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Abstract—We consider the problem of aligning a pair of
databases with correlated entries. We introduce a new measure
of correlation in a joint distribution that we call cycle mutual

information. This measure has operational significance: it de-
termines whether exact recovery of the correspondence between
database entries is possible for any algorithm. Additionally, there
is an efficient algorithm for database alignment that achieves this
information theoretic threshold.

I. THE DATABASE DEANONYMIZATION PROBLEM

Suppose that we have two databases. Each item in the

databases contain information about a single individual. Some

individuals appear in both databases. When a entry in the

first database and an entry in the second database concern

the same individual, their contents are correlated. The entries

may be two noisy observations of the same signal, they may

be two completely different types of data that have some

correlation through population statistics, or they may even

be correlated though the sampling process used to determine

which individuals appear in the database.

We consider the following question: If the databases are

published with user identities removed from each entry, is it

possible to learn the association between database entries that

correspond to the same individual by exploiting the correlation

between them?

Clearly, when there is enough correlation between entries

about the same individual and the databases are small enough,

it is possible to learn the true alignment between the database

entries. Our goal is to find the precise conditions under which

it is possible to learn the complete correspondence between

entries with high probability. In particular, we would like

to determine the measure of correlation that characterizes

feasibility of perfect deanonymization in this setting.

This framework for database alignment is related to several

practical deanonymization attacks. Narayanan and Shmatikov

linked an anonymized dataset of film ratings to a publicly

available dataset using correlations between the ratings [1].

Differential privacy has been widely used to quantifying

privacy issues related to databases [2]. More recently, gen-

erative adversarial privacy has been proposed [3]. In both

cases, if users are present in multiple databases, knowledge

of alignment is required to fully apply these frameworks.

Takbiri, Houmansadr, Goeckel, and Pishro-Nik have re-

cently investigated a closely related user privacy problem [4].
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Fig. 1. Two databases, Fa and Fb, with alphabets Xa = Xb = {0, 1}4 and
a matching M between their user identifier sets.

A. Notation

For finite sets X and Y , let RX×Y be the set of real-valued

matrices with rows indexed by X and columns indexed by Y .

For x ∈ R
X×Y , let x⊙k ∈ R

X×Y be the entry-wise power

of x, i.e. the matrix such that (x⊙k)i,j = (xi,j)
k. Let x⊗k ∈

R
X k×Yk

be the tensor power of x, i.e. the matrix such that

for a ∈ X k and b ∈ Yk , (x⊗k)a,b =
∏k−1

i=0 xai,bi .

Let P(X ) be the set of probability distributions on X .

B. Formal description

We have the following sets related to the user identifiers:

Ua Set of user identifiers in the first database

Ub Set of user identifiers in the second database

M ⊆ Ua × Ub Bijective matching between the two types

of user identifierss

A bijection between Ua and Ub is a subset of Ua×Ub in which

each element of Ua and Ub appears exactly once. The matching

M contains the pairs of ids that correspond to the same user.

The fact that M is a bijection implies that |M | = |Ua| = |Ub|.
Throughout, we let n = |M |.

We have the following sets, functions, and distributions

associated with the databases:

Xa Alphabet of entries in first database

Xb Alphabet of entries in second database

Fa : Ua → Xa First database

Fb : Ub → Xb Second database

F = (Fa, Fb)
p ∈ P(Xa ×Xb) Joint distribution between related entries

pa ∈ P(Xa) Marginal distribution on first alphabet

pb ∈ P(Xb) Marginal distribution on second alphabet

Figure 1 illustrates a pair of databases.
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C. Generative model

For each user u ∈ Ua, there is a database entry Fa(u) ∈
Xa. For a pair (u, v) ∈ M , the entries Fa(u) and Fb(v) are

correlated via the joint distribution p:

Pr[Fa(u) = i, Fb(v) = j|M ] = p(i, j).

For distinct u, v ∈ Ua, Fa(u) and Fa(v) are independent.

