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Abstract—In the literature, all the known high-rate MDS
codes with the optimal repair bandwidth possess a significantly
large sub-packetization level, which may prevent the codes to be
implemented in practical systems. To build MDS codes with small
sub-packetization level, existing constructions and theoretical
bounds imply that one may sacrifice the optimality of the
repair bandwidth. Partly motivated by the work of Tamo et al.
(IEEE Trans. Inform. Theory, 59(3), 1597-1616, 2013), in this
paper, we present a transformation that can greatly reduce the
sub-packetization level of MDS codes with the optimal repair
bandwidth with respect to the same code length n. As applications
of the transformation, four high-rate MDS codes having both
small sub-packetization level and near-optimal repair bandwidth
can be obtained, where three of them are explicit and the required
field sizes are around or even smaller than the code length n.
Additionally, we propose another explicit MDS code which has
a similar structure as that of the first resultant code obtained by
the generic transformation, but can be built on a smaller finite
field.

Index Terms—Distributed storage, high-rate, MDS codes, sub-
packetization, repair bandwidth.

I. INTRODUCTION

IN distributed storage systems such as Hadoop Distributed

File System (HDFS) and Google File System (GFS), redun-

dancy is imperative to ensure reliability. An attractive solution

is to call upon the maximum distance separable (MDS) codes,

which provide the optimal tradeoff between fault tolerance

and storage overhead. By distributing the codeword across

distinct storage nodes, in the case of node failures, the missing

data can be recovered from the data at some surviving nodes,

named helper nodes as well. For this scenario, one of the most

important parameters is the repair bandwidth, which is defined

as the amount of data downloaded from the helper nodes to

repair the failed node. Particularly, Dimakis et al. [1] derived

a lower bound on the repair bandwidth of MDS codes, which

motivated abundant recent research in coding for distributed

storage [2]–[20].
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In the literature, most existing MDS codes with the repair

bandwidth achieving the lower bound in [1] are a kind of

array codes. A codeword of an (n, k) array code is an N × n
matrix, where the parameter N is called the sub-packetization

level and n is called the code length. When deploying an array

code to a distributed storage system, a code symbol (i.e., a

column) corresponds to a storage node. Then, an array code

is said to have the MDS property if any k out of the n columns

of the matrix can recover the remaining n−k columns. It was

proved in [1] that the repair bandwidth γ(d) of an (n, k) MDS

array code with sub-packetization level N should satisfy

γ(d) ≥ γ∗(d) ,
d

d− k + 1
N, (1)

where d (k ≤ d ≤ n− 1) is the number of helper nodes. An

MDS array code is said to have the optimal repair bandwidth if

γ(d) = γ∗(d), i.e., the amount of data downloaded from each

helper node is N
d−k+1 . In the particular case, when d = n− 1,

γ∗(d) can be reduced to the minimal value n−1
n−kN . Therefore,

d = n − 1 is the main concern in the most known works

[3]–[11]. In this paper, we also follow the same setting and

thus abbreviate γ∗(n−1) to γ∗. Especially, we focus on MDS

array codes, and refer to them as MDS codes for simplicity.

Up to now, various MDS code constructions with the

optimal repair bandwidth have been proposed, among which

some notable works are [2]–[5], [11]–[18]. However, in the

high-rate regime, all the known (n, k) MDS code constructions

with the optimal repair bandwidth possess a significantly large

sub-packetization level N , i.e., N ≥ r
n

r+1 where r = n − k
[9]. In [21], it was shown that for an (n, k) MDS code with the

optimal repair bandwidth, a sub-packetization level N being

exponential in the square root of k is necessary. Very recently,

Alrabiah and Guruswami [22] further improved the lower

bound on N to being exponential in k and they conjectured

that the construction in [9] with N = r
n

r+1 is exactly tight. An

MDS code with a larger sub-packetization level can lead to a

reduced design space in terms of various system parameters

and make management of meta-data difficult. Moreover, the

implementation in practical systems is a big challenge [23].

