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Abstract—Communication overhead is one of the major perfor-
mance bottlenecks in large-scale distributed computing systems,
in particular for machine learning applications. Conventionally,
compression techniques are used to reduce the load of communi-
cation by combining intermediate results of the same computation
task as much as possible. Recently, via the development of
coded distributed computing (CDC), it has been shown that it
is possible to enable coding opportunities across intermediate
results of different computation tasks to further reduce the com-
munication load. We propose a new scheme, named compressed
coded distributed computing (in short, compressed CDC), which
jointly exploits the above two techniques (i.e., combining the
intermediate results of the same computation and coding across
the intermediate results of different computations) to significantly
reduce the communication load for computations with linear
aggregation (reduction) of intermediate results in the final stage
that are prevalent in machine learning (e.g., distributed training
algorithms where partial gradients are computed distributedly
and then averaged in the final stage). In particular, compressed
CDC first compresses/combines several intermediate results for
a single computation, and then utilizes multiple such combined
packets to create a coded multicast packet that is simultaneously
useful for multiple computations. We characterize the achievable
communication load of compressed CDC and show that it
substantially outperforms both combining methods and CDC
scheme.

I. INTRODUCTION

In order to scale up machine learning applications that
process a massive amount of data, various distributed com-
puting frameworks have been developed where data is stored
and processed distributedly on multiple cores or GPUs on a
single machine, or multiple machines in computing clusters
(see, e.g., [1]–[3]). When implementing these frameworks,
the communication overhead of shuffling intermediate results
across distributed computing nodes is a major performance
bottleneck. For example, it was observed in [4] that on a
Facebook’s Hadoop cluster, 33% of the job execution time was
spent on data shuffling. This bottleneck is becoming worse
for training deep neural networks with millions of model
parameters (e.g., ResNet-50 [5]) using distributed stochastic
gradient descent, where partial gradients with millions of
entries need to be passed between computing nodes.

Conventionally, compression techniques are used to reduce
the communication load by combining intermediate results
of the same computation task as much as possible. For
example, in the original MapReduce distributed computing
framework [1], when the Reduce function is commutative and
associative, a “combiner function” is proposed to pre-combine
multiple intermediate values with the same key computed from
different Map functions. Then, instead of sending multiple

values to the reducer, the mapper only needs to send the pre-
combined value whose size is the same as one of the values
before combining, which significantly reduces the bandwidth
consumption without any performance loss.

Coded distributed computing (CDC) is another approach
that has been recently proposed in [6], [7] to mitigate the
communication bottleneck. Unlike the compression/combining
technique, CDC enables coding opportunities across interme-
diate results of different computation tasks to further reduce
the communication load. In particular, within a MapReduce-
type distributed computing model, CDC specifies a repetitive
pattern of computing Map functions, creating side information
at the computing nodes that enables coded multicasting dur-
ing data shuffling across nodes, where each coded multicast
packet is simultaneously useful for multiple Reduce tasks. For
example, if we repeat each of the Map tasks r times across
the cluster, then utilizing the CDC scheme, we can reduce
the total amount of bandwidth consumption by r times. It
has been shown that CDC can provide substantial speedups
in practice [8], and several generalizations of it has been
developed in the literature [9]–[13].

In this paper, we focus on MapReduce-type distributed
computing frameworks and propose a new scheme, named
compressed coded distributed computing (in short, compressed
CDC). It jointly exploits the above compression/combining
technique and the CDC scheme to significantly reduce the
communication load for computation tasks with linear Reduce
functions (and arbitrary Map functions) that are prevalent in
data analytics (e.g., distributed gradient descent where the
partial gradients computed at multiple distributed computing
nodes are averaged to reduce to the final gradient). Specifically,
the compressed CDC scheme first specifies a repetitive storage
of the dataset across distributed computing nodes. Each node,
after processing locally stored files, first pre-combines the
intermediate values of a single computation task needed by
another node. Having generated multiple such pre-combined
packets for different tasks, the computing node further codes
them to generate a coded multicast packet that is simultane-
ously useful for multiple tasks. Therefore, compressed CDC
enjoys both the intra-computation gain from combining, and
the inter-computation gain from coded multicasting.