The same is true for distinct u, v ∈ Ub. Thus we define

r(fa, fb;m) =
∏

(u,v)∈m

p(fa(u), fb(v))

so the joint distribution of the databases is

Pr[Fa = fa, Fb = fb|M = m] = r(fa, fb;m). (1)

D. Relationship to graph alignment

The methods used in this paper are related to those used

to analyze information theoretic thresholds for exact graph

alignment [5]–[7]. An undirected graph G can be represented

by its edge indicator function:
(

V (G)
2

)

→ {0, 1}, so we have

a very simple type of information about each user pair. The

analogue to the generative model (1) is the correlated Erdős-

Rényi distribution on graph pairs, where corresponding edge

indicator r.v.s are sampled i.i.d. from some joint distribution

on {0, 1}2. Once the marginal distributions are fixed, the one

remaining degree of freedom specifies the level of correlation.

In the database problem, we instead have larger blocks

of information about individual users. This allows for more

complicated forms of correlations. In this paper, we identify

the relevant one-dimensional summary of that correlation.

A further connection is that graph alignment falls into the

database alignment framework when seed vertices are used [8],

[9]: the list of adjacent seeds is essentially a database entry.

II. RESULTS

Both our achievability and converse bounds use the follow-

ing measure of correlation in a joint distribution. We propose

to call this quantity cycle mutual information.

Definition 1. For p ∈ P(Xa × Xb), let z ∈ R
Xa×Xb be the

matrix such that zi,j =
√

p(i, j) for i ∈ Xa and j ∈ Xb. For

an integer ℓ ≥ 2, define the order-ℓ cycle mutual information

I◦ℓ (p) =
1

1− ℓ
log tr((zzT )ℓ).

Then z has a singular value decomposition z = UΣV T

where Σ = diag(σ). Observe that

tr(Σ2) = tr(UΣV TV ΣUT ) = tr(zzT ) =
∑

i,j

z2i,j = 1, (2)

so σ⊙2, the vector of squared singular values, constitutes a

probability distribution. Thus we have another expression for

cycle mutual information of order ℓ: I◦ℓ (p) = Hℓ(σ
⊙2), where

Hℓ is the Rényi entropy of order ℓ. This expression allows us

to extend the definition of I◦ℓ (p) to all nonnegative real ℓ.

Our achievability theorem allows for arbitrary structure in

the joint distribution of database entries.

Theorem 1. Let M ⊆ Ua ×Ub be a uniformly random bijec-

tion. Let the alphabets Xa and Xa and the joint distribution

p ∈ P(Xa ×Xb) depend on n. If

I◦2 (p) ≥ 2 logn+ ω(1),

there is an estimator for M given F that is correct with

probability 1− o(1).

When the database entries are vectors of independent iden-

tically distributed components, we have a converse bound with

a leading term that matches the achievability.

Theorem 2. Let M ⊆ Ua × Ub be a uniformly random

bijection. Fix alphabets Ya and Yb and a joint distribution

q ∈ P(Ya ×Yb). Let Xa = Yℓ
a, Xb = Yℓ

b , and p = q⊗ℓ, where

ℓ can depend on n. If

I◦2 (p) ≤ (2 − Ω(1)) logn,

any estimator for M given F is correct with probability o(1).

III. MAP ESTIMATION

The optimal estimator for M given F is the maximum a

posteriori estimator:

m̂(fa, fb) = argmax
m

Pr[M = m|F = (fa, fb)]

= argmax
m

Pr[F = (fa, fb)|M = m] Pr[M = m]

Pr[F = (fa, fb)]
(a)
= argmax

m
Pr[F = (fa, fb)|M = m].

In (a) we use that fact that M is uniformly distributed.

Define the event

Em2,m1
= {(fa, fb) : r(fa, fb;m2) ≥ r(fa, fb;m1)}.

When m1 is the true matching, this is the error event in which

m2 is incorrectly preferred to m1.

A. Algorithm for computing the MAP estimator

Define the matrix Q(fa, fb) ∈ R
Xa×Xb ,

Q(fa, fb)u,v = log p(fa(u), fb(v)).