Existing constructions and theoretical bounds imply that

one may construct high-rate MDS codes with small sub-

packetization level by sacrificing the optimality of the repair

bandwidth. In [23], two high-rate (n, k) MDS codes with small

sub-packetization level were presented. The first one can have

a sub-packetization level as small as N = rτ where r = n−k
and τ is a positive integer with 1 ≤ τ ≤ ⌈n

r ⌉ − 1, while

http://arxiv.org/abs/1901.08254v2
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the repair bandwidth is no larger than (1 + 1
τ )γ

∗. However,

the code is constructed over a significantly large finite field

Fq with q > n(r−1)N+1, which may hinder its deployment

in practical systems. The second MDS code is obtained by

combining an MDS code with the optimal repair bandwidth

and another error-correcting code with specific parameters.

The proposed codes, therefore, rely on the existence of the

latter, which may not always be available. For convenience, we

refer to the two codes in [23] as RTGE code 1 and RTGE code

2 in this paper. In [3], an (n = sk′ + 2, k = sk′) MDS code

with sub-packetization level 2k
′−1 and near-optimal repair

bandwidth only for systematic nodes was proposed, which

is termed duplication-zigzag code in this paper. In fact, the

duplication-zigzag code is constructed based on s-duplication

of the (k′+2, k′) zigzag code, but can only support two parity

nodes.

In this paper, we aim to construct high-rate MDS codes

that have both small sub-packetization level and near-optimal

repair bandwidth for general parameters n and k over a small

finite field Fq. Partly motivated by the work in [3], we present

a transformation that can convert any (n′ = k′ + r, k′) MDS

code with the optimal repair bandwidth that is defined in

the parity-check matrix form into another (n = k + r, k)
MDS code with much longer code length. Specifically, the

repair bandwidth of the new MDS code is upper bounded by

(1+ r
n′ )γ

∗, but the sub-packetization level is kept unchanged,

or equivalently the generic transformation can reduce the sub-

packetization level N of the original codes with respect to

the same code length n. By directly applying the generic

transformation to several known high-rate MDS codes with the

optimal repair bandwidth, we get four high-rate (n, k) MDS

codes with both small sub-packetization level N and near-

optimal repair bandwidth, three of which are explicit and the

required field sizes are around or smaller than the code length

n. Besides, we propose another new MDS code which has a

similar structure as that of the first resultant code obtained by

the generic transformation, but can be built on a smaller finite

field. The obtained MDS codes outperform the RTGE code 1

in [23] in terms of the field size, and the first codes in both

[12] and [15] as well as the RTGE code 2 in [23] in terms

of the sub-packetization level. As a matter of convenience, we

refer to the first two codes in [12] respectively as YB code 1

and YB code 2, while referring to the first code in [15] as the

improved YB code 2 (since it is an improvement of the YB

code 2 in [12] with respect to the field size).

The remainder of the paper is organized as follows. Section

II reviews some necessary preliminaries. Section III proposes

the generic transformation and its asserted properties. Section

IV demonstrates several applications of the generic transfor-

mation, three of which are explicit. Section V presents another

new explicit construction of high-rate MDS code over a small

finite field that has a small sub-packetization level, near-

optimal repair bandwidth, and the optimal update property.

Section VI gives comparisons of key parameters among the

MDS codes proposed in this paper and some existing notable

MDS codes. Finally, Section VII concludes the study.

II. PRELIMINARIES

In this section, we introduce some preliminaries on high-

rate MDS codes, and a series of special partitions for a given

basis set.

A. (n, k) MDS codes

Denote by q a prime power and Fq the finite field with q
elements. For any two integers a and b with b > a, denote

by [a, b) the set {a, a+ 1, . . . , b− 1}. Let f0, f1, . . . , fn−1 be

the data stored across a distributed storage system consisting

of n nodes based on an (n, k) MDS code, where fi is a

column vector of length N over Fq . Throughout this paper,

we consider (n, k) MDS codes that permit a definition in the

following parity-check form:



A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

...
...

. . .
...

