
ar
X

iv
:1

70
8.

06
89

2v
1

 [
cs

.I
T

]
 2

3
A

ug
 2

01
7

Fault-Tolerant Dot-Product Engines
Ron M. Roth

Computer Science Department, Technion, Haifa 3200003, Israel

ronny@cs.technion.ac.il

Abstract—Coding schemes are presented that provide the
ability to correct and detect computational errors while using dot-
product engines for integer vector–matrix multiplication. Both
the L1-metric and the Hamming metric are considered.

Index Terms—Analog arithmetic circuits, Berlekamp codes,
Dot-product engines, In situ computing, Lee metric.

I. INTRODUCTION

We consider the following computational model. For an

integer q ≥ 2, let Σq denote the subset [q〉 = {0, 1, . . . , q−1}
of the integer set Z. Also, let ℓ and n be fixed positive integers.

A dot-product engine (in short, DPE) is a device which accepts

as input an ℓ×n matrix A = (ai,j)i∈[ℓ〉,j∈[n〉 over Σq and a row

vector u = (ui)i∈[ℓ〉 ∈ Σℓ
q, and computes the vector–matrix

product c = uA, with addition and multiplication carried out

over Z. Thus, c = (cj)j∈[n〉 is an integer vector in Z
n (more

specifically, over Σn
ℓ(q−1)2+1). In the applications of interest,

the matrix A is modified much less frequently than the input

vector u (in some applications, the matrix A is determined

once and then remains fixed, in which case only u is seen as

input). Typically, the alphabet size1 q is a power of 2.

In recent proposals of nanoscale implementations of a DPE,

the matrix A is realized as a crossbar array consisting of

ℓ row conductors, n columns conductors, and programmable

nanoscale resistors (e.g., memristors) at the junctions, with the

resistor at the junction (i, j) set to have conductance, Gi,j ,

that is proportional to ai,j . Each entry ui of u is fed into a

digital-to-analog converter (DAC) to produce a voltage level

that is proportional to ui. The product, uA, is then computed

by reading the currents at the (grounded) column conductors,

after being fed into analog-to-digital converters (ADCs); see

Figure 1. For early implementations and applications of DPE’s,

as well as recent ones, see, for example, [3], [8], [11], and [14].

Inaccuracies while programming the resistors in the crossbar

and noise while reading the currents are examples of factors

that can affect the accuracy of the computation. Specifically,

the actually-read row vector, y = (yj)j∈[n〉 ∈ Z
n, may differ

from the correct vector, c = uA. The error vector is defined

as the following vector in Z
n:

e = (ej)j∈[n〉 = y − uA .

1One can consider the broader problem where the matrix A and the vector u
are over different integer alphabets. Yet, for the sake of simplicity, we will
assume hereafter that those alphabets are the same. It is primarily the alphabet
of the matrix that will affect the coding schemes that will be presented in this
work.

This work was done in part while visiting Hewlett Packard Laboratories,
1501 Page Mill Road, Palo Alto, CA 94304.

DAC ✲✲

DAC ✲✲

DAC ✲✲

DAC ✲✲

DAC ✲✲

DAC ✲✲u0

u1

...

ui

...

uℓ−1

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

A

ADC

❄

❄

c0 c1 · · · cj · · · cn−1

Gi,j

Fig. 1. Schematic diagram of a DPE implementation of the computation
u 7→ c = uA using an ℓ × n crossbar array of memristors. The
conductance Gi,j of the memristor at each junction (i, j) is proportional to
ai,j . The circles marked “A” represent analog current measuring devices (such
as transimpedance amplifiers). The current measurements can be carried out in
parallel (as shown), or serially, column-by-column, using only one measuring
device.

In such context of errors, we find it natural to define the

number of errors to be the L1-norm of e:

‖e‖ = ‖e‖1 =
∑

j∈[n〉

|ej | .

In our case—where e is an integer—this norm is also referred

to as the Manhattan weight of e, which equals the Manhattan

distance between uA and y.

Another source of computational errors could be junctions

in the crossbar becoming shorted due to faults in the program-

ming process2. In this case, the current read in the shorted

column will be above some compliance limit (“∞”), which,

in turn, will flag the respective entry in y as “unavailable” or as

an erasure. The L1-metric has been studied quite extensively

in the coding literature, along with its finite-field Lee-metric

variant: see [1, Ch. 9] and [13, Ch. 10]) (and Subsection IV-A

below).

In the other extreme, a junction in the array may become

non-programmable or get stuck at an open state, in which cases

the respective entry in y could be off the correct value by as

much as ±(q−1)2. Such errors could be counted through their

contribution to the L1-norm of the error vector. Alternatively,

2Shorts could also result from manufacturing defects, although conceivably
these can be detected before the DPE is put into operation.

http://arxiv.org/abs/1708.06892v1

2

if this type of errors is predominant, one could consider the

Hamming metric instead, whereby the figure of merit is the

Hamming weight of e, equaling the number of positions in

which y differs from uA (disregarding the extent at which

the values of the respective entries actually differ3). This

Hamming metric is suitable for handling erasures as well.

In this work, we propose methods for using the DPE

computational power to self-protect the computations against

errors. The first k (< n) entries in c = uA will carry the

(ordinary) result of the computation of interest, while the

remaining n−k entries of c will contain redundancy symbols,

which can be used to detect or correct computational errors,

assuming that the number of the latter (counted with respect to

either the L1-metric or the Hamming metric) is bounded from

above by some design parameter. Specifically, the programmed

ℓ× n matrix A will have the structure

A = (A′ | A′′) ,

where A′ is an ℓ × k matrix over Σq consisting of the

first k columns of A, and A′′ consists of the remaining

n− k columns; the computed output row vector for an input

vector u ∈ Σℓ
q will then be c = (c′ | c′′), where the k-prefix

c′ = uA′ (∈ Z
k) represents the target computation while the

(n−k)-suffix c′′ = uA′′ (∈ Z
n−k) is the redundancy part. In

this setting, A′ and u are the actual inputs, and A′′ will need

to be computed from A′, e.g., by a dedicated circuitry, prior

to—or while—programming A′ and A′′ into the crossbar array

(yet recall that it is expected that A′ will be modified much

less frequently than u). The error decoding mechanism will

be implemented by dedicated circuitry too. Clearly, we will

aim at minimizing n − k given the designed error correction

capability.

Example 1. Let us consider the simplest case where we would

like to be able to only detect one L1-metric error. In this case,

we select n = k+1 and let the ℓ× 1 matrix A′′ = (ai,k)i∈[ℓ〉

be obtained from A′ = (ai,j)i∈[ℓ〉,j∈[k〉 by

ai,k =
(∑

j∈[k〉

ai,j

)

MOD 2 , i ∈ [ℓ〉 ,

where “MOD” stands for (the binary operation of) remainder-

ing; thus, the entries of A′′ are in fact over Σ2, and the sum

of entries along each row of A is even. It follows by linearity

that the sum of entries of (an error-free) c = (cj)j∈[n〉 = uA
must be even. On the other hand, if e ∈ Z

n is an error vector

with ‖e‖ = 1 then the sum of entries of y = c + e will be

odd.

Observe that the contents of A′′ depends on A′, but should

not depend on u. In particular, A′′ should be set so that the

specified error correction–detection capabilities hold when u is

taken to be a unit vector. Thus, for every row index i, the set of

(at least) qk possible contents of row i in A must form a subset

of Σn
q that, by itself (and independently of the contents of the

other rows in A), meets the correction–detection capabilities.

3Yet we will also consider a more general setting, where that difference is
bounded by some prescribed constant.

