · · · , SL} : ci 6= 0
}

. For any η ∈
{1, 2, · · · , ζ − 1},

(i) if λ1 ≤ 1
η

∑L
j=2 λj , then λ

(i)
πi(1)

≤ 1
η

∑L
j=2 λ

(i)
πi(j)

for all

i ∈ I;

(ii) if λ1 ≥ 1
η

∑L
j=2 λj , then λ

(i)
πi(1)

≥ 1
η

∑L
j=2 λ

(i)
πi(j)

for all

i ∈ I.

Remark 5. In the above, since λ is ordered, we have

λ1 ≥
1

ζ − 1

L
∑

j=2

λj . (46)

Therefore, when η = ζ − 1, the condition in (i) can only be

satisfied with an equality, i.e., λ1 = 1
ζ−1

∑L

j=2 λj .

Proof. See Appendix A.

The assumption that λ(i) ∈ GL for 1 ≤ i ≤ SL is not

invoked in the proof of Lemma 9. By taking this assumption

into account, Lemma 9 can be further strengthened with the

following setup. For any ordered vector λ ∈ R
L
+ not equal

to λ[1], by the constraint in (46), there exists a unique η ∈
{1, 2, · · · , ζ − 1} such that

1

η

L
∑

j=2

λj ≤ λ1 <
1

η − 1

L
∑

j=2

λj . (47)
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In the sequel, we adopt the convention that

1

0
· c =

{

∞, if c 6= 0

1, if c = 0.

Then the upper bound in (47) is ∞ when η = 1.

Lemma 10. For any ordered vector λ ∈ R
L
+ such that λ 6=

λ[1], assume there exists ci ≥ 0, i = 1, 2, · · · , SL such that

(

λ,f(λ)
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

. (48)

Then for all i ∈ I,

λ
(i)
πi(1)

∈







1

η

L
∑

j=2

λ
(i)
πi(j)

,
1

η − 1

L
∑

j=2

λ
(i)
πi(j)







, (49)

where η depends on λ and is defined in (47). In particular, if

the lower bound in (47) is tight, then λ
(i)
πi(1)

= 1
η

∑L

j=2 λ
(i)
πi(j)

for all i ∈ I.

Proof. The lemma can be easily obtained from Lemma 9. See

details in Appendix B.

Remark 6. For all 1 ≤ i ≤ SL, λ
(i)
πi(1)

can in general take one

of the θ2 + 1 values prescribed in (38). However, under the

constraint (48), the above lemma asserts that for all i ∈ I,

λ
(i)
πi(1)

can only take one of the two values prescribed in (49).

Let R∗ be the collection of nonnegative rate tuples R such

that

L
∑

l=1

λlRl ≥
L
∑

α=1

fα(λ)H(Xα), for all λ ∈ GL. (50)

The next theorem shows that R∗ provides an equivalent

characterization of Rsup. Note that R∗ is the intersection of

only a finite set of halfspaces, because the cardinality of GL is

finite in view of its definition in (36)-(38). Thus, R∗ is more

explicit than Rh. For L = 1, 2, · · · , 5, all the rate constraints

of R∗ with ordered coefficient vectors are listed in Appendix

I.

Theorem 2. Rsup = R∗.

Proof. We prove the theorem by showing that Rh = R∗. Since

GL ⊆ R
L
+, we have Rh ⊆ R∗. To show R∗ ⊆ Rh, we consider

the following. Define three sets of (2L)-vectors by

F1
L =

{

(λ,f(λ)) : λ ∈ R
L
+

}

,

F2
L = {(λ,f(λ)) : λ ∈ GL} ,

and

F3
L =

{

(λ,f(λ)) : λ ∈ G0
L

}

.

Note that none of F2
L and F3

L is a vector space since they

are not closed under vector addition. We prove R∗ ⊆ Rh

by proving the claim that any (λ,f(λ)) ∈ F1
L is a conic

combination of the vectors in F2
L.

Without loss of generality, we consider only λ such that

λ1 ≥ λ2 ≥ · · · ≥ λL, and show that (λ,f(λ)) for any such

λ is a conic combination of the vectors in F3
L. We prove the

claim by induction on L for L ≥ 1. Since we consider only

λ’s whose minimum nonzero element is equal to 1, it is easy

to see that F1
1 = F3

1 = {(1, 1)} and thus the claim is true for

L = 1.

Assume the claim is true for L = N . We will show that the

claim is true for L = N + 1. This can readily be verified

for λ ∈ R
N+1
+ such that ζ = 1. Thus, we consider only

λ ∈ R
N+1
+ such that ζ ≥ 2. For any ordered vector λN =

(λ2, λ3, · · · , λN+1) ∈ R
N
+ , let λN+1 = (λ1, λ2, · · · , λN+1)

where λ1 ≥ λ2. By the induction hypothesis, there exist

ci ≥ 0, i = 1, 2, · · · , S0
N such that

(λN ,f(λN )) =

S0
N
∑

i=1

ci

(

λ
(i)
N ,f(λ

(i)
N )
)

, (51)

where λ
(i)
N , i = 1, 2, · · · , S0

N are distinct elements of G0
N .

Let λ
(i)
N = (λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
N+1). Recall that I = {i ∈

{1, 2, · · · , SN} : ci 6= 0} in Lemma 9. For simplicity, let

ci = 0 for all i ∈ {S0
N + 1, S0

N + 2, · · · , SN}. For any i ∈ I,

by Lemma 10, we have

λ
(i)
2 ∈







1

η′

N+1
∑

j=3

λ
(i)
j ,

1

η′ − 1

N+1
∑

j=3

λ
(i)
j







, (52)

where η′ ∈ {1, 2, · · · , N − 1} is unique and determined by

1

η′

N+1
∑

j=3

λj ≤ λ2 <
1

η′ − 1

N+1
∑

j=3

λj . (53)

Since the second inequality in (53) is equivalent to λ2 <
1
η′

∑N+1
j=2 λj , we consider the following three cases for λ1:

a) 1
η′

∑N+1
j=2 λj < λ1 ≤

∑N+1
j=2 λj ;

b) λ2 ≤ λ1 ≤ 1
η′

∑N+1
j=2 λj ;

c) λ1 >
∑N+1

j=2 λj .

Case a): If 1
η′

∑N+1
j=2 λj < λ1 ≤

∑N+1
j=2 λj , there exists a

unique ϕ ∈ {1, 2, · · · , η′ − 1} such that

1

ϕ+ 1

N+1
∑

j=2

λj < λ1 ≤
1

ϕ

N+1
∑

j=2

λj . (54)

Then by Lemma 7, we have

fα(λN+1) =

{

1
α

∑N+1
j=1 λj , for 1 ≤ α ≤ ϕ+ 1

fα−1(λN ), for ϕ+ 2 ≤ α ≤ N + 1.
(55)

For all i ∈ I, let

λ
(1,i)
1 =

1

ϕ+ 1

N+1
∑

j=2

λ
(i)
j (56)

and

λ
(2,i)
1 =

1

ϕ

N+1
∑

j=2

λ
(i)
j . (57)

For j ∈ {2, 3, · · · , N + 1}, for notational simplicity, let

λ
(1,i)
j = λ

(2,i)
j = λ

(i)
j . (58)

Let

λ
(1,i)
N+1 = (λ

(1,i)
1 , λ

(1,i)
2 , · · · , λ

(1,i)
N+1)
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and

λ
(2,i)
N+1 = (λ

(2,i)
1 , λ

(2,i)
2 , · · · , λ

(2,i)
N+1).

From (52), (38), and the range of ϕ, we can check that

λ
(1,i)
N+1,λ

(2,i)
N+1 ∈ G0

N+1. By Remark 4 following Lemma 7, we

have

fα(λ
(1,i)
N+1) =

{

1
α

∑N+1
j=1 λ

(1,i)
j , for 1 ≤ α ≤ ϕ+ 2

fα−1(λ
(i)
N ), for ϕ+ 2 ≤ α ≤ N + 1,

(59)

and

fα(λ
(2,i)
N+1) =

{

1
α

∑N+1
j=1 λ

(2,i)
j , for 1 ≤ α ≤ ϕ+ 1

fα−1(λ
(i)
N ), for ϕ+ 1 ≤ α ≤ N + 1.

(60)

Consider the conic combination of λ
(1,i)
1 for i ∈ I,

∑

i∈I

ciλ
(1,i)
1 =

1

ϕ+ 1

∑

i∈I

ci

N+1
∑

j=2

λ
(i)
j (61)

=
1

ϕ+ 1

N+1
∑

j=2

(

∑

i∈I

ciλ
(i)
j

)

=
1

ϕ+ 1

N+1
∑

j=2

λj (62)

< λ1, (63)

where (61) follows from (56), (62) follows from (51), and

(63) follows from (54). Similarly, from (57), (51), and (54),

we have
∑

i∈I

ciλ
(2,i)
1 ≥ λ1.

Let u1 =
∑

i∈I ciλ
(1,i)
1 and u2 =

∑

i∈I ciλ
(2,i)
1 . Then we

have u1 < λ1 ≤ u2. For all i ∈ I, let

λ
(i)
1 =

u2 − λ1

u2 − u1
λ
(1,i)
1 +

λ1 − u1

u2 − u1
λ
(2,i)
1 . (64)

It is easy to check that

∑

i∈I

ciλ
(i)
1 = λ1. (65)

Let c
(1)
i = u2−λ1

u2−u1
· ci and c

(2)
i = λ1−u1

u2−u1
· ci. It is readily seen

that c
(1)
i and c

(2)
i are nonnegative, and we can check that

{

c
(1)
i + c

(2)
i = ci

c
(1)
i λ

(1,i)
1 + c

(2)
i λ

(2,i)
1 = ciλ

(i)
1 .