Ar−1,0 Ar−1,1 · · · Ar−1,n−1




︸ ︷︷ ︸
A




f0

f1

...

fn−1


 = 0rN , (2)

where r = n − k ≥ 2, 0rN denotes the zero column vector

of length rN , and will be abbreviated as 0 in the sequel if its

length is clear. The rN × nN block matrix A in (2) is called

the parity-check matrix of the code, which can be written as

A = (At,i)t∈[0,r),i∈[0,n)

to indicate the block entries.

For every t ∈ [0, r), by (2), we have
n−1∑
i=0

At,ifi = 0,

which contains N linear equations. Particularly, we say that
n−1∑
i=0

At,ifi = 0 is the t-th parity-check group.

B. The MDS property

An (n, k) MDS code defined by (2) possesses the MDS

property that the source file can be reconstructed by connecting

to any k out of the n nodes. That is, any r×r sub-block matrix

of (At,i)t∈[0,r),i∈[0,n) is nonsingular [12].

In particular, if

At,i = At
i, t ∈ [0, r), i ∈ [0, n) (3)

for some matrices Ai of order N , then we have the following

result.

Lemma 1 ( [12]). An (n, k) code defined by (2) and (3) has

the MDS property if AiAj = AjAi and Ai−Aj is nonsingular

for all i, j ∈ [0, n) with i 6= j.

C. Repair

When repairing a failed node i (i ∈ [0, n)) of an (n, k) MDS

code, denote by βi,j the amount of data downloaded from

node j, where j ∈ [0, n)\{i}. In fact, the data downloaded

from helper node j can be represented by Ri,jfj , where Ri,j

is a βi,j ×N matrix of full rank. Throughout this paper, Ri,j

is called the repair matrix of node i.
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Clearly, a failed node can be repaired if there are N linearly

independent equations with respect to the N unknowns of fi.

Specially, the N equations should be chosen elaborately so

that the interference in these equations can be cancelled by the

downloaded data Ri,jfj from the helper nodes j ∈ [0, n)\{i}.

In this paper, similar to that in [15], for convenience, we

only consider the symmetric situation where appropriate N/r
linearly independent equations are acquired from each of the

r parity-check groups, which are linear combinations of the

corresponding N parity-check equations. Precisely, these N/r
linearly independent equations can be obtained by multiplying

the t-th parity-check group with an N/r × N matrix Si,t of

full rank, where Si,t is called the select matrix in [15]. As a

consequence, the following linear equations are available.



Si,0A0,i

Si,1A1,i

...

Si,r−1Ar−1,i


 fi

︸ ︷︷ ︸
useful data

+
n−1∑

j=0,j 6=i




Si,0A0,j

Si,1A1,j

...

Si,r−1Ar−1,j


 fj

︸ ︷︷ ︸
interference by fj

= 0,

thus regenerating node i requires that

(i) the coefficient matrix of the useful data is of full rank,

i.e.,

rank(




Si,0A0,i

Si,1A1,i

...

Si,r−1Ar−1,i


) = N, i ∈ [0, n), (4)

(ii) the interference caused by fj can be determinable by

the data Ri,jfj downloaded from node j for all j ∈
[0, n)\{i}, i.e.,

rank(




Ri,j

Si,0A0,j

Si,1A1,j

...

Si,r−1Ar−1,j



) = rank (Ri,j) ,

for i, j ∈ [0, n) with i 6= j, which means that

rank(

(
Ri,j

Si,tAt,j

)
) = rank(Ri,j) (5)

for i, j ∈ [0, n) with i 6= j, t ∈ [0, r).

Then, the repair bandwidth of node i is

γi =

n−1∑

j=0,j 6=i

rank(Ri,j) =

n−1∑

j=0,j 6=i

βi,j . (6)

As mentioned before, a lower repair bandwidth of a node is

desirable. According to (1), if γi = γ∗ = (n − 1)Nr , then

node i is said to have the optimal repair bandwidth. If γi ≤
(1+ ǫ)γ∗ = (1+ ǫ)(n−1)Nr for a small constant ǫ, then node

i is said to have the near-optimal repair bandwidth [23].