Secondly, note that a given computed k-prefix c′ = uA′

can be associated with different (n−k)-suffixes (redundancy

symbols) c′′ = uA′′, depending on u. This is different from

the common coding theory setting, where the redundancy

symbols are uniquely determined by the information symbols4

(the latter being the counterparts of the entries of c′ in our

setting). For instance, if A in Example 1 is

A =





1 0 0 1
0 1 0 1
1 1 0 0





(where q = 2, k = 3, and n = 4), then, for u = (0 0 1),

(0 0 1)A = (1 1 0 0)

while for u = (1 1 0),

(1 1 0)A = (1 1 0 2)

(in both cases, c′ = (1 1 0)). Indeed, we will see in the sequel

some coding schemes where we will be able to recover c′

correctly out of y (which will suffice for our purposes), yet

we will not necessarily recover c′′. This means that we will

need to present the error correction–detection specification of

a DPE coding scheme slightly differently than usual; we do

this in Section II below.

In Section III, we present methods for single-error correc-

tion and double-error detection in the L1-metric. Methods for

multiple-error correction for that metric are then discussed

in Section IV. Finally, the Hamming metric is considered

in Section V. We will mainly focus on a regime where the

number τ of correctable errors is fixed (i.e., small) while n
grows. Under these conditions, the required redundancy, n−k,

of our methods will be of the order of τ · logq n in the case

of the L1-metric, and approximately twice that number in the

case of the Hamming metric. Moreover, both the encoding

and decoding can be efficiently implemented; in particular,

the decoding requires a number of integer (or finite field)

arithmetic operations which is proportional to τn (and the

implementation can be parallelized to a latency proportional

to τ), where the operands are of the order of log2 n bits long.

II. DEFINITIONS

For integer vectors x1 and x2 of the same length, we

denote by dL(x1,x2) the L1-distance between them, namely,

dL(x1,x2) = ‖x1 − x2‖. The Manhattan sphere of radius t
centered at y ∈ Z

n is defined as the set of all vectors in Z
n

at L1-distance at most t from y:

SL(y, t) = {x ∈ Z
n : dL(x,y) ≤ t} .

The volume (size) of SL(y, t) is known to be [5], [6]:

VL(n, t) =

min{t,n}
∑

i=0

2i
(
n

i

)(
t

i

)

. (1)

4Moreover, while systematic encoding is a matter of preference in ordinary
coding applications, in our setting it is actually a necessity: the benefits of
using the DPE would diminish if post-processing of its output were required
even when the output were error-free.

3

In particular, VL(n, 1) = 2n + 1, and for any fixed t and

sufficiently large n we have VL(n, t) = O(nt), where the

hidden constant depends on t.
Turning to the Hamming metric, we denote by dH(x1,x2)

the Hamming distance between x1 and x2, and the Hamming

sphere of radius t centered at y ∈ Z
n is defined by

SH(y, t) = {x ∈ Z
n : dH(x,y) ≤ t}

(which has infinite size when t > 0). In what follows, we

will sometimes omit the identifier “L” or “H” from d(·, ·)
and S(·, ·), if the text applies to both metrics.

Given Σq and positive integers ℓ, n, and k < n, a DPE

coding scheme is a pair (E ,D), where

• E : Σℓ×k
q → Σℓ×n

q is an encoding mapping such that for

every A′ ∈ Σℓ×k
q , the image A = E(A′) has the form

(A′ | A′′) for some A′′ ∈ Σ
ℓ×(n−k)
q . The set

C =
{
u E(A′) : A′ ∈ Σℓ×k

q , u ∈ Σℓ
q

}

is the code induced by E and its members are called

codewords. Thus, C ⊆ Σn
Q, where Q = ℓ(q−1)2 + 1.

• D : Σn
Q → Σk

Q∪{“e”} is a decoding mapping (the return

value “e” will designate a decoding failure).

Note that in the above definition, the decoding mapping D
is not a function of A′ (yet one could consider also a different

setting where A′ is known to the decoder).

Borrowing (somewhat loosely) classical coding terms, we

will refer to n and k as the length and dimension, respectively,

of the coding scheme. In the context of a given coding

scheme, the k-prefix (respectively, (n−k)-suffix) of a vector

x ∈ Z
n will be denoted hereafter by x′ (respectively, x′′). This

notational convention extends to ℓ×n matrices over Z, with A′

(respectively, A′′) standing for the sub-matrix consisting of the

first k columns (respectively, last n− k columns) of an ℓ× n
matrix A over Z. Denoting row i of a matrix X by Xi, we

then have (A′)i = (Ai)
′ and (A′′)i = (Ai)

′′, for every i ∈ [ℓ〉.
Given nonnegative integers τ and σ, a coding scheme (E ,D)

is said to correct τ errors and detect τ + σ errors (in the

L1-metric or the Hamming metric, depending on the context)

if the following conditions hold for every computed vector

c = uA ∈ C and the respective read vector5 y ∈ Σn
Q.

• (Correction condition) If d(y, c) ≤ τ , then D(y) = c′.

• (Detection condition) Otherwise, if d(y, c) ≤ τ +σ, then

D(y) ∈ {c′, “e”}.

That is, if the number of errors is τ or less, then the decoder

must produce the correct result of the target computation;

otherwise, if the number of errors is τ+σ or less, the decoder

can flag decoding failure instead (but it cannot produce an

incorrect result).

So, unlike the respective conditions for ordinary codes, the

sphere S(y, τ) may contain multiple codewords of C, yet they

all must agree on their k-prefixes. Similarly, the sets S(y, τ)
and S(y, τ+σ) \ S(y, τ) may both contain codewords of C,

yet these codewords must agree on their k-prefixes.

5It is assumed hereafter that the entries of the received vector remain in
the same alphabet, ΣQ, as of the computed vector; while errors could push
the entries to outside that range, they can always be coerced back into ΣQ.

By properly defining the minimum distance of C, we can

extend to our setting the well known relationship between

minimum distance and correction capability. Specifically, the

minimum distance of C, denoted d(C) (with an identifier of

the particular metric used), is defined as the smallest distance

between any two codewords in C having distinct k-prefixes:

d(C) = min
c1,c2∈C:

c
′
1
6=c

′
2

d(c1, c2) .

The following result then extends from the ordinary coding

setting [13, p. 14, Prop. 1.5] (for completeness, we include a

proof in Appendix A).

Proposition 1. Let E : Σℓ×k
q → Σℓ×n

q be an encoding map-

ping with an induced code C, and let τ and σ be nonnegative

integers such that

2τ + σ < d(C) .

Then there exists a decoding mapping D : Σn
Q → Σk

Q ∪{“e”}
such that the coding scheme (E ,D) can correct τ errors and

detect τ + σ errors.

For the special case of the Hamming metric, Proposition 1

can be generalized to handle erasures as well (see [13, p. 16,

Prop. 1.7] and Appendix A).

Proposition 2. With E and C as in Proposition 1, let τ , σ,

and ρ be nonnegative integers such that

2τ + σ + ρ < dH(C) .

Then there exists a decoding mapping D : Σn
Q → Σk

Q ∪{“e”}
such that the coding scheme (E ,D) can correct τ errors and

detect τ + σ errors, in the presence of up to ρ erasures.

The coding schemes that we present in upcoming sections

are based on known codes, in particular known schemes for the

Lee and Manhattan metrics—primarily Berlekamp codes [1,

Ch. 9], [13, Ch. 10]. Yet certain adaptations are needed due to

the fact that the computation of the redundancy symbols of the

codewords in the induced code C = {c = u E(A′)} has to be

done only through the computation of A′ 7→ E(A′) (which is

independent of u). Moreover, the alphabet, Σq , of the entries

of E(A′) is smaller than the alphabet, ΣQ, of the codewords

in C. Our coding schemes will be separable, in the sense that

for each row index i ∈ [ℓ〉, the contents (E(A′))i will only

be a function of A′
i (and not of the rest of the rows in A′);

in fact, that function will be the same for all i, and will not

depend on ℓ. It is expected, however, that the designed number

of correctable errors, τ , will tend to increase with ℓ.