(66)

Then we have from (55), (65), and (66) that

λN+1 =
∑

i∈I

(

c
(1)
i λ

(1,i)
N+1 + c

(2)
i λ

(2,i)
N+1

)

. (67)

Following (55), we have for 1 ≤ α ≤ ϕ+ 1 that

fα(λN+1)

=
1

α

N+1
∑

j=1

λj

=
1

α

N+1
∑

j=1

∑

i∈I

ciλ
(i)
j (68)

=
1

α

N+1
∑

j=1

[

∑

i∈I

(

c
(1)
i λ

(1,i)
j + c

(2)
i λ

(2,i)
j

)

]

(69)

=
∑

i∈I



c
(1)
i

(

1

α

N+1
∑

j=1

λ
(1,i)
j

)

+ c
(2)
i

(

1

α

N+1
∑

j=1

λ
(2,i)
j

)





=
∑

i∈I

[

c
(1)
i fα(λ

(1,i)
N+1) + c

(2)
i fα(λ

(2,i)
N+1)

]

(70)

where (68) follows from (51), (69) follows from (58) and (66),

and (70) follows from (59) and (60). Similarly, for ϕ + 2 ≤
α ≤ N + 1, following (55), we have

fα(λN+1) = fα−1(λN )

=
∑

i∈I

cifα−1(λ
(i)
N ) (71)

=
∑

i∈I

(

c
(1)
i + c

(2)
i

)

fα−1(λ
(i)
N ) (72)

=
∑

i∈I

[

c
(1)
i fα(λ

(1,i)
N+1) + c

(2)
i fα(λ

(2,i)
N+1)

]

, (73)

where (71) follows from (51), (72) follows from (66), and (73)

follows from (59) and (60). In other words, (70) or (73) holds

for all 1 ≤ α ≤ N + 1. Summarizing the above, we have

(

λN+1,f(λN+1)
)

=
∑

i∈I

[

c
(1)
i

(

λ
(1,i)
N+1, fα(λ

(1,i)
N+1)

)

+ c
(2)
i

(

λ
(2,i)
N+1, fα(λ

(2,i)
N+1)

)

]

,

(74)

and thus
(

λN+1,f(λN+1)
)

is a conic combination of vectors

in F3
N+1.

Case b): If λ2 ≤ λ1 ≤ 1
η′

∑N+1
j=2 λj , since the condition

1
η′

∑N+1
j=3 λj ≤ λ2 in (53) is equivalent to

λ2 ≥
1

η′ + 1

N+1
∑

j=2

λj ,

we have

1

η′ + 1

N+1
∑

j=2

λj ≤ λ1 ≤
1

η′

N+1
∑

j=2

λj .

By Lemma 7, we obtain

fα(λN+1) =

{

1
α

∑N+1
j=1 λj , for 1 ≤ α ≤ η′ + 1

fα−1(λN ), for η′ + 2 ≤ α ≤ N + 1.
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In light of (52), let I1 =
{

i ∈ I : λ
(i)
2 = 1

η′−1

∑N+1
j=3 λ

(i)
j

}

and I2 =
{

i ∈ I : λ
(i)
2 = 1

η′

∑N+1
j=3 λ

(i)
j

}

, where I1∪I2 = I.

For i ∈ I1, let

λ
(1,i)
1 = λ

(2,i)
1 =

1

η′

N+1
∑

j=2

λ
(i)
j . (75)

For i ∈ I2, let

λ
(1,i)
1 =

1

η′ + 1

N+1
∑

j=2

λ
(i)
j (76)

and

λ
(2,i)
1 =

1

η′

N+1
∑

j=2

λ
(i)
j .

Again, from (52) and (38), we can check that λ
(1,i)
N+1,λ

(2,i)
N+1 ∈

G0
N+1 for all i ∈ I. By Remark 4 following Lemma 7, we

have for i ∈ I1 that

fα(λ
(1,i)
N+1) = fα(λ

(2,i)
N+1)

=

{

1
α

∑N+1
j=1 λ

(1,i)
j , for 1 ≤ α ≤ η′ + 1

fα−1(λ
(i)
N ), for η′ + 1 ≤ α ≤ N + 1,

and for i ∈ I2,

fα(λ
(1,i)
N+1) =

{

1
α

∑N+1
j=1 λ

(2,i)
j , for 1 ≤ α ≤ η′ + 2

fα−1(λ
(i)
N ), for η′ + 2 ≤ α ≤ N + 1,

and

fα(λ
(2,i)
N+1) =

{

1
α

∑N+1
j=1 λ

(2,i)
j , for 1 ≤ α ≤ η′ + 1

fα−1(λ
(i)
N ), for η′ + 1 ≤ α ≤ N + 1.

Following from (75) and (76), we have

∑

i∈I

ciλ
(1,i)
1 =

∑

i∈I1

ci
1

η′

N+1
∑

j=2

λ
(i)
j +

∑

i∈I2

ci
1

η′ + 1

N+1
∑

j=2

λ
(i)
j

=
∑

i∈I1

ci
1

η′

(

1 +
1

η′ − 1

)N+1
∑

j=3

λ
(i)
j

+
∑

i∈I2

ci
1

η′ + 1

(

1 +
1

η′

)N+1
∑

j=3

λ
(i)
j (77)

=
∑

i∈I1

ci
1

η′ − 1

N+1
∑

j=3

λ
(i)
j +

∑

i∈I2

ci
1

η′

N+1
∑

j=3

λ
(i)
j

=
∑

i∈I1

ciλ
(i)
2 +

∑

i∈I2

ciλ
(i)
2 (78)

= λ2

≤ λ1,

where (77) and (78) follow from the definition of I1 and I2.

Similar to (61)-(63), we have

∑

i∈I

ciλ
(2,i)
1 ≥ λ1.

For i ∈ I, similar to (64)-(66), let c
(1)
i = u2−λ1

u2−u1
· ci, c

(2)
i =

λ1−u1

u2−u1
· ci, and

λ
(i)
1 =

u2 − λ1

u2 − u1
λ
(1,i)
1 +

λ1 − u1

u2 − u1
λ
(2,i)
1 .

We can check that
∑

i∈I

ciλ
(i)
1 = λ1

and for all i ∈ I,
{

c
(1)
i + c

(2)
i = ci

c
(1)
i λ

(1,i)
1 + c

(2)
i λ

(2,i)
1 = ciλ

(i)
1 .

Then similar to (67)-(74), we have
(

λN+1,f(λN+1)
)

=
∑

i∈I

[

c
(1)
i

(

λ
(1,i)
N+1, fα(λ

(1,i)
N+1)

)

+ c
(2)
i

(

λ
(2,i)
N+1, fα(λ

(2,i)
N+1)

)

]

.

Case c): If λ1 >
∑N+1

j=2 λj , let λ′
N+1 =

(

∑N+1
j=2 λj , λ2, · · · , λN+1

)

and λ
(1)
N+1 be the (N + 1)-

vector with the first component being 1 and the rest being 0.

From Lemma 6, we have

(λN+1,f(λN+1))

=

(

λ1 −
N+1
∑

j=2

λj

)

(

λ
(1)
N+1,f(λ

(1)
N+1)

)

+
(

λ′
N+1,f(λ

′
N+1)

)

.

It is easy to see that
(

λ
(1)
N+1,f(λ

(1)
N+1)

)

∈ F3
N+1.

Note that λ′
N+1 satisfies the condition for Case a) pro-

vided that η′ 6= 1. Otherwise, it satisfies the condition for

Case b). Thus we see that
(

λ′
N+1,f(λ

′
N+1)

)

is always a

conic combination of the vectors in F3
N+1. This implies that

(λN+1,f(λN+1)) is a conic combination of the vectors in

F3
N+1, as is to be proved.

For any λ ∈ R
L
+, let λL−1 = (λ2, λ3, · · · , λL) and

f(λL−1) =
(

f1(λL−1), f2(λL−1), · · · , fL−1(λL−1)
)

. The

following lemma provides a method for finding a set of conic

combination coefficients for
(

λL−1,f(λL−1)
)

from the conic

combination for
(

λ,f(λ)
)

.

Lemma 11. Consider any ordered vector λ ∈ R
L
+ such that

λ 6= λ[1]. Assume there exists ci ≥ 0, i = 1, 2, · · · , SL such

that
(

λ,f(λ)
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

, (79)

Then we have
(

λL−1,f(λL−1)
)

=

SL
∑

i=1

ci ·
(

(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ),f(λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
L )
)

.

Proof. See Appendix C.
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Lemma 12. For any λ(i) ∈ GL, if
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

∈

GL−1, then λ
(i)
1 = 0 or λ

(i)
πi(1)

.

Proof. See Appendix D.

Lemma 13. For any i0 ∈ {1, 2, · · · , SL}, there does not exist

(c1, c2, · · · , cSL
) ∈ R

SL

+ such that ci0 = 0 and

(

λ(i0),f(λ(i0))
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

.

Proof. See Appendix E.

Theorem 2 gives a rate region R∗ that simplifies the

characterization of the superposition region. The following

theorem shows that there is no redundancy in the specification

of R∗.

Theorem 3. For the inequalities specifying R∗ in (50), none

of them is implied by the others.

Proof. For any i0 ∈ {1, 2, · · · , SL}, consider the following

linear program:

mp = min

L
∑

l=1

λ
(i0)
l Rl

s.t.