We characterize the achievable communication load of com-
pressed CDC and show that it substantially outperforms both
combining methods and CDC scheme. In particular, compared
with the scheme that only relies on the combining technique,
compressed CDC reduces the communication load by a factor
that is proportional to the storage size of each computing
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node, which is significant for the common scenarios where
large-scale machine learning tasks are executed on commodity
servers with relatively small storage size. On the other hand,
compared with the CDC scheme whose communication load
scales linearly with the size of the dataset, compressed CDC
eliminates this dependency by pre-combining intermediate
values of the same task, allowing the system to scale up to
handle computations on arbitrarily large dataset.

Other Related Work

Motivated by the fact that training algorithms exhibit tol-
erance to precision loss of intermediate values, as opposed to
the above lossless compression technique that guarantees exact
recovery of computation results, a family of lossy compression
(or quantization) algorithms for distributed learning systems
have been developed to compress the intermediate results
(e.g., gradients) for a smaller bandwidth consumption (see,
e.g., [14]–[16]). Apart from compression, various coding tech-
niques have also been recently utilized in distributed machine
learning algorithms to mitigate the communication bottleneck
and the straggler’s delay (see, e.g. [17]–[25]).

II. MOTIVATING EXAMPLE

In this section, we demonstrate through a motivating ex-
ample, how compression and CDC techniques, applied alone
or jointly, can help to reduce the bandwidth requirement for
distributed computing tasks.
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Fig. 1: A MapReduce framework to compute 3 functions from 6 files
with linear Reduce functions.

As shown in Fig. 1, we consider a MapReduce job
of computing 3 output functions, represented by red/circle,
green/square, and blue/triangle respectively, by processing 6
input files. When mapping a file, we obtain 3 intermediate
values, one for each of the functions, which are represented
by the color/shape of the corresponding functions labelled by
the file index. The Reduce operation of each output function
computes its final result by summing up the intermediate
values of the function from all 6 input files. This computation
job is executed on 3 distributed computing nodes connected
through a multicast network. Each node can store up to 4
files in its local memory. As shown in Fig. 2, we assign the
computation tasks such that Nodes 1, 2, and 3 are respectively
responsible for final reduction of red/circle, green/square, and
blue/triangle functions. For this problem, we are interested
in minimizing the communication load, which is the number
of bits that need to be shuffled between computing nodes to

accomplish the computation tasks, normalized by the size of
a single intermediate value. Next, we describe three coded
computing schemes, and compare their communication loads.

For all of these three schemes, as illustrated in Fig. 2, the
file placement is performed such that Node 1 stores the files
1, 2, 3, 4, Node 2 stores the files 3, 4, 5, 6, and Node 3 stores
the files 5, 6, 1, 2.

1) Compression scheme: Since only the sum of the interme-
diate values is needed for final reduction, we can pre-combine
the computed intermediate values of the same function at the
sender node to reduce communication. For example, as shown
in Fig. 2(a), having computed the green squares labelled by 1
and 2 in the Map phase, Node 1 sums them up and sends the
computed sum to Node 2, instead of sending them individually.
Upon receiving this pre-combined packet, Node 2 can directly
use it for the final reduction of the green/square function. This
compression scheme reduces the communication load by half,
compared with the schemes that unicast uncoded intermediate
values, and achieves a communication load of 3.

2) CDC scheme: Utilizing the redundant Map results across
computing nodes, the CDC scheme creates coded multi-
cast packets by combining intermediate values of different
functions that are intended at different nodes. As shown in
Fig. 2(b), since the blue triangle labelled by 3 is computed
at both Nodes 1 and 2, and the green square labelled by 1 is
computed at both Nodes 1 and 3, Node 1 can multicast the
bit-wise XOR (denoted by ⊕) of these two intermediate values
to the other two nodes. From this coded packet, both Nodes 2
and 3 can decode their intended values by cancelling their
locally computed values. Since each of the multicast packets
is simultaneously useful for two nodes, the CDC scheme cuts
the communication load by half from the schemes that unicast
uncoded intermediate values, and achieve a communication
load of 3. While achieving the same communication load as
the compression scheme that pre-combines intermediate values
of the same function, the CDC scheme combines intermediate
values from different functions, and allows the recovery of
them individually instead of their sum. Therefore, CDC can
be utilized on more general MapReduce jobs with arbitrary
Reduce functions to slash the communication load.