In addition to the (near-) optimal repair bandwidth, an

(n, k) MDS code is also preferred to have the optimal update

property, that is, the minimum number of elements need to

be updated when an information element is changed. In [12],

Ye and Barg showed that an (n, k) MDS code defined in the

form of (2) and (3) has the optimal update property if all the

block matrices of the parity-check matrix are diagonal.

D. Partition of basis {e0, · · · , eN−1}

Assuming that N = rm for two integers r and m with

r,m ≥ 2, let e0, · · · , erm−1 be a basis of Frm

q . For example,

they can be simply set as the standard basis, i.e.,

ei = (0, · · · , 0, 1, 0, · · · , 0), i ∈ [0, rm),

with only the ith entry being nonzero.

In [11], a series of special partitions of the set

{e0, · · · , erm−1} is given for r = 2. These set partitions can

be easily generalized to the case of r ≥ 2, which will play an

important role in our proposed new constructions.

For consistency, we follow the notation in [11] hereafter.

Given an integer 0 ≤ a < rm, denote by (a0, · · · , am−1) its

r-ary expansion, i.e., a =
m−1∑
j=0

rm−1−jaj . For 0 ≤ i < m and

0 ≤ t < r, define a subset of {e0, · · · , erm−1} as

Vi,t = {ea|ai = t, 0 ≤ a < rm}, (7)

where ai is the ith element in the r-ary expansion of a.

Moreover, for 0 ≤ t < r, we define a special subset of

{e0, · · · , erm−1} as

V∗,t = {ea|a0 + a1 + · · ·+ am−1 = t, 0 ≤ a < rm}, (8)

where a0+a1+· · ·+am−1 is computed modulo r. This special

subset will be used in the MDS code construction in Section

IV-B.

Straightforwardly, |Vi,t| = rm−1, and

{Vi,0, Vi,1, · · · , Vi,r−1} is a partition of the set

{e0, · · · , erm−1} for any i ∈ [0,m) ∪ {∗}. Table I gives two

examples of the set partitions defined in (7) and (8).

TABLE I
(A) AND (B) DENOTE THE m+ 1 PARTITIONS OF THE SET

{e0, · · · , erm−1} DEFINED BY (7) AND (8) FOR m = 3, r = 2, AND

m = 2, r = 3, RESPECTIVELY.

i 0 1 2 * i 0 1 2 *

Vi,0

e0 e0 e0 e0

Vi,1

e4 e2 e1 e1
e1 e1 e2 e3 e5 e3 e3 e2
e2 e4 e4 e5 e6 e6 e5 e4
e3 e5 e6 e6 e7 e7 e7 e7

(A)

i 0 1 * i 0 1 * i 0 1 *

Vi,0

e0 e0 e0
Vi,1

e3 e1 e1
Vi,2

e6 e2 e2
e1 e3 e5 e4 e4 e3 e7 e5 e4
e2 e6 e7 e5 e7 e8 e8 e8 e6

(B)

Based on the m set partitions in (7), let us define

Vi+sm,t = Vi,t, i ∈ [0, m), s ≥ 1, and t ∈ [0, r). (9)

Further, for any 0 ≤ i1, i2 < sm and i1 6≡ i2 mod m, we

define Vi1,i2,t1,t2 = Vi2,i1,t2,t1 = Vi1,t1 ∩ Vi2,t2 , i.e.,

Vi1,i2,t1,t2 = Vi2,i1,t2,t1

= {ea|ai1 = t1, ai2 = t2, a ∈ [0, rm)},
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where 0 ≤ t1, t2 < r. Then, we have

Vi1,t1 = Vi1,i2,t1,0 ∪ · · · ∪ Vi1,i2,t1,r−1. (10)

For the easy of notation, we also denote by Vi1,t1 and

Vi1,i2,t1,t2 the rm−1 × rm and rm−2 × rm matrices, whose

rows are formed by vectors ei in their corresponding sets,

respectively, such that i is sorted in ascending order. For

example, when r = 2 and m = 3, V1,0 can be viewed as

a 4× 8 matrix as follows

V1,0 =
(
e⊤0 e⊤1 e⊤4 e⊤5

)⊤
,

where ⊤ represents the transpose operator.