L
∑

l=1

λ
(i)
l Rl ≥

L
∑

α=1

fα(λ
(i))H(Xα),

∀ 1 ≤ i ≤ SL, i 6= i0.

To prove Theorem 3, it suffices to show the following: for any

i0 ∈ {1, 2, · · · , SL},

L
∑

α=1

f(λ(i0))H(Xα) > mp.

By strong duality, mp = md, where md is the optimal value

of the dual problem

md = max
∑

1≤i≤SL,i6=i0

ci

(

L
∑

α=1

fα(λ
(i))H(Xα)

)

s.t.
∑

1≤i≤SL,i6=i0

ciλ
(i)
l = λ

(i0)
l , ∀ l ∈ L (80)

ci ≥ 0, 1 ≤ i ≤ SL, i 6= i0.

Then it suffices to show that for any i0 ∈ {1, 2, · · · , SL},

L
∑

α=1

f(λ(i0))H(Xα) > md, (81)

for all possible values of H(Xα), α ∈ L. For notational

simplicity, let ci0 = 0. By Lemma 8, (80) implies that

fα(λ
(i0)) ≥

SL
∑

i=1

cifα(λ
(i)), for all α ∈ L. (82)

Upon multiplying by H(Xα) and summing over all α ∈ L,

we obtain

L
∑

α=1

fα(λ
(i0))H(Xα) ≥

L
∑

α=1

(

SL
∑

i=1

cifα(λ
(i))

)

H(Xα),

which is equivalent to (81) except that the inequality above is

nonstrict. Thus to prove (81), we only need to show that there

exists at least one α ∈ L such that

fα(λ
(i0)) >

SL
∑

i=1

cifα(λ
(i)).

Assume the contrary is true, i.e. equality holds in (82) for all

α ∈ L. Then this implies

(

λ(i0),f(λ(i0))
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

, (83)

which is a contradiction to Lemma 13. This completes the

proof of the theorem.

V. CHECKING THE ACHIEVABILITY OF A RATE TUPLE

A. Checking Achievability

Given the superposition coding rate region Rsup character-

ized by the constraints in (1) and (2), it is readily seen that a

rate tuple is achievable if and only if there exist nonnegative

variables rαi (i, α ∈ L) satisfying (1) and (2). Thus, we can

check the achievability of a given rate tuple R by determining

whether there exists a set of feasible solutions rαi (i, α ∈ L)
for the optimization problem:

min 0

s.t.

L
∑

α=1

rαi = Ri, ∀i ∈ L (84)

∑

i∈U

rαi ≥ H(Xα), ∀U ⊆ L, |U| = α

rαi ≥ 0, 1 ≤ i, α ≤ L. (85)

This can be easily achieved through the MATLAB linear

programming function:

x = linprog(f,A,b,Aeq,beq).

We have run numerical tests of the “linprog” function on a

notebook computer to determine the achievability of a given

rate tuple for L ≤ 20. For L = 21, the program runs out

of memory, since the size of the constraint matrices “A” and

“Aeq” become prohibitively large.

It is also natural to check the achievability of a given

rate tuple by verifying the inequalities specifying Rsup in

Theorem 2. Even though by Theorem 3 there is no redundancy

in the set of inequalities in (50) that specifies R∗, by taking

advantage of the symmetry of the problem, we in fact do not

need to check all these inequalities. The next lemma identifies

the subset of these inequalities we need to check. As we will

see, the number of such inequalities is significantly smaller

than the total number of inequalities specifying R∗.

For any R ∈ R
L
+ and any permutation ω on {1, 2, · · · , L},

similar to the definition of ω(λ) at the beginning of Section

III, let

ω(R) =
(

Rω(1), Rω(2), · · · , Rω(L)

)

.

Due to the symmetry of the problem, for any λ ∈ GL, the

inequality
L
∑

l=1

λlRl ≥
L
∑

α=1

fα(λ)H(Xα)
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implies the inequality

L
∑

l=1

λω(l)Rω(l) ≥
L
∑

α=1

fα
(

ω(λ)
)

H(Xα),

and vice versa. Thus, R is achievable if and only if ω(R) is

achievable for all ω. As such, we only need to consider rate

tuples R ∈ R
L
+ such that

R1 ≤ R2 ≤ · · · ≤ RL. (86)

Lemma 14. For any nonnegative rate tuple R such that (86)

is satisfied and any λ ∈ R
L
+, we have

L
∑

i=1

λiRi ≥
L
∑

i=1

λπ(i)Ri.

Remark 7. The inequality in Lemma 14 is sometimes called

the rearrangement inequality [31, Chapter 5].

Proof. See Appendix H.

From Lemma 2, we can see that RHS of the inequality

in (50) does not change with λ replaced by π(λ). Thus, in

order to check the achievability of a given rate tuple (assume

satisfying (86)), by Lemma 14, we only need to check those

inequalities for which the coefficients are in descending order,

i.e.

λ1 ≥ λ2 ≥ · · · ≥ λL.

All the other inequalities are redundant for this rate tuple.

Then, the number of inequalities we need to check is only S0
L

(cf. (42)), which is bounded in the following theorem.

Theorem 4. 2L−1 ≤ S0
L ≤ L!.

Remark 8. We will see from the proof that both the above

inequalities become strict for L ≥ 3.

Remark 9. On a notebook computer, it took about 8 days to

list all the S0
L inequalities for all L ≤ 15. For L = 16, the

computation involved appears to be prohibitive.

Proof. We can see from Appendix I that S0
1 = 1 and S0

2 = 2.

It is easy to check that the theorem is true for L = 1 and

L = 2.

For L ≥ 2, let λ = (λ1, λ2, · · · , λL) and G∗
L =

{

λ ∈ G0
L : λL = 0

}

. For any λ ∈ G∗
L, it is easy to check

from (38) that (λ1, λ2, · · · , λL−1) ∈ G0
L−1. On the other

hand, for any (λ1, λ2 , · · · , λL−1) ∈ G0
L−1, we have

(λ1, λ2, · · · , λL−1, 0) ∈ G∗
L. Thus, there is a one-to-one

correspondence between G∗
L and G0

L−1, which implies that

|G∗
L| = S0

L−1. (87)

For k ≥ 2, let Dk = |G0
k\G

∗
k |. By (87) and the fact that

G∗
k ⊆ G0

k , we have

Dk = S0
k − S0

k−1,

which implies that

S0
L = S0

1 +
L
∑

k=2

Dk.

Now, we only need to calculate Dk for k ≥ 2. For any

(λL−k+1, λL−k+2, · · · , λL) ∈ G0
k\G

∗
k , where λL = 1, we can

see from (38) that (λL−k+2, λL−k+3, · · · , λL) ∈ G0
k−1\G

∗
k−1

by construction. Thus, all (λL−k+1, λL−k+2, · · · , λL) ∈
G0
k\G

∗
k can be generated from (λL−k+2, λL−k+3, · · · , λL) ∈

G0
k−1\G

∗
k−1 with a proper choice of λL−k+1. Since λL = 1,

we have ζ = L. Recall from (39) that θL = 0 and for

j = L− 1, L− 2, · · · , L− k + 1, θj is the integer such that

λj =
1

θj

L
∑

i=j+1

λi. (88)

According to (88), the k-vector (λL−k+1, λL−k+2, · · · , λL) ∈
G0
k\G

∗
k is uniquely determined by the tuple (θL−k+1,

· · · , θL−1, θL). Thus Dk is equal to the cardinality of the set

Θk =
{

(θL−k+1, · · · , θL−1, θL) : 1 ≤ θj ≤ θj+1 + 1

for j = L− 1, L− 2, · · · , L− k + 1
}

.

By straightforward counting, we can obtain

Dk = |Θk| =
0
∑

θL=0

θL+1
∑

θL−1=1

θL−1+1
∑

θL−2=1

· · ·

θL−k+2+1
∑

θL−k+1=1

1. (89)

Now we bound Dk according to (89). Observe that θL = 0
and θL−1 = 1 always hold. Then for k ≥ 3, (89) can be

rewritten as

Dk =

2
∑

θL−2=1

θL−2+1
∑

θL−3=1

· · ·

θL−k+2+1
∑

θL−k+1=1

1.

Let

D
(1)
k =

2
∑

θL−2=1

2
∑

θL−3=1

· · ·
2
∑

θL−k+1=1

1

and

D
(2)
k =

2
∑

θL−2=1

3
∑

θL−3=1

· · ·
k−1
∑

θL−k+1=1

1.

From (41), it is easy to check that

D
(1)
k ≤ Dk ≤ D

(2)
k , (90)

and we have

D
(1)
k = 2k−2

and

D
(2)
k = (k − 1)! .

Thus, for L ≥ 3, we have

L
∑

k=3

D
(1)
k =

L
∑

k=3

2k−2 = 2L−1 − 2

and

L
∑

k=3

D
(2)
k =

L
∑

k=3

(k − 1)!

≤ (L− 1)!× (L− 2)

≤ L!− 2.
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Then, by (V-A), (90), and the fact that S0
1 = 1 and D2 = 1,

we have for L ≥ 3 that

2L−1 ≤ S0
L ≤ L! .

This proves the theorem.

B. Comparison of complexity

In this section, we compare the complexity of checking the

achievability of a given rate tuple through different methods

described in the last section. In Figure 3, we compare the

program running time of checking the LP feasibility using

the MATLAB “linprog” function and that of checking the

achievability of a rate tuple through the inequalities with

ordered coefficients. We can see from the figure that checking

3 5 7 9 11 13 15 17 19

log2 T1: via inequalities

log2 T2: via LP feasibility

L

log2 T

Fig. 3: logarithm of running time

the LP feasibility uses much less time than checking the

achievability of a rate tuple through the inequalities with

ordered coefficients. We also observe that the running time

of checking the inequalities with ordered coefficients grows

exponentially with L for L ≥ 10, even though it was shown

in Theorem 4 that the number of such inequalities may grow

at a rate higher than exponential in L.