3) Compressed CDC scheme: The above described two
techniques can be applied jointly to further reduce the commu-
nication load. In particular, we can generate coded multicast
packets as in the CDC scheme from the pre-combined packets
created as in the compression scheme. Each node, as shown
in Fig. 2(c), sums up two pairs of intermediate values to
generate two pre-combined packets, each of which is needed
by another node. Then, for example, Node 1 first splits each
of its pre-combined packets (the unlabelled green square and
the unlabelled blue triangle) into two segments, and computes
the bitwise-XOR, of two segments, one from each of the pre-
combined packets, generating a coded packet whose size is
half of the size of an intermediate value. Finally, Node 1
multicasts this coded packet to Nodes 2 and 3. Similar
operations are performed at Nodes 2 and 3. Next, each node
utilizes the locally computed intermediate values to decode
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Fig. 2: Coded computing schemes for a MapReduce job with linear Reduce functions, which processes 6 files to compute 3 functions, over
3 distributed computing nodes each with a storage size of 4 files.

the intended pre-combined packet, which is used to reduce
the output function. Compared with the compression and the
CDC schemes, the compressed CDC scheme exploits both
the compression opportunities within individual functions, and
the multicasting opportunities across different functions, and
achieves a communication load of 3

2 .
In the next section, we first give the general problem

formulation, and then present our main results on the proposed
coded computing scheme that jointly exploits both types of
coding from the compression scheme and the CDC scheme.

III. PROBLEM FORMULATION AND MAIN RESULTS

We consider a computation job of processing N input files,
for some N ∈ N, to compute Q output functions, for some
Q ∈ N. We denote the N input files as w1, . . . , wN ∈ F2F ,
for some F ∈ N, and the Q output functions as φ1, . . . , φQ :
(F2F )N → F2T , for some T ∈ N. We focus on a class
of computation jobs with linear aggregation for which the
computation of each output function can be decomposed as
the sum of N intermediate values computed from the input
files, i.e., for q = 1, . . . , Q,

φq(w1, . . . , wN ) = vq,1 + vq,2 · · ·+ vq,N , (1)
where vq,n = gq(wn) is the intermediate value of φq computed
from some intermediate function gq : F2F → F2T . So far, we
have introduced one computation job that involves computing
Q functions. Here, we consider the scenario where J such
computation jobs are executed in parallel, for some J ∈ N. We
denote the N input files of job j as w1(j) , . . . , wN(j) , and the Q
output functions job j wants to compute as φ1(j) , . . . , φQ(j) .1

A. Network model

The above described J computation jobs are executed
distributedly on a computer cluster that consists of K dis-
tributed computing nodes, for some K ∈ N. These computing
nodes are denoted as Node 1, . . . , Node K. Here we assume

1As an example, we can consider executing J machine learning tasks (e.g.,
image classification), each of which has its own dataset, and aims to obtain its
own set of model parameters. Another example is the navigation application,
where J navigation sessions, each of which requires to find the shortest path
on a disjoint sector of the map, are executed in parallel.

K ≤ N , and focus on a symmetric setting for the sake of
load balancing, in which K|Q, and each node is responsible
for computing Q

K output functions for each job. The K nodes
are connected through an error-free broadcast network. Each
node has a local storage that can store up to µJN input files,
i.e., µ fraction of the entire dataset that contains all input files
from all jobs, for some µ satisfying 1

K ≤ µ < 1.
Before the computation starts, each node selects and stores

µJN input files from the dataset. For each node k, we denote
the set of indices of the files stored locally as Mk. A valid
file placement has to satisfy 1) |Mk| ≤ µJN , for all k =
1, 2, . . . ,K (local storage constraint), and 2) ∪k=1,...,KMk =
∪j=1,...,J{n(j) : n = 1, 2, . . . , N} (the entire dataset needs to
be collectively stored across the cluster).

B. Distributed computing model

The K nodes process their locally stored files to compute
the output functions following a MapReduce-type model. In
particular, the overall computation proceeds in three phases:
Map phase, Shuffle phase, and Reduce phase.
Map phase. For each file wn(j) of job j, n(j) ∈
Mk, Node k maps it into Q intermediate values
v1(j),n(j) , v2(j),n(j) , . . . , vQ(j),n(j) , one for each of the Q func-
tions computed in job j. We assume that all the intermediate
values across the J jobs have the same size of T bits, which is
the case when for example, we are training J image classifiers
in parallel using the same deep neural network.
Shuffle phase. Before the Shuffle phase starts, for each
computation job j, we assign the tasks of reducing the output
functions symmetrically across the nodes, such that each node
computes a disjoint subset of Q

K functions. We denote the set
of the indices of the output functions assigned to Node k for
job j as S(j)k , j = 1, 2, . . . , J .