III. SINGLE ERROR CORRECTION IN THE L1-METRIC

In this section, we describe a DPE coding scheme, (E1,D1),
for correcting one L1-metric error; this scheme will then be

extended (in Subsection III-B) to also detect two errors.

A. The coding scheme

Given an alphabet size q ≥ 2 and a code length n, we let

m = ⌈logq(2n + 1)⌉ and k = n − m (thus, m will be the

redundancy). Let

α = (α0 α1 . . . αn−1)

4

be a vector in Z
n that satisfies the following properties.

(i) The entries of α are nonzero distinct elements in [2n+1〉.
(ii) For any two indexes i, j ∈ [n〉,

αi + αj 6= 2n+ 1 .

(iii) αk+j = qj , for j ∈ [m〉.

We will refer to the entries of α as code locators. Code lo-

cators that satisfy conditions (i)–(iii) can be easily constructed

for every q ≥ 2: e.g., when qm−1 ≤ n, we can take

{αj}j∈[n〉 = {1, 2, 3, . . . , n} ,

otherwise,

{αj}j∈[n〉 = ({1, 2, 3, . . . , n} \ {2n+1−qm−1}) ∪ {qm−1}

(note that qm−1 < 2n+ 1 and that qm−2 ≤ n, yet qm−1 may

be larger than n; in fact, this will always be the case when

q = 2).

The encoding mapping E1 : Σℓ×k
q → Σℓ×n

q is defined as

follows: for every A′ = (ai,j)i∈[ℓ〉,j∈[k〉, the last m columns

in A = (A′ | A′′) = E1(A
′) are set so that

∑

j∈[m〉

ai,k+j αk+j
︸ ︷︷ ︸

qj

=
(

−
∑

j∈[k〉

ai,jαj

)

MOD (2n+ 1) , i ∈ [ℓ〉 , (2)

where the remainder (the result of the “MOD” operation) is

taken to be in [2n+1〉. Simply put, ai,n−1ai,n−2 . . . ai,k+1ai,k
is the representation to base q (from the most-significant

digit down to the least) of the remainder in [2n+1〉 of the

(nonpositive) integer −
∑

j∈[k〉 ai,jαj , when divided by 2n+1.

It follows from (2) that each A = E1(A
′) satisfies

AαT ≡ 0 (mod (2n+ 1)) ,

where (·)T denotes transposition and the congruence holds

component-wise. Hence, for each codeword c = uA in the

induced code C we have

c · αT ≡ uAαT ≡ 0 (mod (2n+ 1)) . (3)

This, in turn, implies that for every two distinct codewords

c1, c2 ∈ C,

(c1 − c2) · α
T ≡ 0 (mod (2n+ 1)) ,

and, therefore, by conditions (i)–(ii) we get that dL(c1, c2) =
‖c1 − c2‖ > 2, namely, that dL(C) ≥ 3. We conclude from

Proposition 1 that when using the encoding mapping defined

by (2), to map A′ into A = E1(A
′), we should be able to

correct one error; alternatively, we should be able to detect two

errors. We demonstrate next a single-error-correcting decoding

mapping.

Let y = (yj)j∈[n〉 = c + e = uA + e be the read vector

at the output of the DPE, where e ∈ Z
n is an error vector

having at most one nonzero entry, equaling ±1. The decoding

will start by computing the syndrome of y, which is defined

by

s =
(
y · αT

)
MOD (2n+ 1)

=
(∑

j∈[n〉

yjαj

)

MOD (2n+ 1) .

We then have,

s ≡ uAαT + e · αT
(3)
≡ e · αT (mod (2n+ 1)) .

It follows that s = 0 when e = 0; otherwise, if e has ±1 at

position j (and is zero otherwise), then

s ≡ ±αj (mod (2n+ 1)) .

Hence, due to conditions (i)–(ii), the syndrome s identifies the

error location j and the error sign uniquely.

The encoding and decoding procedures for our single-error

correction scheme are summarized in Figures 2 and 3.

Input: ℓ× k matrix A′ = (ai,j)i∈[ℓ〉,j∈[k〉 over Σq .

Output: ℓ×n matrix (A′ | A′′) = (ai,j)i∈[ℓ〉,j∈[n〉 over Σq.

// m = ⌈logq(2n+ 1)⌉, k = n−m.

// α satisfies conditions (i)–(iii).

For all i ∈ [ℓ〉 do {
Set (ai,n−1 ai,n−2 . . . ai,k+1 ai,k) to satisfy Eq. (2).
}

Fig. 2. Encoding mapping E1 : A′ 7→ (A′ | A′′) for single-error correction
(or double-error detection).

Input: y = (y′ | y′′) ∈ Σn
q .

Output: w = (wj)j∈[k〉 ∈ Σk
q , or “e” (decoding failure).

// Parameters are as defined in Figure 2.

Let w ← y′;

Let

s←
(
y · αT

)
MOD (2n+ 1) ;

If s = 0 then {
; // y is error-free
}

Else if s = αj for some j ∈ [n〉, then {
If j ∈ [k〉 then let wj ← wj + 1;
}

Else if s = 2n+1−αj for some j ∈ [n〉, then {
If j ∈ [k〉 then let wj ← wj − 1;
}

Else {
Return “e”.
}

Fig. 3. Decoding mapping D1 : y 7→ w for single-error correction.

Example 2. Let q = 2 and n = 15, in which case m = 5 and

k = 10. Select ℓ = 3 and

α =
(
3 5 6 7 9 10 11 12 13 14

∣
∣ 1 2 4 8 16

)

(which satisfies conditions (i)–(iii)). Suppose that A′ is the

following 3× 10 matrix:

A′ =





1 0 1 1 0 1 0 0 1 0
0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 1 0 1 1 1



 .

5

For i = 0, 1, 2, the values at the right-hand side of (2) are

given by

−(3 + 6 + 7 + 10 + 13) MOD 31 = 23

−(7 + 10 + 11 + 14) MOD 31 = 20

−(5 + 10 + 12 + 13 + 14) MOD 31 = 8 ,

and, so,

A = E1(A
′) =





1 0 1 1 0 1 0 0 1 0 1 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 1 1 1 0 0 0 1 0



 .

For u = (1 1 1), we get

c = uA =
(
1 1 1 2 0 3 1 1 2 2

∣
∣ 1 1 2 1 2

)
.

Suppose that the read vector is

y =
(
1 1 1 2 0 2 1 1 2 2

∣
∣ 1 1 2 1 2

)
.

The syndrome of y is given by

s =
(
y · αT

)
MOD 31

= (3+5+6+2·7+0·9+2·10+11+12

+2·13+2·14+1+2+2·4+8+2·16) MOD 31

= 21 .

Namely, s = 31 − 21 = 10 = α5, indicating that the error

location is j = 5 (the sixth entry) and the error value is −1
(corresponding to changing the value 3 into 2).

We end this subsection by demonstrating that a redundancy

of n − k = ⌈logq(2n + 1)⌉ is within one symbol from the

smallest possible for any coding scheme that corrects one error

in the L1-metric. Recall that by taking u as a unit vector it

follows that for any row index i, the set of the qk possible

contents of Ai forms an (ordinary) code Ci ⊆ Σn
q that is

capable of correcting one error. Hence, by a sphere-packing

argument we conclude that for distinct c ∈ Ci, the (truncated)

spheres SL(c, 1) ∩ Σn
q must be disjoint subsets of Σn

q . Yet

|SL(c, 1) ∩ Σn
q | ≥ n + 1, and, so, qk = |Ci| ≤ qn/(n + 1),

namely, we have the lower bound

n− k ≥ ⌈logq(n+ 1)⌉ .