III. A GENERIC TRANSFORMATION

In this section, we present a generic transformation that

can convert any MDS code with the optimal repair bandwidth

defined in the form of (2) to a new MDS code with longer

code length and near-optimal repair bandwidth.

A generic transformation: The transformation can be

performed through the following two steps.

Step 1. Choose an (n′, k′) MDS code with the optimal

repair bandwidth as the base code

We choose an (n′, k′) MDS code in the form of (2), with

the optimal repair bandwidth over a finite field containing at

least q′ elements, as the base code. Let N denote its sub-

packetization level, r = n′ − k′, and let (A′
t,i)t∈[0,r),i∈[0,n′)

denote its parity-check matrix while the N/r × N matrices

R′
i,j and S′

i,t, i, j ∈ [0, n′) with j 6= i, t ∈ [0, r), respectively

denote the repair matrices and select matrices.

Step 2. Transform the base code to the new MDS code

Through the generic transformation, we intend to design

a new (n = k + r, k) MDS code over a certain finite field

Fq (q > q′) having arbitrary code length n (n > n′) while

maintaining the same sub-packetization level N .

The transition from the base code to the new MDS code is

done by designing the parity-check matrix, the repair matrices,

and the select matrices of the new MDS code from those of

the base code as follows.

At,j = xt,jA
′
t,j%n′ , (11)

Ri,j =

{
R′

i%n′,j%n′ , if j 6≡ i mod n′,

IN , otherwise,
(12)

and

Si,t = S′
i%n′,t (13)

where xt,j ∈ Fq\{0}, t ∈ [0, r), i, j ∈ [0, n) with j 6= i,
% denotes the modulo operation, and IN denotes the identity

matrix of order N , which will be abbreviated as I in the sequel

if its order is clear.

Remark 1. For an (n′, k′) MDS code defined over a finite

field that contains at least q′ elements, it can of course be

defined over a larger finite field Fq (q > q′). In the above

generic transformation, the base code is then assumed to be

defined over the same finite field Fq of the resultant new code.

Like many MDS codes in the literature, the MDS property

of the resultant code can be guaranteed by the Combinatorial

Nullstellensatz in [24].

Lemma 2 (Theorem 1.2 of [24]). Let Fq be an arbitrary field,

and f = f(x1, · · · , xn) be a polynomial in Fq[x1, · · · , xn].

Suppose that the degree of f is
n∑

i=1

ti, where each ti is a

nonnegative integer, and the coefficient of
n∏

i=1

xti
i in f is

nonzero. Then, if S1, · · · , Sn are subsets of Fq with |Si| > ti,
there are s1 ∈ S1, · · · , sn ∈ Sn so that

f(s1, · · · , sn) 6= 0.

Theorem 1. The new (n, k) code over Fq obtained by the

generic transformation can possess the MDS property if

i) q > N
(
n−1
r−1

)
+ 1,1 and

ii) every block matrix A′
t,j of the parity-check matrix

(A′
t,j)t∈[0,r),j∈[0,n′) of the base code is nonsingular.

Proof. The proof is given in Appendix A.

Remark 2. To the best of our knowledge, there are only four

classes of MDS codes with the optimal repair bandwidth that

are defined in parity-check matrix form, where the requirement

in Theorem 1-ii) can be satisfied for two of them, i.e., the YB

code 2 in [12] and the improved YB code 2 in [15], while

the remaining codes (i.e., the YB code 1 in [12] and the

constructions in [13] and [14]) need a minor modification.

As a concrete example, the YB code 1 in [12] satisfying this

requirement will be illustrated in Section IV-A.

Theorem 2. Every failed node of the new (n, k) code obtained

by the generic transformation can be regenerated by the repair

matrices defined in (12), where the repair bandwidth for node

i (i ∈ [0, n)) is

γi =

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise.

Proof. Since the (n′, k′) base code possesses the optimal

repair bandwidth, by (4) and (5), we have

rank(




S′
i,0A

′
0,i

S′
i,1A

′
1,i

...