In the Shuffle phase, each node k produces a mes-
sage, denoted by Xk ∈ F2`k , as a function of the lo-
cally computed intermediate values in the Map phase (i.e.,
∪

n(j)∈Mk

{v1(j),n(j) , v2(j),n(j) , . . . , vQ(j),n(j)}), where `k ∈ N
denotes the length of the message in bits. Having generated
Xk, Node k broadcasts it to all the other nodes.



Definition 1 (Communication Load). We define the com-
munication load, denoted by L, as the total number of bits
contained in all broadcast messages, normalized by JQT , i.e.,

L , `1+···+`K
JQT . (2)

Reduce phase. For each job j and each q(j) ∈ S(j)k , j =
1, 2, . . . , J , Node k computes the output function φq(j) as in
(1), using the locally computed Map results and the received
broadcast messages in the Shuffle phase.

C. Main Results

For the above formulated distributed computing problem,
we first study the effects of applying the compression scheme
and the CDC scheme individually on reducing the commu-
nication load. Then, we present our main result, which is
a communication load achieved by the proposed computing
scheme that jointly utilizes compression and CDC.

Exploiting the compression technique, each sender node
pre-combines all the intermediate values needed at the re-
ceiver node for a particular function, and then sends the
pre-combined value. We demonstrate in the appendix that
the following communication load can be achieved by solely
applying compression.

Lcompression =

{
d 1µe − 1, 1

K ≤ µ <
1
2 ,

1, 1
2 ≤ µ < 1.

(3)

The above communication load achieved by compression
only depends on the storage size µ. In the regime of 1

2 ≤
µ < 1, the communication load Lcompression is a constant that
does not decrease as the storage size increases. This is because
that as long as µ < 1, each node has to receive at least one
intermediate value for each of the functions it is computing.

When only applying the CDC scheme without compression,
as shown in [7], we can achieve the communication load

LCDC =
(1− µ)N

µK
. (4)

The CDC scheme creates coded multicast packets that are
simultaneously useful for µK nodes. Hence, for fixed storage
size µ, the achieved communication load LCDC decreases in-
versely proportionally with the network size (K). On the other
hand, since the CDC scheme was designed to handle general
Reduce functions that require each of the N intermediate
values separately as the inputs, the load LCDC also scales
linearly with the number of input files (N ).

We propose the compressed coded distributed computing
(compressed CDC) scheme, which jointly utilizes the com-
bining and the coded multicasting techniques, and achieves
a smaller communication load than those achieved by apply-
ing each of the two techniques individually. We present the
performance of compressed CDC in the following theorem.

Theorem 1. To execute J computation jobs with linear ag-
gregation of intermediate results, each of which processes
N input files to compute Q output functions, distributedly
over K computing nodes each with a local storage of size µ,

the proposed compressed CDC scheme achieves the following
communication load

Lcompressed CDC =
(1− µ)(µK + 1)

µK
, (5)

for µK ∈ {1, . . . ,K−1}, and J = γ
(

K
µK+1

)
, for some γ ∈ N.

We describe the general compressed CDC scheme in the
next section.
Remark 1. Compared with the compression scheme whose
communication load is in (3), for large K, the proposed
compressed CDC scheme reduces the communication load by
a factor of µ when 1

K ≤ µ < 1
2 , and by a factor of 1 − µ

when 1
2 ≤ µ < 1. In the scenarios where the cluster consists

of many low-end computing nodes with small storage size
(e.g., µ = 1

K ), this bandwidth reduction can scale with the
network size. Also, in contrast to the compression scheme,
the load Lcompressed CDC keeps decreasing as the storage size µ
increases. �

Remark 2. Unlike the communication load in (4) achieved by
the CDC scheme, the communication load achieved by the
compressed CDC scheme does not grow with the number of
input files. This is accomplished by incorporating the com-
pression technique, i.e., pre-combining multiple intermediate
values of the same Reduce function. �

Remark 3. The file placement of the compressed CDC scheme
is performed such that all N input files of each particular
computation job are placed exclusively on a unique subset
of µK + 1 nodes, following a repetitive pattern specified by
the CDC scheme. As a result, the compressed CDC scheme
executes a batch of

(
K

µK+1

)
jobs in parallel. In the Shuffle

phase of compressed CDC, each computing node first pre-
combines several intermediate values of a single function
reduced at another node, and then applies bit-wise XOR
operations on multiple such pre-combined packets to generate
a coded multicast packet that is simultaneously useful for
computing µK functions. We note that these µK functions
can be different functions in the same job, as well as different
functions in different jobs. �

IV. DESCRIPTION OF THE COMPRESSED CDC SCHEME

In this section, we describe the proposed compressed CDC
scheme, and analyze its communication load.