B. Allowing additional error detection

The presented coding scheme can be easily enhanced so

that the induced code has minimum distance 4; namely, the

scheme can detect two errors on top of correcting a single

error, or, alternatively, it can detect three errors with no attempt

to correct any error. We do this by extending the code length

by 1 and adding a parity bit to each row of A = E1(A
′), as we

did in Example 1 (with A playing the role of A′ therein). This,

in turn, allows the decoder to recover the parity of the number

of errors (whether it was even or odd). An odd number is seen

as one error, and the algorithm in Figure 3 is then applied.

Otherwise, a zero syndrome will indicate no errors, while a

nonzero syndrome indicates two errors (which will be flagged

by “e”).

When q > 2, this extra error detection capability can

sometimes be achieved without increasing the redundancy. To

see this, consider first the case where q is odd: redefine m to be

⌈logq(4n+2))⌉ (depending on n, the value of m may remain

unchanged by this redefinition), and modify condition (i)–(ii)

as follows.

(i’) The entries of α are odd distinct elements in [4n+2〉.
(ii’) For any two indexes i, j ∈ [n〉,

αi + αj 6= 4n+ 2 .

(Note that condition (iii), which remains unchanged, is consis-

tent with condition (i’). Also, condition (ii’) disqualifies 2n+1
to be an entry6 of α.) The encoding is similar to (2), except

that the remainder at the right-hand side is now computed

modulo 4n+ 2. Accordingly, during decoding, the syndrome

is redefined to

s←
(
y ·αT

)
MOD (4n+ 2) ,

and, so, the parity of the syndrome equals the parity of the

number of errors. An odd syndrome indicates that one error

has occurred, in which case the error location and sign can be

recovered from the value of s. A nonzero even syndrome s
indicates that two errors have occurred.

Assume now that q is an even integer greater than 2. In

this case, condition (i’) would contradict condition (iii), as

the latter requires that the last m−1 entries of α be even.

To overcome this impediment, we will modify the definition

of m and rewrite condition (iii). Specifically, we let m be the

smallest integer that satisfies fm(q) ≥ 4n+2+(−1)m where,

for every nonnegative j ∈ Z,

fj(q) =
qj+1 + (−1)j

q + 1
. (4)

Note that f0(q) = 1 and that for every j > 0,

fj(q) = (q − 1)
∑

i∈[j〉

fi(q) +

{
1 if j is even

0 otherwise
,

which means that every integer in [4n+2〉 has a representation

of the form7
∑

j∈[m〉 bjfj(q), for bj ∈ Σq . Moreover, the

values fj(q) are all odd. Hence, rewriting condition (iii) as

follows will be consistent8 with condition (i’):

(iii’) αk+j = fj(q), for j ∈ [m〉.

From this point onward, we proceed as in the case of odd q.

(We point out that since fm(q) < qm for m > 0, the inequality

fm(q) ≥ 4n + 2 + (−1)m is generally stronger than m ≥
logq(4n + 2); however, the ratio fm(q)/qm does approach 1
as q →∞.)

Example 3. Suppose that q = 8 and n = 13. Since f1(8) = 7
and f2(8) = 57, we can take m = 2 and

α =
(
3 5 9 11 13 15 17 19 21 23 25

∣
∣ 1 7

)
,

resulting in a single-error-correcting double-error-detecting

coding scheme. The redundancy n − k will be only 2 in

6 Yet the coding scheme will work also when (αn−1 =) qm−1 = 2n+1,
in spite of violating condition (ii’).

7The sequence (fj(q))j can be seen as a generalization of the Jacobsthal
sequence: see for instance [7].

8 The coding scheme will work also when (αn−1 =) fm−1(q) = 2n+1,
in spite of violating condition (ii’).

6

this case (as opposed to 3 had we added a parity bit to the

construction in Subsection III-A for n = 13).

IV. LARGER MINIMUM L1-DISTANCES

In this section, we show how to extend the construction

of Section III to correct more errors in the L1-metric. Our

coding schemes will make use of known construction for the

Lee metric, specifically Berlekamp codes, to be recalled in the

next subsection.

A. Lee-metric codes

Let p be an odd prime and let F = GF(p). Representing the

elements of F as 0, 1, 2, . . . , p−1, the last (p−1)/2 elements

in this list will be referred to as the “negative” elements in F .

The Lee metric over F is defined similarly to the L1-metric

over Z, using the following definition of the absolute value

(in Z) of an element z ∈ F :

|z| =

{
z if z is “nonnegative”

p− z otherwise
.

Let n and τ be positive integers such that 2τ < p, and let

h = ⌈logp(2n+ 1)⌉. Also, let

β = (β0 β1 . . . βn−1)

be a vector of length n over the extension field Φ = GF(ph)
whose entries are nonzero and distinct and satisfy βi+βj 6= 0
for every i, j ∈ [n〉 (compare with conditions (i)–(ii) in Sec-

tion III; it is easy to see that here, too, such a vector β always

exists). The respective Berlekamp code, CBer = CBer(β, τ), is

defined as the set of all row vectors in Fn in the right kernel of

the following τ × n parity-check matrix, HBer = HBer(β, τ),
over Φ:

HBer =











β1 β2 . . . βn

β3
1 β3

2 . . . β3
n

β5
1 β5

2 . . . β5
n

...
...

...
...

β2τ−1
1 β2τ−1

2 . . . β2τ−1
n











. (5)

That is,

CBer =
{
c ∈ Fn : c ·HT

Ber = 0
}

.

Thus, CBer is a linear [n, k] code over F with a redundancy

n− k of at most τh = τ⌈logp(2n+ 1)⌉.
The minimum Lee distance of CBer is known to be at

least 2τ + 1, and there are known efficient algorithms for

decoding up to τ Lee-metric errors (see [1, Ch. 9] and [13,

§10.6]). These decoders typically start with computing the

syndrome, s = yHT

Ber, of the received vector y ∈ Fn, and

then implement a function DBer : Φ
τ → Fn which maps s to

the error vector e = DBer(s). The condition 2τ < p implies

that (1) is also the volume of a Lee-metric sphere of radius t
in Fn. Hence, by sphere-packing arguments, the size of any

Lee-metric τ -error-correcting code in Fn is bounded from

above by pn/V (n, τ) [13, p. 318]. Thus, up to an additive

term that depends on τ (but not on n) the dimension of CBer

is the largest possible, for a given length n and number τ of

Lee-metric errors to be corrected.

There is a close relationship between the construction

presented in Section III and Berlekamp codes. Specifically,

when n is taken so that p = 2n + 1 is a prime, then

each row of A = E1(A
′) is a codeword of CBer(α, 1),

assuming that the entries of A and α are seen as elements

of Φ = F = GF(2n+1). Consequently, the induced code C
forms a subset of CBer(α, 1).

With this relationship in mind, we will next present coding

schemes whose induced codes have minimum L1-distances 5
and above.

B. Double-error-correcting coding scheme

In this subsection, we present a DPE coding scheme for

correcting two errors in the L1-metric (namely, the induced

code will have minimum L1-distance at least 5). This scheme

will then be extended to also detect three errors (minimum

distance 6).

Given the alphabet Σq and the number of rows ℓ, let p >
3 be a prime, and define n1 = (p − 1)/2, m = ⌈logq p⌉,
n2 = n1 +m, and n = n2 + 1. The coding scheme will have

dimension k = n1 −m, length9 n and, therefore, redundancy

n− k = 2m+1. The encoding mapping, E2 : Σk×ℓ
q → Σn×ℓ

Q ,

will take the form of a composition

E2 = ϕ̂2 ◦ ϕ2 ◦ E1 ,

where the component functions are defined in Figure 4.

• E1 is the encoding mapping in Figure 2, with n therein

replaced by n1 (in particular, the remainder in the right-

hand side of (2) is computed modulo p).