The time of listing the inequalities with ordered coefficients

and the time of constructing the parameters of “linprog”

are involved in the comparison in Figure 3. If we want to

check the achievability of a large number of rate tuples, the

more efficient way is to save the inequalities with ordered

coefficients and the parameters of “linprog” in advance. Then

we can use the “load” function in MATLAB to invoke these

data when checking the achievability of rate tuples. In this

case, we start counting the program running time right after

the “load” function, and we call this the pure running time. In

Figure 4, we compare the pure running time of checking the

LP feasibility using “linprog” function and that of checking

the achievability of a rate tuple through the inequalities with

ordered coefficients. We see from the figure that checking the

achievability of a rate tuple through inequalities in turn uses

3 5 7 9 11 13 15 17 19

log2 T3: via inequalities

log2 T4: via LP feasibility

L

log2 T

Fig. 4: logarithm of pure running time

much less time than checking the LP feasibility. This is not sur-

prising because the time for checking the achievability through

inequalities is mainly spent on listing these inequalities.

The bottleneck of checking the LP feasibility lies in that

the parameters of the “linprog” function (i.e., the coefficients

of the LP conditions (84)-(85)) use a mass of memory, which

exceeds the capacity of the hard disk on the notebook com-

puter for L ≥ 21. The bottleneck of checking the achievability

through the inequalities with ordered coefficients lies in that

the complexity of listing these inequalities grows exponentially

with L, which becomes unmanageable for L ≥ 15.

VI. SUBSET ENTROPY INEQUALITY

In [5], the proof of the optimality of superposition coding

was established through a subset entropy inequality, namely

Theorem 3 therein. As we will point out, this subset entropy

inequality is in fact a generalization of Han’s inequality [32].

The proof of Theorem 3 in [5], however, is painstaking. In this

section, we present a weaker version of this theorem, namely

Theorem 5 below, whose proof is considerably simpler. With

our explicit characterization of Rsup in Theorem 2, Theorem 5

is sufficient for proving the optimality of superposition coding.

Theorem 5 (Subset entropy inequality). Let L ≥ 2 and for

any u ∈ {0, 1}L, let Hu = H
(

Wi : ui = 1
)

. For any λ ∈ GL,

there exists {cα(u)}, α ∈ L, where {cα(u)} is an optimal

α-resolution for λ, such that

∑

u∈Ωα−1
L

cα−1(u)Hu ≥
∑

u∈Ωα
L

cα(u)Hu (91)

for all α = 2, 3, · · · , L.

Remark 10. Theorem 3 in [5] is the same as Theorem 5 above

except that the former is for all λ ∈ R
L
+. By the explicit

characterization of Rsup in Theorem 2, namely R∗, Theorem 5

is sufficient for proving the tightness of R∗.

Remark 11. For α ∈ L and u ∈ Ωα
L, let

c̃α(u) =
1

(

L−1
α−1

) .
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It is not difficult to see that for all α ∈ L, {c̃α(u) : u ∈ Ωα
L}

is the unique optimal α-resolution for λ = 1. Then (91) in

Theorem 5 becomes

1
(

L−1
α−2

)

∑

u∈Ωα−1
L

Hu ≥
1

(

L−1
α−1

)

∑

u∈Ωα
L

Hu,

which is Han’s inequality [32]. It was proved in [24] that both

Han’s inequality and the subset entropy inequality in [5] can

be established from the subset entropy inequality of Madiman

and Tetali [33].

Proof of Theorem 5. By symmetry, we only have to prove the

theorem for λ ∈ G0
L. We will prove the theorem by induction

on L. It is easy to check that the theorem is true for L = 2.

Assume the theorem is true for L = N − 1, we will show

that the theorem is also true for L = N . This can be readily

verified for λ ∈ G0
N such that ζ = 1. Thus, we only need to

consider λ ∈ G0
N such that ζ ≥ 2.

For any λN = (λ1, λ2, · · · , λN ) ∈ G0
N , by the construction

in (38), we have λN−1 = (λ2, λ3, · · · , λN ) ∈ G0
N−1. For

α ∈ {1, 2, · · · , N − 1}, by the induction hypothesis, let
{

c̃α(u) : u ∈ Ωα
N−1

}

be an optimal α-resolution for λN−1

such that (91) is satisfied for all α = 2, 3, · · · , N − 1. Now

we need to design a proper optimal α-resolution {cα(w) :
w ∈ Ωα

N} for λN that satisfies (91) for all α = 2, 3, · · · , N .

From (38), there exists a θ ∈ {1, 2, · · · , N − 1} such that

λ1 =
1

θ

N
∑

i=2

λi. (92)

For any u ∈ {0, 1}N−1 and w ∈ {0, 1}N , let u =
(u2, u3 · · · , uN ) and w = (w1, w2, · · · , wN ). For α =
1, 2, · · · , N , we now construct an α-resolution for λN in (i)

and (ii) in the following.

(i) Design {cα(w)} for α = θ + 1, θ + 2, · · · , N .

For α ≥ θ + 1 and w ∈ Ωα
N , let

cα(w) =

{

c̃α−1(u), if w = (1,u), u ∈ Ωα−1
N−1

0, otherwise.

From (92), we have

λ1 ≥
1

α− 1

N
∑

i=2

λi for all α = θ + 1, θ + 2, · · · , N.

(93)

Lemma 9 in [5] states that {cα(w)} is an optimal α-

resolution for λN if

λ1 >
1

α− 1

N
∑

i=2

λi for all α = θ + 1, θ + 2, · · · , N.

(94)

We observe that the lemma can be strengthened by

replacing the strict inequality in (94) by a non-strict

inequality (i.e., the condition in (93)) with essentially no

change in the proof. Thus, by invoking this strengthened

version of the lemma, we conclude that {cα(w)} is an

optimal α-resolution for λN .

For all α = θ + 2, θ + 3, · · · , N , following the steps

leading to (48) in [5], we can check that
∑

w∈Ωα−1
N

cα−1(w)Hw ≥
∑

w∈Ωα
N

cα(w)Hw .

(ii) Design {cα(w)} for α = 1, 2, · · · , θ.

For α = θ + 1, θ, · · · , 2 and any optimal α-resolution

{cα(w) : w ∈ Ωα
N} for λN , we claim that there exists an

optimal (α − 1)-resolution {cα−1(w) : w ∈ Ωα−1
N } for

λN such that (91) is satisfied. Since λ1 ≤ 1
α−1

∑N

i=2 λi,

this is exactly the first case of the proof of Proposition

1 in [5], which is relatively straightforward.

In (i) and (ii) above, we have constructed an optimal α-

resolution {cα(w)} for any λN ∈ G0
N that satisfies (91) for

all α = 2, 3, · · · , N . This proves the theorem.

VII. CONCLUSION AND REMARKS

In this paper, we studied the SMDC problem for which

superposition coding was proved to be optimal in [4], [5].

We enhanced their results by obtaining in closed form the

minimum set of inequalities that is needed for characterizing

Rsup, the superposition coding rate region. We further show

by the symmetry of the problem that only a much smaller

subset of these inequalities needs to be verified in determining

the achievability of a given rate tuple. Yet, the cardinality of

this smaller set grows at least exponentially fast with L, the

number of levels of the coding system, thus revealing the in-

herent complexity of the problem. A subset entropy inequality,

which plays a key role in the converse proof in [5], requires

a painstaking and extremely technical proof. We present a

weaker version of this subset entropy inequality whose proof

is considerably simpler. With our explicit characterization of

the coding rate region, this weaker version of the subset

entropy inequality is sufficient for proving the optimality of

superposition coding. Some of our results may be extensible

to the more general settings in [23]–[27].

While the coding rate region needs to be characterized by

a set of inequalities whose size grows at least exponentially

with L, if these inequalities are used directly for checking

whether a certain rate tuple is within the coding rate region,

then inevitably it requires at least an exponential amount of

time. However, given that these inequalities are not arbitrary

but instead highly structured, it may still be possible to devise

a polynomial-time algorithm to preform the checking. If such

an algorithm indeed exists, then the results in this paper can

well be an important handle for finding it. This is an interesting

problem for future research.
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APPENDIX A

PROOF OF LEMMA 9

We first prove (i). By Lemma 7 (i), the condition λ1 ≤
1
η

∑L

j=2 λj implies that

fη+1(λ) =
1

η + 1

L
∑

j=1

λj . (95)

In the following, we prove the claim by contradiction. Assume

there exists a nonempty subset I1 ⊆ I such that i ∈ I1 if and

only if

λ
(i)
πi(1)

>
1

η

L
∑

j=2

λ
(i)
πi(j)

, (96)

which is equivalent to

L
∑

j=1

λ
(i)
πi(j)

>

(

1 +
1

η

) L
∑

j=2

λ
(i)
πi(j)

,

or

1

η + 1

L
∑

j=1

λ
(i)
πi(j)

>
1

η

L
∑

j=2

λ
(i)
πi(j)

. (97)

For all i ∈ I, by Lemma 7 (ii), the condition in (96) implies

that

fη+1

(

λ(i)
)

= fη
(

λ
(i)
πi(2)

, λ
(i)
πi(3)

, · · · , λ
(i)
πi(L)

)

. (98)

By Theorem 1, we have

fη(λ
(i)
πi(2)