We consider the storage size µ such that µK ∈
{1, 2, . . . ,K−1}, and take sufficiently many computation jobs
to process in parallel, where the number of jobs J = γ

(
K

µK+1

)
,

for some γ ∈ N. The proposed compressed CDC scheme
operates on a batch of

(
K

µK+1

)
jobs at a time, and repeats

the same operations γ times to process all the jobs. Therefore,
it is sufficient to describe the scheme for the case of γ = 1.

Along the general description of the compressed CDC
scheme, we consider the following illustrative example.
Example (compressed CDC). We have a distributed com-
puting cluster that consists of K = 4 nodes each with a
storage size of µ = 1

2 . On this cluster, we need to execute
J =

(
K

µK+1

)
= 4 MapReduce jobs with linear Reduce

functions, each of which requires processing N = 6 files to



compute Q = 4 output functions. Each node is responsible
for computing one output function, for each of the 4 jobs. In
particular, Node k computes

φk(j) = vk(j),1(j) + vk(j),2(j) + · · ·+ vk(j),6(j) , (6)
for all j = 1, . . . , 4, where vk(j),n(j) is the intermediate value
of the function φk(j) of job j mapped from the input file wn(j)

of job j. �

A. File placement

For each job j, j = 1, 2, . . . ,
(

K
µK+1

)
, all of its input

files w1(j) , w2(j) , . . . , wN(j) are stored exclusively on a unique
subset of µK + 1 nodes, and we denote the set of indices of
these nodes as Kj . Within Kj , each file wn(j) of job j is
repeatedly stored on µK nodes. In particular, we first evenly
partition the files w1(j) , w2(j) , . . . , wN(j) into µK+1 batches,
and label each batch by a unique size-µK subset of Kj ,
denoted by Pj . Then, we store all the files in a batch on each
of the µK nodes whose index is in the corresponding subset
Pj . We denote the set of indices of the files from job j in a
batch labelled by a subset Pj as BPj . The file placement is
performed such that for each Pj ⊂ Kj with |Pj | = µK, and
each n(j) ∈ BPj , we have

n(j) ∈Mk, (7)
for all k ∈ Pj , where Mk is the set of indices of all files
stored at Node k.

Applying the above file placement, each node in Kj stores
µK × N

µK+1 files. Since each node is in
(
K−1
µK

)
subsets of

{1, 2, . . . ,K} of size µK + 1, it stores overall µKN
µK+1 ×(

K−1
µK

)
= µJN files, satisfying its local storage constraint.

Node 1 Node 2

Node 3 Node 4

files

files

Fig. 3: File placement onto K = 4 computing nodes. For each j =
1, 2, 3, 4, we place the set of files for job j, {1(j), 2(j), . . . , 6(j)}
onto a unique subset of µK + 1 = 3 nodes, following a repetitive
pattern where each file is stored on µK = 2 nodes.

Example (compressed CDC: file placement). As shown in
Fig. 3, we perform the file placement such that for each j =
1, 2, 3, 4, the set of files from job j, {1(j), 2(j), . . . , 6(j)} are
placed on a unique subset of µK+1 = 3 nodes. For example,
the files of job 1, {1(1), 2(1), . . . , 6(1)} are exclusively stored
on Nodes 1, 2, and 3. These files are partitioned into 3 batches,
i.e., B{1,2} = {3(1), 4(1)}, B{1,3} = {1(1), 2(1)}, and B{2,3} =
{5(1), 6(1)}. Then, the files 3(1) and 4(1) are stored on Nodes 1
and 2, the files 1(1) and 2(1) are stored on Nodes 1 and 3, and
the files 5(1) and 6(1) are stored on Nodes 2 and 3. �

B. Coded computing

After the file placement, the compressed CDC scheme starts
the computation and data shuffling in subsets of µK+1 nodes.
Within each subset Kj , j = 1, 2, . . . ,

(
K

µK+1

)
, that contains the

indices of |Kj |=µK+1 nodes, the computing scheme proceeds
in two stages. In the first stage, the nodes in Kj process the
files they have exclusively stored, i.e., the files of job j. In the
second stage, they handle the files from other jobs.