• ϕ2 : Σℓ×n1

q → Σℓ×n2

q maps an ℓ × n1 matrix A′ =
(ai,j)i∈[ℓ〉,j∈[n1〉 over Σq to A = (A′ | A′′), where the

last m columns in A are set so that
∑

j∈[m〉

ai,n2+jq
j =

(∑

j∈[n1〉

ai,jα
3
j

)

MOD p , i ∈ [ℓ〉 .

(6)

• ϕ̂2 : Σℓ×n2

q → Σℓ×n
q is the parity mapping defined on

the last m columns of the argument matrix; that is, an

ℓ× n2 matrix A′ = (ai,j)i∈[ℓ〉,j∈[n2〉 over Σq is mapped

to A = (A′ | A′′), where the entries of the last column

in A are given by

ai,n2
=

(∑

j∈[m〉

ai,n1+j

)

MOD 2 , i ∈ [ℓ〉 .

Fig. 4. Component functions of a double-error-correcting encoding mapping
E2 = ϕ̂2 ◦ ϕ2 ◦ E1.

Example 4. Let q = 2 and p = 31, in which case n1 = 15,

m = 5, n2 = 20, n = 21, and k = 10. Select ℓ = 3 and let α

9The seeming restriction on n imposed by requiring that 2n1+1 is a prime
can be lifted by code shortening.

7

and A′ be as in Example 2. For i = 0, 1, 2, the values at the

right-hand side of (6) are

(33+63+73+103+133+13+23+43+163) MOD 31 = 16

(73 + 103 + 113 + 143 + 43 + 163) MOD 31 = 30

(53 + 103 + 123 + 133 + 143 + 83) MOD 31 = 29 ,

and, so,

E2(A
′) = ϕ̂2(ϕ2(E1(A

′)))

=





1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0



 .

It follows from the definition of E2 that every codeword

c = uA in the code C2 induced by E2 satisfies the following

congruences:
∑

j∈[n1〉

cjαj ≡ 0 (mod p) (7)

∑

j∈[n1〉

cjα
3
j ≡

∑

j∈[m〉

cn1+jq
j (mod p) (8)

∑

j∈[m+1〉

cj ≡ 0 (mod 2) . (9)

Proposition 3. The induced code C2 satisfies

dL(C2) ≥ 5 .

Proof. Let y = c + e be the read vector at the DPE output,

where c ∈ C and ‖e‖ ≤ 2. Write e = (e1 | e2) and y =
(y1 | y2), where e1 (respectively, y1) is the n1-prefix of e

(respectively, y). We associate with y the integer syndrome

(s1 s2 ŝ2) computed as in Eqs. (10)–(12) in Figure 5.

We distinguish between the following cases.

Case 1: s1 = 0. In this case, e1 = 0 (i.e., y1 is error-free),

since ‖e1‖ ∈ {1, 2} implies s1 6= 0.

Case 2: s1 6= 0 and ŝ2 = 0. In this case, ‖e1‖ ∈ {1, 2}, and

(by (9)), y2 contains an even number of errors, which means

that e2 = 0. Therefore,

s2 ≡
∑

j∈[n1〉

yjα
3
j −

∑

j∈[m〉

yn1+jq
j

≡
∑

j∈[n1〉

yjα
3
j −

∑

j∈[m〉

cn1+jq
j

≡
∑

j∈[n1〉

(cj + ej)α
3
j −

∑

j∈[m〉

cn1+jq
j

(8)
≡

∑

j∈[n1〉

ejα
3
j (mod p) .

On the other hand, from (7) we also have

s1 ≡
∑

j∈[n1〉

ejαj (mod p) .

Hence, we can recover e1 by applying a decoder DBer for

CBer(α, 2) to the syndrome10 (s1 s2).

10When applying this decoder, we regard α and (s1 s2) as vectors over
Φ = F = GF(p). The decoder DBer produces an error vector in Fn1 , which
is mapped back to Z

n1 by changing each given entry z ∈ F into ±|z|, with
the negative sign taken when z is a “negative” element of F .

Case 3: s1 6= 0 and ŝ2 = 1. This is possible only if ‖e1‖ =
‖e2‖ = 1, which means that we are able to recover e1 from s1
(using the decoding mapping in Figure 3).

Note that in case 1 in the last proof, y2 may contain one

or two errors, yet we do not attempt to decode them; in fact,

their decoding might not be unique. However, y1 still decodes

correctly.

The proof of Proposition 3 implies the decoding map-

ping D2 shown in Figure 5.

Input: y = (y1 | y2) ∈ Σn
q .

Output: w ∈ Σk
q .

// n1 = (p− 1)/2, m = ⌈logq p⌉, n2 = n1 +m.

// n = n2 + 1, k = n1 −m.

// α satisfies conditions (i)–(iii).

// y1 is the n1-prefix of y.

// DBer(·) is a decoder for CBer(α, 2).
Let

s1 ←
(∑

j∈[n1〉

yjαj

)

MOD p (10)

s2 ←
(∑

j∈[n1〉

yjα
3
j −

∑

j∈[m〉

yn1+jq
j
)

MOD p (11)

ŝ2 ←
(∑

j∈[m+1〉

yn1+j

)

MOD 2 ; (12)

If s1 = 0 then {
Let w ← y′; // y1 is error-free
}

Else if ŝ2 = 0 then {
Let e1 ← DBer(s1 s2);

Let w ← (y1 − e1)
′; // w is the k-prefix of y1 − e1

}

Else {
Let w ← D1(y1).
}

Fig. 5. Decoding mapping D2 : y 7→ w for double-error correction.

We include in Appendix B an example of an application

of the decoder in Figure 5; for self-containment, that example

also recalls the decoding principles of Berlekamp codes.

The coding scheme (E2,D2) can be extended to also detect

three errors, by adding an overall parity bit to each row of the

encoded matrix A, as was done in Subsection III-B. Moreover,

the savings shown there when q > 2 carries over also to

minimum distances 5 and 6.

Specifically, for odd q, we redefine m to be ⌈logq(2p)⌉ =
⌈logq(4n1+2)⌉, and require11 α to satisfy conditions (i’)–(ii’).

The encoding mapping E2 is redefined to just ϕ2 ◦ E1, with

code length n = n2 = n1 +m and redundancy n− k = 2m.

The component functions E1 and ϕ2 are as in Figure 4, except

that all remainders modulo p are now computed modulo 2p.

11See Footnote 6 for the case where q = p.

8

The function of the syndrome element ŝ2 in the decoding

process is replaced by the parities of s1 and s2, when com-

puted as in (10) and (11), except that the remainders are taken

modulo 2p (yet CBer is still defined over F = GF(p), so

when its decoder is applied to (s1 s2), the syndrome entries

are reduced first modulo p). Specifically, assuming that at

most three errors have occurred, Table I presents the various

combinations of parities of s1 and s2, and the corresponding

L1-norms of e1 and e2. The first three rows in the table

TABLE I
DECODING TWO ERRORS AND DETECTING THREE ERRORS.

s1 s2 s2 ≡ s3
1

? ‖e1‖ ‖e2‖ Decoder output

0 − − 0 − y
′

1

even 6= 0 even − 2 0 (y1 −DBer(s1 s2))′

odd even − 1 1 D1(y1)
even 6= 0 odd − 2 1 “e”

odd odd yes 1 0 D1(y1)
odd odd no 3 0 “e”
odd odd no 1 2 “e”

correspond, respectively, to the three cases in the proof of

Proposition 3. The fourth row corresponds to three errors and

therefore should result in a decoding failure. The last three

rows correspond to three different combinations of number of

errors: the distinction among them can be made by checking

whether s2 ≡ s31 (mod p), and, since CBer(α, 2) has minimum

Lee distance 5, this condition will be met only when one error

has occurred (in which case it can be found using the decoding

mapping in Figure 3).