, λ
(i)
πi(3)

, · · · , λ
(i)
πi(L)) ≤

1

η

L
∑

j=2

λ
(i)
πi(j)

. (99)

Then by (98), (99), and (97) we obtain

fη+1(λ
(i)) <

1

η + 1

L
∑

j=1

λ
(i)
πi(j)

=
1

η + 1

L
∑

j=1

λ
(i)
j . (100)

For i ∈ I\I1, we have

λ
(i)
πi(1)

≤
1

η

L
∑

j=2

λ
(i)
πi(j)

,

which by Lemma 7 (i) implies that

fη+1(λ
(i)) =

1

η + 1

L
∑

j=1

λ
(i)
j . (101)

Thus, we have from (45) that

fη+1(λ) =

SL
∑

i=1

cifη+1(λ
(i))

=
∑

i∈I1

cifη+1(λ
(i)) +

∑

i∈I\I1

cifη+1(λ
(i))

<

SL
∑

i=1

ci ·





1

η + 1

L
∑

j=1

λ
(i)
j





=
1

η + 1

L
∑

j=1

(

SL
∑

i=1

ciλ
(i)
j

)

=
1

η + 1

L
∑

j=1

λj ,

where the inequality follows from (100) and (101). This is a

contradiction to (95). Thus, the assumption in (96) is false and

we have for all i ∈ I that

λ
(i)
πi(1)

≤
1

η

L
∑

j=2

λ
(i)
πi(j)

.

Next, we prove (ii) by contradiction. Assume there exists a

nonempty subset I2 ⊆ I such that i ∈ I2 if and only if

λ
(i)
πi(1)

<
1

η

L
∑

j=2

λ
(i)
πi(j)

, (102)

which is equivalent to

1

η + 1

L
∑

j=1

λ
(i)
πi(j)

<
1

η

L
∑

j=2

λ
(i)
πi(j)

,

or

gη+1,λ(i)(0) < gη+1,λ(i)(1). (103)

For any i ∈ I2, by Lemma 7 (i), (102) implies that

fη+1(λ
(i)) = gη+1,λ(i)(0).

For any t ∈ {1, 2, · · · , η}, in light of (103), by applying the

alternative version of Lemma 3 (ii) (see the remark below

Lemma 3), we obtain

fη+1(λ
(i)) = gη+1,λ(i)(0) < gη+1,λ(i)(1) < · · · < gη+1,λ(i)(t).

Then it follows from the definition of πi(·) in (44) that

fη+1(λ
(i)) < gη+1,λ(i)(t)

=
1

η + 1− t

L
∑

j=t+1

λ
(i)
πi(j)

≤
1

η + 1− t

L
∑

j=t+1

λ
(i)
j , (104)

and so

fη+1(λ
(i)) <

1

η + 1− t

L
∑

j=t+1

λ
(i)
j . (105)

For all i ∈ I\I2 and any t ∈ {1, 2, · · · , η}, by Theorem 1,

similar to (104), we have

fη+1(λ
(i)) ≤ gη+1,λ(i)(t) =

1

η + 1− t

L
∑

j=t+1

λ
(i)
πi(j)

≤
1

η + 1− t

L
∑

j=t+1

λ
(i)
j ,

and so

fη+1(λ
(i)) ≤

1

η + 1− t

L
∑

j=t+1

λ
(i)
j . (106)
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Thus, by (45), we have for any t ∈ {1, 2, · · · , η} that

fη+1(λ) =

SL
∑

i=1

cifη+1(λ
(i))

<

SL
∑

i=1

ci ·





1

η + 1− t

L
∑

j=t+1

λ
(i)
j





=
1

η + 1− t

L
∑

j=t+1

λj

= gη+1,λ(t), (107)

where the inequality follows from (105) and (106).

The condition λ1 ≥ 1
η

∑L
j=2 λj is equivalent to

gη+1,λ(0) ≥ gη+1,λ(1).

Then by Theorem 1, we have

fη+1(λ) = min
β∈{0,1,··· ,η}

gη+1,λ(β) = min
β∈{1,2,··· ,η}

gη+1,λ(β).

Thus, there must exist a t ∈ {1, 2, · · · , η} such that

fη+1(λ) = gη+1,λ(t),

which is a contradiction to (107). Thus the assumption in (102)

is false and we have for all i ∈ I that

λ
(i)
πi(1)

≥
1

η

L
∑

j=2

λ
(i)
πi(j)

.

APPENDIX B

PROOF OF LEMMA 10

For all i ∈ I, since λ(i) ∈ GL in light of (38), we

only need to prove λ
(i)
πi(1)

≤ 1
η−1

∑L

j=2 λ
(i)
πi(j)

and λ
(i)
πi(1)

≥
1
η

∑L
j=2 λ

(i)
πi(j)

.

We first prove the upper bound on λ
(i)
πi(1)

. For η = 1 and

i = 1, we have

λ
(i)
πi(1)

= 1 =
1

η − 1

L
∑

j=2

λ
(i)
πi(j)

.

For η = 1 and i ∈ I\{1}, it is obvious that

λ
(i)
πi(1)

<
1

η − 1

L
∑

j=2

λ
(i)
πi(j)

= ∞.

For η ∈ {2, 3, · · · , ζ − 1}, the upper bound in (47) can be

rewritten as

λ1 <
1

η′

L
∑

j=2

λj ,

where η′ = η − 1 and η′ ∈ {1, 2, · · · , ζ − 2}. By Lemma 9

(i), this implies that

λ
(i)
πi(1)

≤
1

η′

L
∑

j=2

λ
(i)
πi(j)

=
1

η − 1

L
∑

j=2

λ
(i)
πi(j)

.

Thus, the upper bound on λ
(i)
πi(1)

is proved.

Now we prove the lower bound on λ
(i)
πi(1)

. For η ∈
{1, 2, · · · , ζ − 1}, the lower bound in (47) is

λ1 ≥
1

η

L
∑

j=2

λj ,

and so by Lemma 9 (ii), we have

λ
(i)
πi(1)

≥
1

η

L
∑

j=2

λ
(i)
πi(j)

.

If the lower bound in (47) is tight, it follows immediately from

Lemma 9 that for any η ∈ {1, 2, · · · , ζ − 1},

λ
(i)
πi(1)

=
1

η

L
∑

j=2

λ
(i)
πi(j)

.

This proves the lemma.

APPENDIX C

PROOF OF LEMMA 11

We only need to show that for α = 1, 2, · · · , L− 1,

fα(λL−1) =

SL
∑

i=1

cifα(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ).

By (47) and Lemma 10, we have for i ∈ I that

λ
(i)
πi(1)

∈







1

η

L
∑

j=2

λ
(i)
πi(j)

,
1

η − 1

L
∑

j=2

λ
(i)
πi(j)







. (108)

Consider the following two cases:

i) α = 1, 2, · · · , η − 1;

ii) α = η, η + 1, · · · , L− 1.

Case i): For α = 1, 2, · · · , η − 1, if η = 2, then α can only

be 1 and it is easy to see that

f1(λL−1) =
L
∑

j=2

λj =
L
∑

j=2

SL
∑

i=1

ciλ
(i)
j =

SL
∑

i=1

ci

L
∑

j=2

λ
(i)
j

=

SL
∑

i=1

cif1(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ).

If η > 2, consider the following. The second inequality in (47)

is equivalent to

1

η

L
∑

j=1

λj <
1

η − 1

L
∑

j=2

λj (109)

or

gη,λ(0) < gη,λ(1).

By applying the alternative version of Lemma 3 (ii) (see the

remark below Lemma 3), we obtain

gη,λ(1) < gη,λ(2),

which is equivalent to

1

η − 1

L
∑

j=2

λj <
1

η − 2

L
∑

j=3

λj
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or

λ2 <
1

η − 2

L
∑

j=3

λj . (110)

Then by Lemma 7 (i), we have

fα(λL−1) = gα,λL−1(0) =
1

α

L
∑

j=2

λj . (111)

Since (108) implies

λ
(i)
πi(1)

≤
1

η − 1

L
∑

j=2

λ
(i)
πi(j)

, (112)

similar to (109)-(110) (with all <’s replaced by ≤’s), we have

λ
(i)
πi(2)

≤
1

η − 2

L
∑

j=3

λ
(i)
πi(j)

. (113)

Thus, following (112) and (113), we have

λ
(i)
πi(1)

≤
1

η − 1

L
∑

j=2

λ
(i)
πi(j)

≤
1

η − 1

(

1

η − 2
+ 1

) L
∑

j=3

λ
(i)
πi(j)

=
1

η − 2

L
∑

j=3

λ
(i)
πi(j)

≤
1

η − 2

∑

j∈{2,3,··· ,L}\{j0}

λ
(i)
πi(j)

(114)

for any j0 ∈ {2, 3, · · · , L}. Let π′
i(·) be a permutation of

{2, 3, · · · , L} defined as follows:

a) if πi(1) = 1, then π′
i(j) = πi(j) for all j ∈ {2, 3, · · · , L};

b) if πi(j0) = 1 for some j0 ∈ {2, 3, · · · , L}, then

π′
i(j) =

{

πi(j − 1), for j = 2, 3, · · · , j0

πi(j), for j = j0 + 1, · · · , L.
(115)

It is easy to check that

λ
(i)
π′

i
(2) ≥ λ

(i)
π′

i
(3) ≥ · · · ≥ λ

(i)
π′

i
(L).

If a) holds, then by (113), we have

λ
(i)
π′

i(2)
= λ

(i)
πi(2)

≤
1

η − 2

L
∑

j=3

λ
(i)
πi(j)

=
1

η − 2

L
∑

j=3

λ
(i)
π′

i(j)
.