1) Stage 1 (coding for a single job): In the first stage, nodes
in Kj only process input files and compute output functions
for job j. For ease of exposition, we drop all the job indices
in the rest of the description of stage 1. According to the file
placement, each node in K stores µKN

µK+1 files of job j, and
each node in the subset P of µK nodes stores all the files in
the batch BP .

In the Map phase, each node k ∈ K maps all the files of
job j it has stored locally, for all output functions of job j.
We note that after the Map phase, for each subset P of size
µK, and k′ ∈ K\P , each of the nodes in P has computed
Q
K intermediate values, one for each of the functions assigned
to Node k′, from each of the files in the batch BP . More
precisely, these intermediate values are

{vq,n : q ∈ Sk′ , n ∈ BP}. (8)

In the Shuffle phase, within each subset P ⊂ K of size
µK, we first perform the pre-combining operation as follows.
For each k ∈ P , Node k sums up the intermediate values
computed in (8) to obtain the pre-combined values

v̄q,P =
∑
n∈BP

vq,n, (9)

for all q ∈ Sk′ .
Having computed Q

K such pre-combined values {v̄q,P : q ∈
Sk′}, the nodes in P concatenate them to generate a packet
VP , and evenly and arbitrarily split it into µK segments. We
label the segments by the elements in P . That is, for P =
{i1, i2, . . . , iµK}, we have

VP = (VP,i1 , VP,i2 , . . . , VP,iµK ). (10)

Finally, each node k in K generates a coded packet Xstage 1
k

by computing bit-wise XOR (denoted by ⊕) of the data
segments labelled by k, i.e.,

Xstage 1
k = ⊕

P⊂K:|P|=µK,k∈P
VP,k, (11)

and multicasts Xk to all other nodes in K.
After Node k receives a coded packet Xstage 1

k′ from Node k′,
it cancels all the segments VP,k′s with k ∈ P , and recovers the
intended segment VK\{k},k′ . Repeating this decoding process
for all received coded packets, Node k recovers VK\{k}, and
hence v̄q,K\{k}, for all q ∈ Sk. Using these values, together
with the local Map results, Node k computes the output φq
for all q ∈ Sk. After the first stage of computation, each node
in Kj completes its computation tasks for job j.

Since each of the coded packets in (11) contains Q
K ×

T
µK

bits, the communication load exerted in the Shuffle phase of



the first stage is

Lstage 1 =
Q
K×

(µK+1)T
µK

JQT =
µK+1
µK
JK . (12)

Example (compressed CDC: coding for a single job).
We start describing the proposed scheme in the subset of
Nodes 1, 2, and 3. In the first stage of computation, since
{1, 2, 3} = K1, these three nodes will focus on processing job
1. The computation and communication scheme for this stage
is the same as described for the example in Fig. 2(c). By the
end of this stage, Nodes 1, 2, and 3 compute their assigned
functions for job 1. The first stage incurs a communication
load of Lstage 1 = 3/2

16 = 3
32 . �

2) Stage 2 (coding across jobs): In the second stage, we
first take a node i outside Kj , and then for each k ∈ Kj , we
label the job whose input files are exclusively stored on the
nodes in {i}∪Kj\{k} as jk. Next, the nodes in Pjk = Kj\{k}
process the files of job jk in the batch BPjk in the Map phase,
and communicate the computed intermediate values needed by
Node k in a coded manner.

For a node i ∈ {1, 2, . . . ,K}\Kj , and each k ∈ Kj , the
nodes in Pjk = Kj\{k} share a batch of N

µK+1 files in BPjk
for job jk. In the Map phase, for each k′ ∈ Pjk , Node k′

computes Q
K intermediate values, one for each function of job

jk assigned to Node k in S(jk)k , from each of the files in
the batch BPjk . More precisely, each Node k′ computes the
intermediate values

{vq(jk),n(jk) : q(jk) ∈ S(jk)k , n(jk) ∈ BPjk }. (13)
In the Shuffle phase, for each k ∈ Kj , the nodes in Pjk first

pre-combine the Map results in (13) locally to compute

v̄q(jk),Pjk
=

∑
n(jk)∈BPjk

vq(jk),n(jk) , (14)

for all q(jk) ∈ S(jk)k .
Next, as similarly done in the first stage, the nodes in
Pjk first concatenate the above Q