When q is even and greater than 2, we will follow the same

strategy as in Section III, namely, replacing the terms12 qj

with fj(q) defined in (4), both in condition (iii) and in (6).

Example 5. Suppose that q = 4 and p = 101, corresponding

to n1 = 50. The values fj(4) for j = 0, 1, 2, 3, 4 are 1, 3, 13,

51, and 205, respectively, so we can take m = 4 and

α =
(
5 7 9 11 15 17 . . . 47 49 53 55 . . . 97 99

∣
∣ 1 3 13 51

)
.

The respective double-error-correcting triple-error-detecting

coding scheme has length n = n1 +m = 54 and redundancy

n− k = 2m = 8 (and dimension k = 46). An example of an

image of the encoding mapping E2 = ϕ2 ◦ E1 is given by

A = E2(A
′) =





1 2 3 0 1 2 0 0 . . . 0 2 1 0 2 0 1 3 2
0 3 0 1 2 3 0 0 . . . 0 3 3 2 1 1 2 2 3
2 1 1 3 2 0 0 0 . . . 0 2 3 0 2 2 0 0 2



 ,

with

c = uA =
(
4 14 7 6 10 13 0 0 . . . 0

∣
∣ 15 14 6 9

∣
∣ 5 8 12 15

)

being an example of a codeword (which corresponds to the

input vector u = (2 3 1)).
Given a read vector y = (yj)j∈[n〉 ∈ Σn

Q (where Q = 28
and n = 54), its syndrome is given by

s1 =
(∑

j∈[n1〉

yjαj

)

MOD (2p)

s2 =
(∑

j∈[n1〉

yjα
3
j −

∑

j∈[m〉

yn1+jfj(q)
)

MOD (2p)

12See Footnote 8 for the case where fm−1(q) = p.

(where q = 4, p = 101, n1 = 50, and m = 4). Correction of

two errors and detecting of three then proceeds by following

Table I, where y1 and y′
1 are the prefixes of y of lengths

n1 = 50 and k = 46, respectively.

C. Recursive coding scheme

The construction in Subsection IV-B does not seem to

generalize in a straightforward way to larger minimum L1-

distances. However, with some redundancy increase (which

will be relatively mild for code lengths sufficiently large), we

can construct coding schemes for any prescribed number of

correctable errors. We show this next.

Given the alphabet Σq, number of rows ℓ, designed number

of correctable errors13 τ , let p > 2τ be a prime, and define

n = (p− 1)/2 and m = ⌈logq p⌉. Also, let α = (αj)j∈[n〉 be

an integer vector that satisfies conditions (i)–(iii) in Section III.

Given a matrix A ∈ Σℓ×n
q (which, at this point, is not

assumed to be the result of any encoding), we can compute

the following ℓ× τ syndrome matrix of A over Z:

S = (si,v)i∈[ℓ〉,v∈[τ〉 = AHT

Ber MOD p ,

where HBer = HBer(α, τ) is the parity-check matrix defined

in (5), now seen as a matrix over Z, and the remainder

computed entry-wise. For a vector u ∈ Σℓ
q, the syndrome

s = s(u) of c = c(u) = uA is then given by

s = cHT

Ber MOD p

= uAHT

Ber MOD p

= uS MOD p .

If the syndrome s is available to the decoder, then the decoder

should be able to recover c = uA from an erroneous copy

y = c + e (∈ Z
n), provided that ‖e‖ ≤ τ : this is simply

because the syndrome ŝ of e is computable from s and the

syndrome of y,

ŝ = eHT

Ber MOD p = (y − c)HT

Ber MOD p

= (yHT

Ber − s) MOD p ,

and e← DBer(ŝ), where DBer(·) is a decoder for CBer(α, τ).
Thus, our encoding mapping will be designed so that, inter

alia, the decoder is able to reconstruct a copy of s.

Each entry in S, being an integer in [p〉, can be expanded

to its base-q representation

si,v =
∑

j∈[m〉

s
(j)
i,vq

j ,

where s
(j)
i,v ∈ Σq. For j ∈ [m〉, let S(j) be the ℓ × τ matrix

(s
(j)
i,v)i∈[ℓ〉,v∈[τ〉 over Σq . Clearly,

S =
∑

j∈[m〉

qjS(j)

13For simplicity, we assume that σ = 0, namely, no additional errors are
to be detected.

9

and, so,

s = uS MOD p

=
(∑

j∈[m〉

qj(uS(j))
)

MOD p

=
(∑

j∈[m〉

qjs(j)
)

MOD p ,

where s(j) = s(j)(u) = uS(j) is a vector in Σm
Q . Consider an

encoding mapping E : Σℓ×n
q → Σ

ℓ×(n+τm)
q defined by

E : A 7→
(

A | S(0) | S(1) | · · · | S(m−1)
)

.

Then, for u ∈ Σℓ
q we have

u E(A) =
(

c | s(0) | s(1) | · · · | s(m−1)
)

(where c = c(u) and s(j) = s(j)(u)). If y = u E(A) + e

where ‖e‖ ≤ τ , then, based on our previous discussion, we

will be able to recover c, as long as the τm-suffix of y is

error-free.

The latter assumption (of an error-free suffix) can be guar-

anteed by applying a (second) encoding mapping to the ℓ×τm
matrix (

S(0) | S(1) | · · · | S(m−1)
)

(over Σq) so that τ errors can be corrected. Note that the

matrix now has ñ = τm columns (instead of n), so we can

base our encoding on a Berlekamp code over GF(p̃), where p̃
is the smallest prime which is at least 2ñ + 1. The size of

the syndrome now will be τm̃, where m̃ = ⌈logq p̃⌉, namely,

becoming doubly-logarithmic in n.

We can continue this process recursively; by just applying

one more recursion level with a simple repetition encoding

mapping (which copies its input 2τ + 1 times at the output),

we obtain a total redundancy of

τm+ (2τ + 1)τm̃ = τ⌈logq(2n+ 1)⌉

+O
(
τ2 logq(τ logq n)

)
. (13)

Hence, for n large compared to τ , most of the redundancy is

due to the first encoding level. In fact, by extending the sphere-

packing argument presented at the end of Subsection III it

follows that the redundancy (13) is optimal, up to an additive

term that depends on τ , but not on n.

Decoding is carried out backwards, starting with recovering

the codeword that corresponds to the last encoding level,

which, in turn, serves as the syndrome of the previous en-

coding level.

Reflecting now back on our constructions in Sections III

and IV-B, if the matrix A (∈ Σℓ×n
q) is the output of the

encoding scheme in Figure 2, then the first column of the

syndrome matrix S is zero, and therefore so is the first column

in each matrix S(j) (and the first entry in each vector s(j)).

Hence, those zero columns can of course be removed. As

for the second column, our construction in Subsection IV-B

implies that it can be error-protected simply by a parity bit

(or, when q > 2, by changing the modulus from p to 2p and

selecting the entries of α to be odd).

The approach of recursive encoding is not new, and has

been used, for example, in the context of constrained coding

(e.g., see [2], [4], [9], [10], [12]). In our setting, this approach

allows us to use codes (namely, Berlekamp codes), which

are originally defined over one alphabet of size p, while the

result of the encoding (namely, the contents of the rows of

the DPE matrix) are restricted to belong to another alphabet

of size q (the challenge is evident when q < p). In the next

subsection, we consider a more straightforward application of

Berlekamp codes to construct a coding scheme for the case

where q is large enough; this scheme may sometimes have a

smaller redundancy than (13).

D. Coding scheme for large alphabets

We consider here the case where the number of correctable

errors τ and the alphabet size q are such that there exists a

prime p that satisfies

2τ < p ≤ q .