If b) holds, then by (114), we have

λ
(i)
π′

i
(2) = λ

(i)
πi(1)

≤
1

η − 2

∑

j∈{2,3,··· ,L}\{j0}

λ
(i)
πi(j)

=
1

η − 2

L
∑

j=3

λ
(i)
π′

i
(j).

Summarizing the two cases, we see that

λ
(i)
π′

i
(2) ≤

1

η − 2

L
∑

j=3

λ
(i)
π′

i
(j)

always holds. By Lemma 7 (i), this implies that

fα(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ) =

1

α

L
∑

j=2

λ
(i)
π′

i
(j) =

1

α

L
∑

j=2

λ
(i)
j . (116)

Following (111), we have

fα(λL−1) =
1

α

L
∑

j=2

λj

=
1

α

L
∑

j=2

(

SL
∑

i=1

ciλ
(i)
j

)

(117)

=

SL
∑

i=1

ci





1

α

L
∑

j=2

λ
(i)
j





=

SL
∑

i=1

cifα(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ), (118)

where (117) follows from (79) and (118) follows from (116).

Case ii): For α = η, η+1, · · · , L− 1, by Lemma 7 (ii), the

first inequality in (47) implies that

fα(λL−1) = fα+1(λ). (119)

For any i ∈ {1, 2, · · · , SL}, since (108) implies λ
(i)
πi(1)

≥
1
η

∑L

j=2 λ
(i)
πi(j)

, we have by Lemma 7 (ii) that

fα+1(λ
(i)) = fα

(

λ
(i)
πi(2)

, λ
(i)
πi(3)

, · · · , λ
(i)
πi(L)

)

. (120)

From the definition of π′
i(·), it is readily seen that

λ
(i)
πi(j)

≤ λ
(i)
π′

i
(j), for all j = 2, 3, · · · , L.

Thus, we have for any β = 1, 2, · · · , α− 1 that

1

α− β

L
∑

j=β+1

λ
(i)
πi(j)

≤
1

α− β

L
∑

j=β+1

λ
(i)
π′

i
(j).

By Theorem 1, this implies that

fα
(

λ
(i)
πi(2)

, λ
(i)
πi(3)

, · · · , λ
(i)
πi(L)

)

≤ fα
(

λ
(i)
π′

i
(2), λ

(i)
π′

i
(3), · · · , λ

(i)
π′

i
(L)

)

,

and thus by (120), we have

fα+1(λ
(i)) ≤ fα

(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

. (121)

Following (119), we have

fα(λL−1) = fα+1(λ) (122)

=

SL
∑

i=1

cifα+1(λ
(i)) (123)

≤
SL
∑

i=1

cifα
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

(124)

≤ fα

(

SL
∑

i=1

ci ·
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

)

(125)

= fα

(

SL
∑

i=1

ciλ
(i)
2 ,

SL
∑

i=1

ciλ
(i)
3 , · · · ,

SL
∑

i=1

ciλ
(i)
L

)

= fα(λ2, λ3, · · · , λL) (126)

= fα(λL−1), (127)
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where both (123) and (126) follow from (79), (124) follows

from (121), and (125) follows from Lemma 8. Upon observing

that the LHS of (122) is the same as the RHS of (127), we

conclude that the inequalities in both (124) and (125) are tight,

and hence

fα(λL−1) =

SL
∑

i=1

cifα
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

.

The lemma is proved.

APPENDIX D

PROOF OF LEMMA 12

Fix i ∈ {1, 2, · · · , SL} and assume that
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

∈ GL−1. Let γj , j = 1, 2, · · · , ζ − 1 be

the integer such that

λ
(i)
πi(j)

=
1

γj

L
∑

k=j+1

λ
(i)
πi(k)

,

and let γζ = 0. Note that the role of γj for λ(i) is the same as

the role of θj for λ (cf. (39)). Also note that ζ and γj depend

on i, but since we fix i, this dependence is omitted to simplify

notation.

Let j0 ∈ {1, 2, · · · , L} be such that

λ
(i)
πi(j0)

= λ
(i)
1 . (128)

If j0 ≥ ζ + 1, λ
(i)
1 = 0 and thus the lemma is proved. If

j0 = 1, the lemma is immediate from (128). If 2 ≤ j0 ≤ ζ,

we claim that γj = γj0 + (j0 − j) and λ
(i)
πi(j)

= λ
(i)
πi(j0)

for

all j = j0, j0 − 1, · · · , 1. Then the lemma follows from the

claim for j = 1. In the following, we prove the claim by

induction on j for j ≤ j0. The claim is immediate for j = j0.

Assume the claim is true for j = j0, j0 − 1, · · · , N for some

N ∈ {2, 3, · · · , j0}, and we will show that the claim is also

true for j = N − 1. By the induction hypothesis, we have

γN = γj0 + (j0 −N),

and for all j = j0, j0 − 1, · · · , N ,

λ
(i)
πi(j)

= λ
(i)
πi(j0)

=
1

γj0

L
∑

k=j0+1

λ
(i)
πi(k)

. (129)

By (38) and (40), there exists

γN−1 ∈ {1, 2, · · · , γj0 + (j0 −N + 1)} (130)

such that

λ
(i)
πi(N−1) =

1

γN−1

L
∑

k=N

λ
(i)
πi(k)

. (131)

Thus, we have

λ
(i)
πi(N−1) =

1

γN−1

L
∑

k=N

λ
(i)
πi(k)

=
1

γN−1

(

1 +

j0
∑

k=N

1

γj0

)

L
∑

k=j0+1

λ
(i)
πi(k)

(132)

=
γj0 + (j0 −N + 1)

γj0γN−1

L
∑

k=j0+1

λ
(i)
πi(k)

, (133)

where (132) follows from (129). In light of (128) and j0 ≥ 2,

recall the definition of π′
i(·) in (115). With the assumption that

(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

∈ GL−1, by (38), there exists an integer

γ′
N−1 such that

λ
(i)
π′

i
(N) =

1

γ′
N−1

L
∑

k=N+1

λ
(i)
π′

i
(k)

or

λ
(i)
πi(N−1) =

1

γ′
N−1





j0−1
∑

k=N

λ
(i)
πi(k)

+

L
∑

k=j0+1

λ
(i)
πi(k)



 . (134)

Comparing the RHS of (131) and (134), since λ
(i)
πi(j0)

≥ 1, we

have
L
∑

k=N

λ
(i)
πi(k)

>

j0−1
∑

k=N

λ
(i)
πi(k)

+
L
∑

k=j0+1

λ
(i)
πi(k)

.

Since the LHS of (131) and (134) are the same, we see that

γ′
N−1 < γN−1, which implies that

γ′
N−1 ≤ γj0 + (j0 −N).

Following (134), we have

λ
(i)
πi(N−1) =

1

γ′
N−1





j0−1
∑

k=N

λ
(i)
πi(k)

+

L
∑

k=j0+1

λ
(i)
πi(k)





=
1

γ′
N−1

(

1 +

j0−1
∑

k=N

1

γj0

)

L
∑

k=j0+1

λ
(i)
πi(k)

(135)

=
γj0 + (j0 −N)

γj0γ
′
N−1

L
∑

k=j0+1

λ
(i)
πi(k)

, (136)

where (135) follows from (129). Comparing (133) and (136),

it is easy to see that

γ′
N−1 =

γN−1[γj0 + (j0 −N)]

γj0 + (j0 −N + 1)
.

Since γj0 +(j0 −N) and γj0 +(j0 −N +1) are coprime and

γN−1 ≤ γj0 + (j0 −N + 1) by (130), we have

γN−1 = γj0 + (j0 −N + 1). (137)

Substituting (137) into (133) and invoking (129), we have

λ
(i)
πi(N−1) = λ

(i)
πi(j0)

. This implies that the claim is true for

j = N − 1. The lemma is proved.

APPENDIX E

PROOF OF LEMMA 13

Since there is only one vector in G1, we only need to

consider L ≥ 2. If ζ = 1 for λ(i0), it is obvious that λ(i0)

cannot be a conic combination of the other vectors in GL.

Thus, we consider only λ(i0) ∈ GL such that ζ ≥ 2. We prove

the lemma by induction on L for L ≥ 2. We first check that

the claim is true for L = 2. It is easy to see from (38) that

G2 = {(1, 0), (0, 1), (1, 1)}. Then f
(

(1, 0)
)

= f
(

(0, 1)
)

=
(1, 0) and f

(

(1, 1)
)

= (2, 1). Since

(1, 1) = (1, 0) + (0, 1)
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whereas

f2
(

(1, 1)
)

> f2
(

(1, 0)
)

+ f2
(

(0, 1)
)

,

we see that
(

(1, 1),f
(

(1, 1)
))

cannot be a conic combination

of
(

(1, 0),f
(

(1, 0)
))

and
(

(0, 1),f
(

(0, 1)
))

. Thus, the lemma

is true for L = 2. For any L ≥ 3, the lemma will be proved

by contradiction via the following proposition, whose proof is

given in Appendix F.

Proposition 1. For any L ≥ 3, if Lemma 13 is false, then the

lemma is false for L− 1.

By backward induction, if Lemma 13 is false for any L ≥ 3,

then the lemma is false for L = 2. This is a contradiction

because we already have shown that the lemma is true for

L = 2. This proves the lemma for all L ≥ 2.