The MAP estimator is the max weight matching in Q(fa, fb):

m̂(fa, fb) = argmax
m

∑

(u,v)∈m

Q(fa, fb)u,v.

Thus m̂ can be computed in O(n3) time [10].

IV. GENERATING FUNCTIONS

Let x and y be two matrices of formal variables indexed

by Xa ×Xb, and let xa and ya be vectors of formal variables

indexed by Xa, and let xb and yb be vectors of formal variables

indexed by Xb. For a matching m ∈ Ua × Ub and a pair

of databases fa : Ua → Xa and fb : Ub → Xb, define the

generating function of the joint type

t(m; fa, fb;x) =
∏

(u,v)∈m

xfa(u),fb(v).



Observe that t(m; fa, fb; p) = r(fa, fb;m).
For a pair of matchings, define the generating function

Bm1,m2
(x, y) =

∑

fa:Ua→Xa

∑

fb:Ub→Xb

t(m1; fa, fb;x)t(m2; fa, fb; y).

By understanding the behavior of this generating function, we

can obtains upper bounds on the probability of an estimator

making an error.

Throughout this section, let z ∈ R
Xa×Xb be a matrix and let

za ∈ R
Xa and zb ∈ R

Xb be vectors such that zi,j =
√

p(i, j),
(za)i =

√

pa(i), and (zb)j =
√

pb(j).

Lemma 1. For any two bijections m1,m2 ⊆ Ua × Ub,

Pr[Em2,m1
|M = m1] ≤ Bm1,m2

(z, z)

Proof: For any θ ≥ 0, we have

Pr[Em2,m1
|M = m1]

= E

[

1

(

r(fa, fb;m2)

r(fa, fb;m1)
≥ 1

)∣

∣

∣

∣

M = m1

]

≤ E

[

(

r(fa, fb;m2)

r(fa, fb;m1)

)θ
∣

∣

∣

∣

∣

M = m1

]

.

Furthermore,

E

[

(

r(fa, fb;m2)

r(fa, fb;m1)

)θ
∣

∣

∣

∣

∣

M = m1

]

=
∑

fa,fb

(

r(fa, fb;m2)

r(fa, fb;m1)

)θ

r(fa, fb;m1)

=
∑

fa,fb

r(fa, fb;m2)
θr(fa, fb;m1)

1−θ

=
∑

fa,fb

t(m1; fa, fb; p)
θt(m2; fa, fb; p)

1−θ

=
∑

fa,fb

t(m1; fa, fb; p
⊙θ)t(m2; fa, fb; p

⊙(1−θ))

= Bm1,m2
(p⊙θ, p⊙(1−θ))

where the matrix and vector exponents with ⊙ are applied

entrywise. Selecting θ = 1
2 gives the claim.

Define the generating function

b◦ℓ (x, y) = tr((xyT )ℓ).

Regard m1 as a function Xa → Xb and regard mT
2 as a

function Xb → Xa. Then their composition mT
2 ◦ m1 is a

permutation of Xa

Lemma 2. Let m1,m2 ⊆ Ua × Ub be bijections. Let t◦ℓ be

the number of cycles of length ℓ in the permutation mT
2 ◦m1.

Then t◦1 = |m1 ∩m2|,
∑

ℓ ℓt
◦
ℓ = |Xa|, and

Bm1,m2
(x, y) =

∏

ℓ∈N

(b◦ℓ (x, y))
t◦ℓ .

Lemma 3. For z′ ∈ R
Xa×Xb with nonnegative entries and for

ℓ ≥ 2, b◦ℓ(z
′, z′) ≤ b◦2(z

′, z′)ℓ/2.

Proof: We have b◦ℓ (z
′, z′) =

∑

k σ
2ℓ
k where σk are the

singular values of z′. By a standard inequality on p-norms,
∑

k σ
2ℓ
k ≤

(
∑

k σ
4
k

)ℓ/2
.

Lemma 4. Let m1,m2 ⊆ Ua × Ub be bijections and let d =
n− |m1 ∩m2|. Then

Bm1,m2
(z, z) ≤ b◦2(z, z)

d/2.