K pre-combined values
{v̄q(jk),Pjk

: q(jk) ∈ S(jk)k } to form a packet VPjk , and then
split it into µK segments. We label these segments by the
elements in Pjk , i.e., for Pjk = {i1, i2, . . . , iµK}, we have

VPjk = (VPjk ,i1 , VPjk ,i2 , . . . , VPjk ,iµK ). (15)

Finally, each node k′ in Kj generates a coded packet Xstage 2
k′

by computing bit-wise XOR of the data segments labelled by
k′, i.e.,

Xstage 2
k′ = ⊕

t∈Kj\{k′}
VPjt ,k′ , (16)

and multicasts Xstage 2
k′ to all other nodes in Kj .

We note that since the job index jt (whose input files are
exclusively stored on nodes in {i} ∪ Kj\{t}) is different
for different t, the above coded packet is generated using
intermediate values from different jobs.

Having received a coded packet Xstage 2
k′ from Node k′,

Node k cancels all the segments VPjt ,k′s with k ∈ Pjt ,
and recovers the intended segment VPjk ,k′ . Repeating this
decoding process for all received coded packets, Node k

recovers VPjk , and hence v̄q(jk),Pjk
, for all q(jk) ∈ S(jk)k .

We repeat the above Map and Shuffle phase operations for
all i ∈ {1, 2, . . . ,K}\Kj . By the end of the second stage,
each node in Kj recovers partial sums to compute functions
from K − µK − 1 jobs.

The communication load incurred in the Shuffle phase, for

a particular i, is
Q
K×

µK+1
µK

JQ , and the total communication load
of the second stage is

Lstage 2 =
(K−µK−1)µK+1

µK
JK . (17)
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Fig. 4: Illustration of the operations in the second stage of compressed
CDC, in the subset of Nodes 1, 2, and 3. Note that in this stage, pre-
combined packets from different jobs are utilized to create coded
multicast packets.

Example (compressed CDC: coding across jobs). We now
move on to describe the second stage of compressed CDC
within the subset K1 = {1, 2, 3} via Fig. 4, where we
represent the functions computed by Node 1, 2, and 3 by
red/circle, green/square, and blue/triangle respectively, and
the intermediate value of a function from a file n(j) as the
corresponding color/shape labelled by n(j). In this stage, as
shown in Fig. 4, each node maps 4 files, two of which belong
to a job, and the other two belong to another job. For example,
Node 1 maps the files 5(2), 6(2) from job 2, and files 1(3), 2(3)

from job 3, producing two blue triangles labelled by 5(2) and
6(2), and two green squares labelled by 1(3) and 2(3). During
data shuffling, each node first sums up the two intermediate
values from the same job to create two pre-combined packets
locally (e.g., the summation of blue triangles labelled by 5(2)

and 6(2), and the summation of green squares labelled by 1(3)

and 2(3) at Node 1). Then, as shown in Fig. 4, each node
splits each of the computed sums evenly into two segments,
computes the bit-wise XOR of two segments, one from each
sum, and multicasts it to the other two nodes. Finally, each
node decodes the intended sum from the multicast packets
using its locally computed intermediate values. The second
stage incurs a communication load of Lstage 2 = 3/2

16 = 3
32 . �

Having performed this two-stage operation on all subsets
Kj of µK + 1 nodes, j = 1, 2, . . . ,

(
K

µK+1

)
, each node k has

finished computing its assigned functions from
(
K−1
µK

)
jobs.

For each of the remaining
(

K
µK+1

)
−
(
K−1
µK

)
jobs, say job j′,



and each k′ ∈ Kj′ , Node k receives a partial sum of N
µK+1

intermediate values for each of the functions in S(j
′)

k , in the
subset {k}∪Kj′\{k′}. Summing up these µK+1 partial sums,
Node k finishes computing each of its assigned functions from
job j′.

The overall communication load of compressed CDC is

Lcompressed CDC =

(
K

µK + 1

)
×(Lstage 1 + Lstage 2)

=
(1− µ)(µK + 1)

µK
. (18)

Example (compressed CDC: final reduction). After the two-
stage computations in the subset {1, 2, 3}, we repeat the same
operations in the other subsets of 3 nodes. In the end, taking
Node 1 as an example,
• In subset {1, 2, 3}, Node 1 computes φ1(1) , and v1(4),3(4)+
v1(4),4(4) ,

• In subset {1, 2, 4}, Node 1 computes φ1(2) , and v1(4),1(4)+
v1(4),2(4) ,

• In subset {1, 3, 4}, Node 1 computes φ1(3) , and v1(4),5(4)+
v1(4),6(4) .