APPENDIX F

PROOF OF PROPOSITION 1

Assume Lemma 13 is false for some L ≥ 3, i.e., for some

i0 ∈ {1, 2, · · · , SL}, there exists (c1, c2, · · · , cSL
) ∈ R

SL

+

such that ci0 = 0 and

(

λ(i0),f(λ(i0))
)

=

SL
∑

i=1

ci ·
(

λ(i),f(λ(i))
)

. (138)

Assume without loss of generality that λ(i0) ∈ G0
L. Since we

assume at the beginning of Appendix E that ζ ≥ 2 for λ(i0),

we can see from (38) that
(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

∈ G0
L−1 by

construction. Let GL−1 =
{

λ
(1)
L−1,λ

(2)
L−1, · · · ,λ

(SL−1)
L−1

}

. Then

there exists a unique j0 ∈ {1, 2, · · · , SL−1} such that

λ
(j0)
L−1 =

(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

. (139)

By Lemma 11, (138) implies that

(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

=

SL
∑

i=1

ci ·
(

(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ),f(λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
L )
)

.

(140)

Let KL = {1, 2, · · · , SL}, IL = {i ∈ KL : ci 6= 0}, K
(j0)
L =

{

i ∈ KL :
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

= λ
(j0)
L−1

}

, and

d0 =
∑

i∈K
(j0)

L

ci. (141)

In the proof of Theorem 2, we have shown that any vector in

F1
L is a conic combination of the vectors in F2

L. Then for any

i ∈ KL\K
(j0)
L , there exists

(

t
(i)
1 , t

(i)
2 , · · · , t

(i)
SL−1

)

∈ R
SL−1

+

such that

(

(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ),f(λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
L )
)

=

SL−1
∑

j=1

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)

. (142)

Substitute (141) and (142) into (140), we have

(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

= d0
(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

+
∑

i∈KL\K
(j0)

L

ci





SL−1
∑

j=1

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)





=






d0 +

∑

i∈KL\K
(j0)

L

cit
(i)
j0







(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

+
∑

i∈KL\K
(j0)

L

ci





∑

j∈KL−1\{j0}

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)





=






d0 +

∑

i∈KL\K
(j0)

L

cit
(i)
j0







(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

+
∑

j∈KL−1\{j0}







∑

i∈KL\K
(j0)

L

cit
(i)
j







(

λ
(j)
L−1,f(λ

(j)
L−1)

)

.

Thus,






1− d0 −

∑

i∈KL\K
(j0)

L

cit
(i)
j0







(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

=
∑

j∈KL−1\{j0}







∑

i∈KL\K
(j0)

L

cit
(i)
j







(

λ
(j)
L−1,f(λ

(j)
L−1)

)

.

(143)

Proposition 2. There exists i ∈ IL such that
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

6= λ
(j0)
L−1.

The proof of Proposition 2 is given in Appendix G. The

proposition implies that

IL ∩ (KL\K
(j0)
L ) 6= ∅. (144)

For any i ∈ IL∩(KL\K
(j0)
L ), we can rewrite (142) as follows:

(

(λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ),f(λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
L )
)

= t
(i)
j0

(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

+
∑

j∈KL−1\{j0}

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)

.

Since (λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L ) 6= λ

(j0)
L−1, there must exist j ∈

KL−1\{j0} such that

t
(i)
j > 0. (145)

For any x,y ∈ R
L−1
+ , define a binary relation ‘>’ by x > y

if and only if (x− y) ∈ R
L−1
+ , i.e., x is strictly greater than
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y in at least one component (cf. (3)). Then for the RHS of

(143), we have

∑

j∈KL−1\{j0}







∑

i∈KL\K
(j0)

L

cit
(i)
j







(

λ
(j)
L−1,f(λ

(j)
L−1)

)

=
∑

i∈KL\K
(j0)

L

ci





∑

j∈KL−1\{j0}

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)





=
∑

i∈IL∩(KL\K
(j0)

L
)

ci





∑

j∈KL−1\{j0}

t
(i)
j

(

λ
(j)
L−1,f(λ

(j)
L−1)

)





> 0, (146)

where the inequality follows from (144), (145) and the fact

that λ
(j)
L−1 > 0 for all j ∈ KL−1\{j0}. Then we can see from

(143) that





1− d0 −

∑

i∈KL\K
(j0)

L

cit
(i)
j0







(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

> 0,

which implies that

1− d0 −
∑

i∈KL\K
(j0)

L

cit
(i)
j0

> 0.

For each j ∈ KL−1\{j0}, let

dj =
1

1− d0 −
∑

i∈KL\K
(j0)

L

cit
(i)
j0

∑

i∈KL\K
(j0)

L

cit
(i)
j . (147)

It is easy to see that dj ≥ 0 for all j ∈ KL−1\{j0}. By (146),

there exists j ∈ KL−1\{j0} such that dj > 0. Upon letting

dj = 0 for j = j0, by (143) and (147), we have

(

λ
(j0)
L−1,f(λ

(j0)
L−1)

)

=

SL−1
∑

j=1

dj
(

λ
(j)
L−1,f(λ

(j)
L−1)

)

.

This means that Lemma 13 is false for L−1. The proposition

is proved.

APPENDIX G

PROOF OF PROPOSITION 2

Since λ(i0) ∈ G0
L, there exists a unique ηi0 ∈ {0, 1, · · · , L−

1} such that

λ
(i0)
1 =

1

ηi0

L
∑

j=2

λ
(i0)
j . (148)

Recall from (139) that λ
(j0)
L−1 =

(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

.

Since we assume at the beginning of Appendix E that ζ ≥ 2
for λ(i0), we see that

λ
(j0)
L−1 6= 0, (149)

which implies that
∑L

j=2 λ
(i0)
j > 0. Then we have ηi0 6= 0,

otherwise λ
(i0)
1 = ∞ in (148). Thus, ηi0 ∈ {1, 2, · · · , L− 1}.

By Remark 4 following Lemma 7, we have

fηi0+1(λ
(i0)) = fηi0

(λ
(j0)
L−1) =

1

ηi0 + 1

L
∑

j=1

λ
(i0)
j . (150)

We now prove the proposition by contradiction. Assume that

for all i ∈ IL,
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

= λ
(j0)
L−1. (151)

This means that for each i ∈ IL,

λ(i) =
(

λ
(i)
1 , λ

(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

=
(

λ
(i)
1 , λ

(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

. (152)

Furthermore, since λ(i0) ∈ G0
L, we see from (38) that λ

(j0)
L−1 ∈

G0
L−1 by construction, so that

(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

∈ G0
L−1.

Then by Lemma 12, we have λ
(i)
1 = 0 or λ

(i)
πi(1)

.

Let I0
L be the subset of IL such that i ∈ I0

L if and only if

λ
(i)
1 = 0. For i ∈ I0

L, it is easy to see that λ
(i)
πi(L) = 0. Then

upon noting that
(

λ
(i)
πi(1)

, λ
(i)
πi(2)

, · · · , λ
(i)
πi(L−1)

)

=
(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

,

by Theorem 1 we have

fηi0+1(λ
(i)) = min

β∈{0,1,··· ,ηi0}

1

(ηi0 + 1)− β

L−1
∑

j=β+1

λ
(i)
πi(j)

= min
β∈{0,1,··· ,ηi0}

1

(ηi0 + 1)− β

L
∑

j=β+2

λ
(i0)
j

= fηi0+1(λ
(j0)
L−1)

< fηi0
(λ

(j0)
L−1),

where the inequality follows from Lemma 5 in [5]. By (150),

this implies that

fηi0+1(λ
(i)) <

1

ηi0 + 1

L
∑

j=1

λ
(i0)
j . (153)

For i ∈ IL\I0
L, we have λ

(i)
1 = λ

(i)
πi(1)

. Since λ(i) ∈ GL,

there exists a unique ηi ∈ {0, 1, · · · , L− 1} such that

λ
(i)
1 =

1

ηi

L
∑

j=2

λ
(i)
j . (154)

From (149) and the assumption in (151), we have
(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

6= 0. Then from (154), we have ηi 6= 0,

and thus ηi ∈ {1, 2, · · · , L − 1}. Since ci0 = 0 in (138), we

have λ(i) 6= λ(i0) for all i ∈ IL and hence for all i ∈ IL\I0
L.

In light of (152), λ(i) 6= λ(i0) implies λ
(i)
1 6= λ

(i0)
1 , and upon

comparing (148) and (154), we see that

ηi 6= ηi0 . (155)

Let I1
L = {i ∈ IL\I0

L : ηi > ηi0} and I2
L = {i ∈ IL\I0

L :
ηi < ηi0}. Then we can see from (155) that

I0
L ∪ I1

L ∪ I2
L = IL. (156)

For i ∈ I1
L, we have λ

(i)
1 < λ

(i0)
1 , which is equivalent to

λ
(i)
1 <

1

ηi0

L
∑

j=2

λ
(i)
j .
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Thus, by Lemma 7 (i), we have

fηi0+1(λ
(i)) =

1

ηi0 + 1

L
∑

j=1

λ
(i)
j <

1

ηi0 + 1

L
∑

j=1

λ
(i0)
j . (157)

On the other hand, for i ∈ I2
L, we have λ

(i)
1 > λ

(i0)
1 , which is

equivalent to

λ
(i)
1 >

1

ηi0

L
∑

j=2

λ
(i)
j .