Proof: From (2), b◦1(z, z) = 1. Then the claim follows

from Lemmas 2 and 3.

V. ACHIEVABILITY

Proof of Theorem 1: We will use a union bound over all

possible errors.

Pr

[

⋃

m2 6=m1

Em2,m1

∣

∣

∣

∣

M = m1

]

≤
∑

m2 6=m1

Pr[Em2,m1
|M = m1]

=

n
∑

d=2

∑

m2∈Sm1,d

Pr[Em2,m1
|M = m1]

where Sm,d is the set of matchings that differ from m is

exactly d places. We have

|Sm,d| ≤
(

n

d

)

d! ≤ nd.

From Lemma 1 and Lemma 4, we have

Pr[Em2,m1
|M = m1] ≤

∏

ℓ

b◦ℓ (z, z)
t◦ℓ

≤
∏

ℓ

(b◦2(z, z)
ℓ/2)t

◦

ℓ

= b◦2(z, z)
d/2.

Thus the overall probability of error is at most

n
∑

d=2

ndb◦2(z, z)
d/2.

From the main condition of the theorem, we have

I◦2 (p) ≥ 2 logn+ ω(1)

b◦2(z, z) ≤ exp(−2 logn− ω(1))

= o(n−2),

so for sufficiently large n, nb◦2(z, z)
1/2 < 1 and we have

n
∑

d=2

ndb◦2(z, z)
d/2 ≤ n2b◦2(z, z)

1− nb◦2(z, z)
1/2

≤ o(1)

which proves the claim.



VI. CONVERSE

Lemma 5. For any two bijections m1,m2 ⊆ Ua × Ub,

Bm1,m2
(x, y) = Bm2,m1

(x, y).

Proof: For each ℓ, b◦ℓ (x, y) = b◦ℓ(y, x). The permutations

mT
2 ◦m1 and mT

1 ◦m2 are inverses and thus have the same

cycle decomposition. The claim follows from Lemma 2.

Lemma 6. Fix alphabets Ya and Yb and a joint distribution

q ∈ P(Ya × Yb). Let ℓ depend on n such that ℓ = ω(1).
Let Xa = Yℓ

a, Xb = Yℓ
b , p = q⊗ℓ. For any two bijections

m1,m2 ⊆ Ua × Ub such that |m1 ∩m2| = n− 2,

Pr[Em2,m1
|M = m1] ≥ b◦2(z, z)

(1+o(1)).

Proof: The function c(θ) = Bm1,m2
(p⊙θ, p⊙(1−θ)) is a

conditional moment generating function:

c(θ) = E

[

exp

(

θ log

(

r(fa, fb;m2)

r(fa, fb;m1)

))∣

∣

∣

∣

M = m1

]

.

From Lemma 2, we have

Bm1,m2
(p⊙θ, p⊙(1−θ))

= b◦1(p
⊙θ, p⊙(1−θ))n−2b◦2(p

⊙θ, p⊙(1−θ))

= b◦2(p
⊙θ, p⊙(1−θ)).

because

b◦1(p
⊙θ, p⊙(1−θ)) = tr((p⊙θ)(p⊙(1−θ))T ) =

∑

i,j

pθi,jp
1−θ
i,j = 1.

By Lemma 5

c(θ) = b◦2(p
⊙θ, p⊙(1−θ)) = b◦2(p

⊙(1−θ), p⊙θ) = c(1− θ).

Moment generating functions are log-convex, so c(θ) is min-

imized at θ = 1
2 .

Because p = q⊗ℓ, c(θ) is the product of ℓ identical terms.