We will then assume that p is the largest prime that does not

exceed q, and we let F be the finite field GF(p).
We will use a systematic encoder EBer : F k → CBer,

where CBer = CBer(β, τ) is a Berlekamp code of a prescribed

length n over F and redundancy

n− k ≤ τ · ⌈logp(2n+ 1)⌉

= τ · ⌈(logp q) · logq(2n+ 1)⌉

(when n is sufficiently large compared to τ , the inequality is

known to hold with equality). When q = p, this redundancy

is smaller than (13); otherwise, it will be larger for τ (much)

smaller than n, due to the factor logp q (e.g., for q = 8, this

factor is approximately 1.07).

Our encoding mapping E : Σℓ×k
q → Σℓ×n

q takes each row in

the pre-image matrix A′ ∈ Σℓ×k
q , computes the remainder of

each entry modulo p, regards the result as a vector in F k, and

applies to it the encoder EBer to produce a codeword c ∈ CBer.

The (n−k)-suffix, c′′, of c becomes the (n−k)-suffix of the

respective row in the image A = (A′ | A′′) = E(A′) (see

Figure 6).

Input: ℓ× k matrix A′ = (ai,j)i∈[ℓ〉,j∈[k〉 over Σq .

Output: ℓ×n matrix (A′ | A′′) = (ai,j)i∈[ℓ〉,j∈[n〉 over Σq.

// F = GF(p), for a prime p such that 2τ + 1 ≤ p ≤ q.

// CBer(β, τ) is a Berlekamp code of length n over F .

// EBer : F
k → CBer(β, τ) is a systematic encoder.

For all i ∈ [ℓ〉 do {
Let c← EBer(A

′
i MOD p);

Let A′′
i ← c′′. // F seen as a subset of Σq

}

Fig. 6. Encoding mapping E : A′ 7→ (A′ | A′′) for large alphabets.

It follows from the construction that the codewords of

the induced code C, when reduced modulo p, are codewords

of CBer. Thus, we obtain a coding scheme that can correct τ
errors.

10

V. CODING SCHEME FOR THE HAMMING METRIC

In this section, we present a coding scheme that handles

errors in the Hamming metric; namely, the number of errors

equals the number of positions in which the read vector y =
(yj)j∈[n〉 ∈ Σn

Q differs from the correct computation c =
(cj)j∈[n〉 = uA.

For the purpose of the exposition, we will introduce yet

another design parameter, ϑ, which will be an assumed upper

bound on the absolute value of any error value, namely, on

max
j∈[n〉

|yj − cj | .

Such an error model may be of independent interest in DPE

applications, with the special case ϑ = Q−1 = ℓ(q−1)2 being

equivalent to the ordinary Hamming metric.

Given the alphabet Σq , number of rows ℓ, number of

columns n, number of correctable errors14 τ , and an upper

bound ϑ on the error absolute value (where ϑ = ℓ(q−1)2 for

unconstrained error values), let p be a prime greater than 2ϑ
and let m = ⌈logq p⌉. We select a respective linear τ -error-

correcting [ñ, k] code C over F = GF(p) (in the Hamming

metric), which is assumed to have an efficient bounded-

distance decoder D : F ñ → F ñ: for a received word ỹ ∈ F ñ,

the decoder returns the true error vector ẽ ∈ F ñ, provided

that its Hamming weight w(ẽ) was at most τ .

The parameters n and ñ are related by

n = k +m(ñ− k) .

Figure 7 presents an encoding mapping E : A′ 7→ (A′ | A′′),
where each row of A′, when reduced modulo p, is first

extended by the systematic encoder for C into a codeword

c̃ of C, and then the ñ − k redundancy symbols (over F)

in c̃ are expanded to their base-q representations to form the

respective row in A′′. Specifically,

A′′ =
(

A(0) | A(1) | · · · | A(m−1)
)

,

where each block A(j) is an ℓ × (ñ−k) sub-matrix over Σq,

such that the rows of the ℓ × ñ matrix

Ã =
(

A′
∣
∣
∣
∑

j∈[m〉 q
jA(j)

)

MOD p

form codewords of C.

Let the mapping λ : Zn → F ñ be defined as follows: for a

vector x = (xv)v∈[n〉 ∈ Z
n, the entries of the image λ(x) =

x̃ = (x̃v)v∈[ñ〉 ∈ F ñ are given by

x̃v = xv MOD p , for v ∈ [k〉 , (14)

and

x̃k+v =
(∑

j∈[m〉

xk+v+j(ñ−k)q
j
)

MOD p , for v ∈ [ñ−k〉 .

(15)

It is easy to see that each row in Ã is obtained by applying the

mapping λ to the respective row in A = (A′ | A′′). Moreover,

14We assume that σ = 0 (as in Subsection IV-C) and that there are no
erasures.

Input: ℓ× k matrix A′ = (ai,j)i∈[ℓ〉,j∈[k〉 over Σq .

Output: ℓ×n matrix (A′ | A′′) = (ai,j)i∈[ℓ〉,j∈[n〉 over Σq.

// F = GF(p), for a prime p > 2ϑ.

// m = ⌈logq p⌉ and n = k +m(ñ− k).
// C is a linear τ -error-correcting [ñ, k] code over F .

// E : F k → C is a systematic encoder.

For all i ∈ [ℓ〉 do {
Let c̃ = (c̃v)v∈[ñ〉 ← E(A′

i MOD p);

For each v ∈ [ñ−k〉 do {
Set ((A(0))i,v (A(1))i,v . . . (A(m−1))i,v) to be

the base-q representation of c̃k+v .
}
}

Let A′′ ←
(
A(0) | A(1) | · · · | A(m−1)

)
.

Fig. 7. Encoding mapping E : A′ 7→ (A′ | A′′) for the Hamming metric.

λ is a homomorphism in that it preserves vector addition and

scalar multiplication: for every x1,x2 ∈ Z
n and b1, b2 ∈ Z,

λ(b1x1 + b2x2) = b1λ(x1) + b2λ(x2) ,

where bi = bi MOD p (seen as elements of F). Consequently,

for every u ∈ Σk
q ,

λ(uA) = uÃ MOD p ∈ C .

The properties of λ(·) immediately imply a decoding algo-

rithm (shown in Figure 8). Given the read vector y = c + e,

where w(e) ≤ τ , an application of λ to y yields:

λ(y) = λ(c) + λ(e) ,

where λ(c) ∈ C and w(λ(e)) ≤ w(e) ≤ τ . Hence, a

decoder for C, when applied to λ(y), will recover λ(e). By

the definition of λ, the vectors e and λ(e) coincide, modulo p,

on their k-prefix; and since the values of the entries of e are

all within ±ϑ, the k-prefix of λ(e) uniquely determines the

k-prefix of e.

Input: y ∈ Σn
q .

Output: w ∈ Σk
q .

// Parameters are as defined in Figure 7.

// λ : Zn → F ñ is defined by (14)–(15).

// D : F ñ → F ñ is a decoder for C.

Let ẽ = (ẽj)j∈ñ ← D(λ(y));

Set e′ = (ej)j∈[k〉 to

ej ←

{
|ẽj | if ẽj is “nonnegative” in F
−|ẽj| otherwise

;

Let w ← y′ − e′.

Fig. 8. Decoding mapping D : y 7→ w for the Hamming metric.

11

Finally, we specialize to the case where C is a (normalized

and possibly shortened) BCH code. In this case,

ñ− k ≤

⌈

1 +
p−1

p
(2τ−1)

⌉

·
⌈
logp ñ

⌉

(see [13, p. 260, Problem 8.13]), and, so, the redundancy of

our coding scheme is bounded from above by

n− k ≤

⌈

1 +
p−1

p
(2τ−1)

⌉

·
⌈
logp ñ

⌉
·
⌈
logq p

⌉

︸ ︷︷ ︸

≈ logq n

.