Finally, Node 1 computes φ1(4) by adding up the received
partial sums in the 3 subsets. We can verify that Nodes 2, 3,
and 4 also successfully recover their assigned functions from
the 4 jobs. The overall communication load is Lcompressed CDC =
3
32 × 2× 4 = 3

4 . �

Remark 4. For the above example, using only the combining
technique to process each job, we would have communicated 4
pre-combined packets, one for each node, achieving a commu-
nication load Lcompression = 4

4 = 1. On the other hand, using
the CDC scheme that only exploits the coded multicasting
opportunities, we would have achieved a communication load
of LCDC = 3

2 . �

V. CONCLUSION

We propose a coded distributed computing scheme for
MapReduce jobs with linear Reduce functions, named com-
pressed coded distributed computing (compressed CDC),
which achieves substantially smaller bandwidth consumption
compared with the state-of-the-art schemes. Compressed CDC
jointly exploits 1) pre-combining intermediate results for the
same computation task, and 2) coded multicasting across
different computation tasks, achieving significant communi-
cation reduction, compared with those achieved by applying
the above two techniques separately. A future direction is to
develop lower bounds on the minimum communication load,
and study the optimality of the compressed CDC scheme.

APPENDIX
COMMUNICATION LOAD OF THE COMPRESSION SCHEME

For the schemes that solely apply the compres-
sion/combining techniques, we consider a class of single-job
strategies where we repeat the same steps to handle the
scenario of executing a single job, for all J jobs. Hence, it
is sufficient to describe and analyze the scheme for the case
where J = 1. In this case, each computing node stores µN

files of a single job locally, and wants to compute Q
K output

functions.
We first consider the case of small storage size where 1

K ≤
µ ≤ 1

2 . In this case, we partition the indices of the input
files {1, 2, . . . , N} into d 1µe batches, which are denoted as
B1,B2, . . . ,Bd 1

µ e
. Each of the first d 1µe − 1 batches contains

µN file indices, and the last batch Bd 1
µ e

contains the remaining
N−µ(d 1µe−1)N file indices. In the file placement phase, for
each i = 1, 2, . . . , d 1µe, we place the input files whose indices
are in Bi in the local storage of Nodes i, i+d 1µe, i+2d 1µe, . . ..
In other words, Node k, k = 1, 2, . . . ,K, stores the files whose
indices are in the batch B((k−1) mod d 1

µ e)+1. We note that since
d 1µe ≤ K, each batch of files is placed on at least one node.

In the Map phase, each node maps each of the files in
the locally stored batch, generating Q intermediate values
for the Q output functions. In the Shuffle phase, for a node
k to compute a function φq assigned to it, apart from the
intermediate values computed from the local batch of files, it
needs the partial sums of intermediate values from the other
d 1µe − 1 batches. We assume that Node k stores the files in
Bj locally, then, for some other node k′ who stores a different
batch Bt, t 6= j, Node k′ first pre-combines the intermediate
values for the function φq to generate

v̄q,Bt =
∑
n∈Bt

vq,n, (19)

and sends this pre-combined package to Node k. Having
received d 1µe − 1 such pre-combined packets, one from a
node who stores a distinct batch of files, Node k compute
the function φq by summing them up together with the
intermediate values computed from the local batch. In this
communication scheme, each node receives d 1µe − 1 pre-
combined packets, each of which has the same size as a single
intermediate value, for each of its assigned functions, incurring
a total communication load of

Lcompression| 1
K≤µ≤

1
2

=
(d 1µe − 1)T × Q

K ×K
QT

= d 1µe − 1.

(20)
We note that for the case of µ = 1

2 , we have a total of 2
batches, and each node only receives a single pre-combined
packet to compute each of its assigned functions, resulting in a
total communication load of 1. For the cases where 1

2 < µ <
1, since each node has to receive at least one intermediate
value to compute each of its assigned functions, the incurred
communication load is at least 1. Hence, increasing the storage
size µ beyond 1

2 does not further reduce the communication
load, and we have

Lcompression| 1
2≤µ<1 = 1. (21)
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