Thus, by Lemma 7 (ii), we have

fηi0+1(λ
(i)) = fηi0

(λ
(j0)
L−1),

which by (150) implies that

fηi0+1(λ
(i)) =

1

ηi0 + 1

L
∑

j=1

λ
(i0)
j . (158)

From (138) and (156), we have

fηi0+1(λ
(i0)) =

SL
∑

i=1

cifηi0+1(λ
(i))

=
∑

i∈IL

cifηi0+1(λ
(i))

=
∑

i∈I0
L

cifηi0+1(λ
(i)) +

∑

i∈I1
L

cifηi0+1(λ
(i))

+
∑

i∈I2
L

cifηi0+1(λ
(i)). (159)

Comparing (150) for fηi0+1(λ
(i0)) and (153), (157), and (158)

for fηi0+1(λ
(i)), we see that both I0

L and I1
L must be empty

in order for the equality in (159) to hold, and hence

IL = I2
L. (160)

For any i ∈ I2
L, since ηi < ηi0 and ηi ≥ 1, we see that

ηi0 ≥ 2. Thus from (148), we have

1

ηi0

L
∑

j=1

λ
(i0)
j =

1

ηi0





1

ηi0

L
∑

j=2

λ
(i0)
j +

L
∑

j=2

λ
(i0)
j





=
1

ηi0

(

1

ηi0
+ 1

) L
∑

j=2

λ
(i0)
j

<
1

ηi0 − 1

L
∑

j=2

λ
(i0)
j .

Then by Lemma 7 (i), (148) implies that

fηi0
(λ(i0)) =

1

ηi0

L
∑

j=1

λ
(i0)
j <

1

ηi0 − 1

L
∑

j=2

λ
(i0)
j . (161)

Since λ(i0) is ordered, by (148), we have

λ
(i0)
2 ≤ λ

(i0)
1 =

1

ηi0

L
∑

j=2

λ
(i0)
j ,

which implies that

λ
(i0)
2 ≤

1

ηi0 − 1

L
∑

j=3

λ
(i0)
j .

Then by Lemma 7 (i), we have

fηi0−1(λ
(j0)
L−1) =

1

ηi0 − 1

L
∑

j=2

λ
(i0)
j . (162)

It follows from (161) and (162) that

fηi0
(λ(i0)) < fηi0−1(λ

(j0)
L−1). (163)

For i ∈ I2
L, we have ηi0 ≥ ηi + 1. Then by Lemma 7 (ii),

(154) implies that

fηi0
(λ(i)) = fηi0−1(λ

(j0)
L−1). (164)

Following (138), we have
(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

=
∑

i∈IL

ci

(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

=
∑

i∈I2
L

ci

(

λ
(i)
2 , λ

(i)
3 , · · · , λ

(i)
L

)

(165)

=

(

∑

i∈I2
L

ci

)

(

λ
(i0)
2 , λ

(i0)
3 , · · · , λ

(i0)
L

)

, (166)

where (165) follows from (160) and (166) follows from the

assumption in (151). Thus we have
∑

i∈I2
L

ci = 1. (167)

Then from (164) and (167), we see that

∑

i∈I2
L

cifηi0
(λ(i)) =

(

∑

i∈I2
L

ci

)

fηi0−1(λ
(j0)
L−1) = fηi0−1(λ

(j0)
L−1),

and it follows from (163) that
∑

i∈I2
L

cifηi0
(λ(i)) > fηi0

(λ(i0).

This is a contradiction to (138). Therefore, the assumption in

(151) is false and the proposition is proved.

APPENDIX H

PROOF OF LEMMA 14

For any permutation ω on {1, 2, · · · , L} and any λ ∈ R
L
+,

recall from the beginning of Section III that

ω(λ) =
(

λω(1), λω(2), · · · , λω(L)

)

.

Then for the ordered permutation π, we have π(λ) =
(

λπ(1), λπ(2), · · · , λπ(L)

)

.

If λ = π(λ), the lemma is immediate. Otherwise, let

ω0(i) = i for all i ∈ L so that ω0(λ) = λ. Set t = 1 and we

sort λ in descending order by iteration as follows:
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(i) Let it = min{i ∈ L : ωt−1(i) 6= π(i)}. Let kt, jt be any

indexes in L such that

π(kt) = ωt−1(it) (168)

and

ωt−1(jt) = π(it). (169)

It is easy to check that kt > it and jt > it, which implies

λπ(it) − λπ(kt) ≥ 0 (170)

and

Rjt −Rit ≥ 0. (171)

Let ωt(λ) = (λωt(1), λωt(2), · · · , λωt(L)) be a permuta-

tion of ωt−1(λ) where we switch λωt−1(jt) and λωt−1(it),

i.e.,

ωt(i) =











π(it), if i = it

π(kt), if i = jt

ωt−1(i), otherwise.

(172)

Then we have

L
∑

i=1

λωt−1(i)Ri −
L
∑

i=1

λωt(i)Ri

=
(

λωt−1(it)Rit + λωt−1(jt)Rjt

)

−
(

λωt(it)Rit + λωt(jt)Rjt

)

=
(

λπ(kt)Rit + λπ(it)Rjt

)

−
(

λπ(it)Rit + λπ(kt)Rjt

)

= Rit(λπ(kt) − λπ(it)) +Rjt(λπ(it) − λπ(kt))

= (λπ(it) − λπ(kt))(Rjt −Rit)

≥ 0,

where the second equality follows from (168), (169) and

(172), and the inequality follows from (170) and (171).

(ii) If ωt(λ) = π(λ), return T = t and stop. Otherwise, let

t = t+ 1 and go back to step (i).

At the end of the iteration, ωT (λ) is sorted in the same order

as π(λ), and we have

L
∑

i=1

λiRi −
L
∑

i=1

λπ(i)Ri

=

L
∑

i=1

λω0(i)Ri −
L
∑

i=1

λωT (i)Ri

=

T
∑

t=1

(

L
∑

i=1

λωt−1(i)Ri −
L
∑

i=1

λωt(i)Ri

)

≥ 0.

This proves the lemma.
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APPENDIX I

TABLES OF NON-REDUNDANT λ

For L = 1, 2, · · · , 5, the vectors λ ∈ G0
L and the cor-

responding fα(λ) are listed in the following tables. The

parameter θ is the integer such that λ1 = 1
θ

L
∑

i=2

λi.

TABLE I: non-redundant constraint for L = 1.

λ f1(λ)
1 1

TABLE II: non-redundant constraints for L = 2.

suffix λ f1(λ) f2(λ) θ

- (1, 0) 1 0 0
(1) (1, 1) 2 1 1

TABLE III: non-redundant constraints for L = 3.

suffix λ f1(λ) f2(λ) f3(λ) θ

- (1, 0, 0) 1 0 0 0
(1, 0) (1, 1, 0) 2 1 0 1

(1, 1)
(1, 1, 1) 3 3

2
1 2

(2, 1, 1) 4 2 1 1

TABLE IV: non-redundant constraints for L = 4.

suffix λ f1(λ) f2(λ) f3(λ) f4(λ) θ

- (1, 0, 0, 0) 1 0 0 0 0
(1, 0, 0) (1, 1, 0, 0) 2 1 0 0 1

(1, 1, 0)
(1, 1, 1, 0) 3 3

2
1 0 2

(2, 1, 1, 0) 4 2 1 0 1

(1, 1, 1)
(1, 1, 1, 1) 4 2 4

3
1 3

( 3
2
, 1, 1, 1) 9

2

9

4

3

2
1 2

(3, 1, 1, 1) 6 3 3

2
1 1

(2, 1, 1)
(2, 2, 1, 1) 6 3 2 1 2
(4, 2, 1, 1) 8 4 2 1 1

TABLE V: non-redundant constraints for L = 5.

suffix λ f1(λ) f2(λ) f3(λ) f4(λ) f5(λ) θ

- (1, 0, 0, 0, 0) 1 0 0 0 0 0
(1, 0, 0, 0) (1, 1, 0, 0, 0) 2 1 0 0 0 1

(1, 1, 0, 0)
(1, 1, 1, 0, 0) 3 3

2
1 0 0 2

(2, 1, 1, 0, 0) 4 2 1 0 0 1

(1, 1, 1, 0)
(1, 1, 1, 1, 0) 4 2 4

3
1 0 3

( 3
2
, 1, 1, 1, 0) 9

2

9

4

3

2
1 0 2

(3, 1, 1, 1, 0) 6 3 3

2
1 0 1

(2, 1, 1, 0)
(2, 2, 1, 1, 0) 6 3 2 1 0 2
(4, 2, 1, 1, 0) 8 4 2 1 0 1

(1, 1, 1, 1)

(1, 1, 1, 1, 1) 5 5

2

5

3

5

4
1 4

( 4
3
, 1, 1, 1, 1) 16

3

8

3

16

9

4

3
1 3

(2, 1, 1, 1, 1) 6 3 2 4

3
1 2

(4, 1, 1, 1, 1) 8 4 2 4

3
1 1

( 3
2
, 1, 1, 1)

( 3
2
, 3

2
, 1, 1, 1) 6 3 2 3

2
1 3

( 9
4
, 3

2
, 1, 1, 1) 27

4

27

8

9

4

3

2
1 2

( 9
2
, 3

2
, 1, 1, 1) 9 9

2

9

4

3

2
1 1

(3, 1, 1, 1)
(3, 3, 1, 1, 1) 9 9

2
3 3

2
1 2

(6, 3, 1, 1, 1) 12 6 3 3

2
1 1

(2, 2, 1, 1)
(2, 2, 2, 1, 1) 8 4 8

3
2 1 3

(3, 2, 2, 1, 1) 9 9

2
3 2 1 2

(6, 2, 2, 1, 1) 12 6 3 2 1 1

(4, 2, 1, 1)
(4, 4, 2, 1, 1) 12 6 4 2 1 2
(8, 4, 2, 1, 1) 16 8 4 2 1 1
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