S′
i,r−1A

′
r−1,i


) = N, for i ∈ [0, n′), (14)

and

rank(

(
R′

i,j

S′
i,tA

′
t,j

)
) = N/r, i, j ∈ [0, n′) with i 6= j (15)

for t ∈ [0, r).

1Note that the field size required for the base code is ≥ q′, therefore, q

should actually satisfy q ≥ max{q′, N
(

n−1
r−1

)

+ 2}. However, the smallest

field size required for any known explicit MDS code with the optimal repair

bandwidth in the literature is far less than N
(

n−1
r−1

)

+ 2. So, we make an

assumption here that q′ < N
(

n−1
r−1

)

+ 2.
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For i, j ∈ [0, n) with j 6= i, we rewrite i and j as i = un′+i′

and j = vn′ + j′ such that i′, j′ ∈ [0, n′). Firstly, we verify

(4) for the new code. By (11) and (13),

rank(




Si,0A0,i

Si,1A1,i

...

Si,r−1Ar−1,i


)

= rank(




S′
i′,0A

′
0,i′

S′
i′,1A

′
1,i′

...

S′
i′,r−1A

′
r−1,i′


)

= N,

where the last equality follows from (14).

Next, we check (5) for the new code. When i′ 6= j′,

rank(

(
Ri,j

Si,tAt,j

)
) = rank(

(
R′

i′,j′

S′
i′,tA

′
t,j′

)
)

= N/r

= rank(Ri,j), t ∈ [0, r), (16)

where the second and third equalities follows from (15) and

(12), respectively. When i′ = j′, similarly, we have

rank(

(
Ri,j

Si,tAt,j

)
) = rank(

(
I

S′
i′,tA

′
t,j′

)
)

= N

= rank(Ri,j), t ∈ [0, r). (17)

Therefore, according to (6), (16), and (17), the repair

bandwidth of node i is

γi =

n−1∑

j=0,j 6=i

rank(Ri,j)

= (n− 1)
N

r

+
(r − 1)N

r
|{j : j ∈ [0, n)\{i}, j ≡ i mod n′}|

=

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise,

where γ∗ = (n − 1)Nr is the optimal value for the repair

bandwidth. This finishes the proof.

Remark 3. In fact, any (n′, k′) MDS code without the optimal

repair bandwidth can also be chosen as the base code in the

generic transformation. Its repair bandwidth is (n′ − 1)β,

i.e., a failed node can be regenerated by downloading an

amount of β symbols from each surviving node. Then the

repair bandwidth of the resultant MDS code would be upper

bounded by (1 +
(⌈ n

n′ ⌉−1)(N/β−1)

(n−1) )(n − 1)β according to a

similar analysis as the proof of Theorem 2.

IV. MDS CODE CONSTRUCTIONS BY DIRECTLY APPLYING

THE GENERIC TRANSFORMATION

In this section, by directly applying the generic transfor-

mation in Section III respectively to the (n′, k′) YB codes 1

and 2 in [12], the (n′, k′) improved YB code 2 in [15], and

the counterpart of the long MSR code [9] in the parity-check

form, we get four MDS codes with small sub-packetization

level.

A. An (n, k) MDS code C1 by applying the generic transfor-

mation to the YB code 1 in [12]

The (n′, k′) YB code 1 was defined in [12] in the form

of (2) and (3), with the optimal update property and the sub-

packetization level being N = rn
′

where r = n′ − k′. More

precisely, the parity-check matrix (A′
t,i)t∈[0,r),i∈[0,n′) of the

(n′, k′) YB code 1 satisfies A′
t,i = (A′

i)
t and




Vi,0

Vi,1

...

Vi,r−1


A′

i =




λi,0Vi,0

λi,1Vi,1

...