For reference, recall that for every row index i ∈ [ℓ〉, the

possible contents of Ai must form an (ordinary) code over Σq

of minimum Hamming distance at least 2τ + 1 (assuming

that ϑ ≥ q−1). For n sufficiently large compared to τ , BCH

codes over GF(q) are the best codes currently known for all

prime powers q except 4 and 8. Hence, we should expect the

redundancy of the coding scheme to be no less than

⌈

1 +
q−1

q
(2τ−1)

⌉

·
⌈
logq n

⌉
.

ACKNOWLEDGMENT

The author would like to thank Dick Henze, Naveen Mural-

imanohar, and John Paul Strachan for introducing him to the

problem, and for the many helpful discussions.

APPENDIX A

PROOFS

Proof of Proposition 1. For any two codewords c1, c2 ∈ C
and a vector y ∈ Σn

Q, we have

d(c1, c2) ≤ d(y, c1) + d(y, c2) .

Hence, the inequalities

d(y, c1) ≤ τ and d(y, c2) ≤ τ + σ

can hold simultaneously, only if d(c1, c2) ≤ 2τ + σ < d(C),
namely, only when c′1 = c′2. This, in turn, implies that the

following decoding mapping is well-defined and satisfies the

correction and detection conditions above: for every y ∈ Σn
Q,

D(y) =

{
c′ if there is c ∈ C such that d(y, c) ≤ τ
“e” otherwise

.

(It can be easily shown that the condition on τ and σ in

Proposition 1 is also necessary: if 2τ + σ ≥ d(C), then there

can be no decoding mapping that corrects (any pattern of up

to) τ errors and detects τ + σ errors.)

Proof of 2. Let c1 and c2 be codewords in C with distinct

k-prefixes. Ignoring the coordinates that have been erased,

these codewords will still differ on at least dH(c1, c2) − ρ
coordinates. Next apply Proposition 1, with d(C) therein

replaced by dH(C)− ρ.

APPENDIX B

EXAMPLE

We include here an example of an execution of the decoder

in Figure 5.

Example 6. Continuing Example 4, for u = (1 1 1), we get

c = uA =
(
1 1 1 2 0 3 1 1 2 2

∣
∣ 1 1 2 1 2

∣
∣ 2 0 1 2 1

∣
∣ 2

)
.

Suppose that the read vector is

y =
(
1 1 1 2 0 2 1 1 2 2

∣
∣ 1 1 2 2 2

∣
∣ 2 0 1 2 1

∣
∣ 2

)
.

The syndrome of y is computed by (10)–(12) to yield

(s1 s2 ŝ2) = (29 8 0) .

A nonzero s1 indicates that (one or two) errors have occurred

in the n1-prefix, y1, of y, and a zero ŝ2 then indicates that

the remaining part of y is error-free. Hence, we are in the

scenario of case 2 in the proof of Proposition 3, i.e., (s1 s2) =
e1H

T

Ber MOD p (where p = 31), which allows us to find e1
using a decoder for CBer. Next, we recall the principles of the

decoding algorithm for CBer, by demonstrating them on our

particular example.

We first observe that if ‖e1‖ = 1 then necessarily s2 ≡
s31 (mod 31). Since this congruence does not hold in our case,

we deduce that that two errors have occurred, say at positions

i, j ∈ [n1〉. We have

s1 ≡ eiαi + ejαj (mod p) (16)

s2 ≡ eiα
3
i + ejα

3
j (mod p) , (17)

where ei, ej ∈ {−1, 1}. Squaring both sides of (16) yields

s21 ≡ α2
i + 2(eiαi)(ejαj) + α2

j (mod p) ,

while dividing each side of (17) by the respective side in (16)

yields

s2
s1
≡ α2

i − (eiαi)(ejαj) + α2
j (mod p) ,

where 1/s1 stands for the inverse of s1 modulo p. Subtracting

each side of the last congruence from the respective sides of

the previous congruence leads to

s21 −
s2
s1
≡ 3(eiαi)(ejαj) (mod p) . (18)

It follows from (16) and (18) that eiαi and ejαj are solutions

of the following quadratic equation (in F = GF(p)):

x2 − s1x+
1

3

(

s21 −
s2
s1

)

≡ 0 (mod p) .

Specifically, in our case,

1

s1
=

1

29
≡ 15 (mod 31) and

1

3
≡ 21 (mod 31) ,

resulting in the quadratic equation

x2 + 2x+ 13 ≡ 0 (mod 31) .

The two roots of this equation in GF(31) are 8 and 21: the

first points at an error with a value 1 at location 13 (since

α13 = 8), and the second points at an error with a value −1
at location 5 (since α5 = 10 = −21 MOD 31).

12

REFERENCES

[1] E.R. Berlekamp, Algebraic Coding Theory, Revised Edition, Aegean
Park Press, Laguna Hills, California, 1984.

[2] W.G. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,” IBM Tech. Discl.

Bull., 23 (1981), 4633–4634.
[3] B.E. Boser, E. Sackinger, J. Bromley, Y. Le Cun, L.D. Jackel, “An

Analog neural network processor with programmable topology,” IEEE

J. Solid-State Circuits, 26 (1991), 2017-2025.
[4] J. Fan, R. Calderbank, “A modified concatenated coding scheme, with

applications to magnetic data storage,” IEEE Trans. Inf. Theory, 44
(1998), 1565–1574.

[5] S.W. Golomb, L.R. Welch, “Algebraic coding and the Lee metric,” in
Error Correcting Codes, H.B. Mann (Editor), Wiley, New York, 1968,
pp. 175–194.

[6] S.W. Golomb, L.R. Welch, “Perfect codes in the Lee metric and the
packing of polyominoes,” SIAM J. Appl. Math., 18 (1970), 302–317.

[7] A.F. Hoaradam, “Jacobsthal representation numbers,” Fibonacci Quart.,

34 (1996), 40–54.
[8] M. Hu, J.P. Strachan, Z. Li, E.M. Grafals, N. Davila, C. Graves,

S. Lam, N. Ge, J. Yang, R.S. Williams, “Dot-product engine for
neuromorphic computing: Programming 1T1M Crossbar to accelerate
matrix-vector multiplication,” Proc. 53rd Annual Design Automation

Conference (DAC’16), Austin, Texas (2016), Article No. 19.
[9] K.A.S. Immink, “A practical method for approaching the channel

capacity of constrained channels,” IEEE Trans. Inf. Theory, 43 (1997),
1389–1399.

[10] D.E. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory, 32
(1986), 51–53.

[11] F. Kub, K. Moon, I. Mack, F. Long, “Programmable analog vector–
matrix multipliers,” IEEE J. Solid-State Circuits, 25 (1990), 207-214.

[12] M. Mansuripur, “Enumerative modulation coding with arbitrary con-
straints and post-modulation error correction coding and data storage
systems,” Proc. SPIE, Vol. 1499 (1991), 72–86.

[13] R.M. Roth, Introduction to Coding Theory, Cambridge University Press,
Cambridge, UK, 2006.

[14] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J.P. Stra-
chan, M. Hu, R.S. Williams, V. Srikumar, “ISAAC: A convolutional neu-
ral network accelerator with in-situ analog arithmetic in crossbars,” Proc.

43rd ACM/IEEE Int’l Symp. on Computer Architecture (ISCA 2016),

Seoul, Korea (2016), pp. 14–26.

	I Introduction
	II Definitions
	III Single error correction in the L1-metric
	III-A The coding scheme
	III-B Allowing additional error detection

	IV Larger minimum L1-distances
	IV-A Lee-metric codes
	IV-B Double-error-correcting coding scheme
	IV-C Recursive coding scheme
	IV-D Coding scheme for large alphabets

	V Coding scheme for the Hamming metric
	Appendix A: Proofs
	Appendix B: Example
	References