Let u = q⊙θ and v = q⊙(1−θ).

b◦2(p
⊙θ, p⊙(1−θ)) = b◦2(u

⊗ℓ, v⊗ℓ)

= tr((u⊗ℓ)(v⊗ℓ)T (u⊗ℓ)(v⊗ℓ)T )

= tr(uvTuvT )ℓ

= b◦2(u, v)
ℓ

= b◦2(q
⊙θ, q⊙(1−θ))ℓ

By Cramér’s Theorem on the asymptotic tightness of the

Chernoff bound [11]

Pr

[

log

(

r(fa, fb;m2)

r(fa, fb;m1)

)

≥ 0

∣

∣

∣

∣

M = m1

]

≥ b◦2(q
⊙ 1

2 , q⊙
1

2 )ℓ(1−oℓ(1))

= b◦2(p
⊙ 1

2 , p⊙
1

2 )1−o(1).

Because ℓ = ω(1), oℓ(1) and o(1) are equivalent.

Lemma 7. For any three bijections m1,m2,m3 ⊆ Ua × Ub,

Pr[Em2,m1
∩ Em3,m1

|M = m1] ≤ b◦2(z, z)
d/2

where d = n− |m2 ∩m3|.

Proof: For θ ≥ 0 and θ′ ≥ 0,

Pr

[

r(fa, fb;m2)

r(fa, fb;m1)
≥ 1 ∧ r(fa, fb;m3)

r(fa, fb;m1)
≥ 1

∣

∣

∣

∣

M = m1

]

= E[1(Em3,m1
)1(Em2,m1

)|M = m1]

≤ E

[

(

r(fa, fb;m2)

r(fa, fb;m1)

)θ (
r(fa, fb;m3)

r(fa, fb;m1)

)θ′
∣

∣

∣

∣

∣

M = m1

]

=
∑

fa,fb

(

r(fa, fb;m2)

r(fa, fb;m1)

)θ (
r(fa, fb;m3)

r(fa, fb;m1)

)θ′

r(fa, fb;m1)

=
∑

fa,fb

r(fa, fb;m2)
θr(fa, fb;m3)

θ′

r(fa, fb;m1)
1−θ−θ′

Choosing θ = θ′ = 1
2 , we obtain

E[1(Em3,m1
)1(Em2,m1

)|M = m1]

≤
∑

fa,fb

r(fa, fb;m2)
1

2 r(fa, fb;m3)
1

2

= Bm2,m3
(z, z)

(a)

≤ b◦2(z, z)
d/2

where (a) follows from Lemma 4.

Proof of Theorem 2: Let m1 be the matching used

to generate the databases and let S = Sm1,2 be the set of

matchings of size n that differ from m1 in exactly two places.

That is, for all m ∈ S, |m1 ∩ m| = n − 2. Observe that

|S| =
(

n
2

)

, because each element of S can be specified by the

two users in Ua that it matches differently than m1 does. Let

X be the number of error events that occur:

X =
∑

m∈S

1(Em,m1
).

Let ǫ1 = Pr[Em,m1
|M = m1], i.e. the probability that a

specific transposition error occurs.

We need a lower bound on the probability that X > 0. From

Chebyshev’s inequality, we have

Pr
[

(X−E[X ])2 ≥ E[X ]2
]

≤ E

[

(X − E[X ])2

E[X ]2

]

=
E[X2]

E[X ]2
−1

and we need to find conditions that make this o(1). We have

X2 =
∑

(m2,m3)∈S2

1(Em2,m1
)1(Em3,m1

)

=
∑

m2∈S

1(Em2,m1
) + 2

∑

{m2,m3}∈(S2)

1(Em2,m1
)1(Em3,m1

)

For a set {m2,m3} ∈
(

S
2

)

, either |m2 ∩ m3| = n − 3 or

|m2∩m3| = n−4. There are 3
(

n
3

)

pairs of the former type and

3
(

n
4

)

pairs of the latter type. In the latter case, the indicator

variables Em2,m1
and Em3,m1

are independent. In the former

case, let ǫ2 = Pr[Em2,m1
∩ Em3,m1

|M = m1].
Now we compute

E[X ]2 =

(

n

2

)2

ǫ21 =

((

n

2

)

+ 6

(

n

3

)

+ 6

(

n

4

))

ǫ21



and

E[X2] =

(

n

2

)

ǫ1 + 6

(

n

3

)

ǫ2 + 6

(

n

4

)

ǫ21

E[X2]− E[X ]2

E[X ]2
=

(

n
2

)

(ǫ1 − ǫ21) + 6
(

n
3

)

(ǫ2 − ǫ21)
(

n
2

)2
ǫ21

≤ O
(

1

n2ǫ1
+

ǫ2

nǫ21

)

.

From Lemma 7 we have ǫ2 ≤ (b◦2(z, z))
3

2 and from Lemma 6

we have ǫ1 ≥ (b◦2(z, z))
1+o(1), so

Pr[X = 0] ≤ O
(

1

n2(b◦2(z, z))
1+o(1)

+
1

n(b◦2(z, z))
1

2
+o(1)

)

.

If b◦2(z, z) ≥ n−2+Ω(1), then

n2b◦2(z, z)
1+o(1) ≥ n2+(1+o(1))(−2+Ω(1)) ≥ nΩ(1) ≥ ω(1)

and Pr[X = 0] ≤ o(1).

VII. PROPERTIES OF CYCLE MUTUAL INFORMATION

Consider a joint distribution p ∈ P(Xa × Xb) and recall

the definitions of z and σ from Section II. The properties of

σ⊙2 reflect the correlation in the distribution p. The following

three conditions are equivalent: σ⊙2 is supported on one point,

the rank of the matrix z is one, and the p is the product of

distributions on Xa and Xb.

I◦ℓ (p) shares several properties with mutual information. It is

symmetric: I◦ℓ (p) = I◦ℓ (p
T ). It tensorizes: I◦ℓ (p

⊗k) = kI◦ℓ (p).
It reduces to entropy in the case of identical random variables:

if Xa = Xb and p = diag(p′), then

I◦ℓ (diag(p
′)) = Hℓ(p

′).

because σ⊙2 is a rearrangement of p′. In general, we have

I◦ℓ (p) ≤ min(Hℓ(pa), Hℓ(pb)).

Something stronger is true: the distribution σ⊙2 majorizes pa
and pb. The diagonal of zzT is the marginal distributions pa:

(zzT )i,i =
∑

j

z2i,j =
∑

j

pi,j .

Furthermore,

(zzT )i,i = (UΣV TV ΣUT )i,i =
∑

k

U2
i,kσ

2
k.

Because U is an orthogonal matrix, the Hadamard product U⊙
U is doubly stochastic. Thus σ⊙2 majorizes pa. The diagonal

of zT z contains pb, which is also majorized by σ⊙2.

A. Data processing inequality

Lemma 8. Let p ∈ P(X ), let q ∈ X → P(Y), and let

r ∈ Y → P(Z), so diag(p) ∈ P(X × X ), diag(p)q ∈
P(X × Y), and diag(p)qr ∈ P(X × Z). Then for integer

ℓ ≥ 2, I◦ℓ (diag(p)q) ≥ I◦ℓ (diag(p)qr).

Proof: Define the matrices zi,k =
√

(diag(p)q)i,k and

wi,l =
√

(diag(p)qr)i,l. Then

(zzT )i,i = (wwT )i,i = pi

We have

(zzT )i,j =
√
pipj

∑

k∈Y

√
qi,kqj,k.

The sum is the Bhattacharyya coefficient of the distribu-

tions qi,· and qj,·, which can be written in terms of the

Bhattacharyya divergence as follows: exp
(

− 1
2D 1

2

(qi,·||qj,·)
)

.

Similarly

(wwT )i,j =
√
pipj

∑

l∈Z

√

(qr)i,l(qr)j,l.

By the data processing inequality for Rényi divergences

[12], we have

D 1

2

(qi,·||qj,·) ≥ D 1

2

((qr)i,·||(qr)j,·).
Thus

(zzT )i,j ≤ (wwT )i,j

tr((zzT )ℓ) ≤ tr((wwT )ℓ)

I◦ℓ (diag(p)q) ≥ I◦ℓ (diag(p)qr)

for all integer ℓ ≥ 2.
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