λi,r−1Vi,r−1


 , (18)

where Vi,0, Vi,1, · · · , Vi,r−1 are defined in (7),

{λi,t}i∈[0,n′),t∈[0,r) are rn′ distinct elements in a finite

field containing at least rn′ elements, the repair matrices and

select matrices are defined by

R′
i,j = S′

i,t = Vi,0 + Vi,1 + · · ·+ Vi,r−1

for i, j ∈ [0, n′) with j 6= i, t ∈ [0, r).
From (18), it is obvious that A′

i is nonsingular if and only if

{λi,t}t∈[0,r) are r nonzero elements. In order to meet Theorem

1-ii), i.e., in order for matrices in (18) to be invertible, we

can add a restriction that {λi,t}i∈[0,n′),t∈[0,r) are rn′ nonzero

elements when applying the generic transformation to YB code

1. Accordingly, the requirement of the field size q of YB code

1 is then only increased from q ≥ rn′ to q ≥ rn′ + 1, which

can be easily satisfied as the resultant new code will be defined

over a finite field with size larger than rn′.

Theorem 3. By choosing the (n′, k′) YB code 1 as the base

code for the generic transformation in Section III, an (n, k)
MDS code C1 over Fq with k = n− r and q > N

(
n−1
r−1

)
+ 1

can be obtained. Specifically, the sub-packetization level of

the MDS code C1 is rn
′

while its repair bandwidth for node i
(i ∈ [0, n)) is

γi =

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise.

For the MDS code C1 directly obtained by the generic

transformation, the required field size is relatively large and the

construction is implicit. In the following, through a concrete

assignment of the coefficients xt,j , t ∈ [0, r) and j ∈ [0, n) in

(11), we provide a solution to determine the exact field size of

the MDS code C1, which is much smaller than N
(
n−1
r−1

)
+ 2.

Theorem 4. The field size q of the (n, k) MDS code C1 can

be reduced to

q >

{
rn′(⌈ n

rn′ ⌉−1)+r(n%n′), if 0<n%(rn′) < n′,
rn′⌈ n

rn′ ⌉, otherwise,
(19)

with r | (q − 1) by setting

λi′,t = δtci
′

(20)
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in (18) and

xt,i = xt
i = (czn

′

δv)t (21)

in (11) for t ∈ [0, r), i = zrn′ + vn′ + i′ ∈ [0, n), z ∈
[0, ⌈ n

rn′ ⌉), v ∈ [0, r), and i′ ∈ [0, n′), where c is a primitive

element of the finite field Fq and δ = c
q−1
r , i.e., a primitive

r-th root of unity in the finite field Fq .

Proof. Obviously, we only need to verify the MDS property

of the code C1. Note from (21) that C1 is defined in the form

of (2) and (3), i.e.,

At,i = xt,iA
′
t,i′ = (czn

′

δvA′
i′ )

t = At
i (22)

for i = zrn′+vn′+i′ and the matrix Ai , czn
′

δvA′
i′ . Then, by

Lemma 1, the code C1 possesses the MDS property if AiAj =
AjAi and Ai − Aj is nonsingular for all i, j ∈ [0, n) with

i 6= j.

Firstly, from (18) and (22), it is seen that Ai is diagonal for

i ∈ [0, n), then AiAj = AjAi holds for any i, j ∈ [0, n) with

i 6= j.

Secondly, we show that Ai−Aj is nonsingular for all i, j ∈
[0, n) with i 6= j. Let i = z0rn

′ + v0n
′ + i′ and j = z1rn

′ +
v1n

′+ j′, where i 6= j, z0, z1 ∈ [0, ⌈ n
rn′ ⌉), v0, v1 ∈ [0, r), and

i′, j′ ∈ [0, n′).
If j 6≡ i mod n′, i.e., i′ 6= j′, then

rank(Ai −Aj)

= rank(cz0n
′

δ
v0A

′

i′ − c
z1n

′

δ
v1A

′

j′)

= rank(







Vi′,0

..

.
Vi′,r−1






(cz0n

′

δ
v0A

′

i′ − c
z1n

′

δ
v1A

′

j′))

= rank(































Vi′,j′,0,0(c
z0n

′

δv0A′

i′ − cz1n
′

δv1A′

j′)
.
..

Vi′,j′,0,r−1(c
z0n

′

δv0A′

i′ − cz1n
′

δv1A′

j′)
...

Vi′,j′,r−1,0(c
z0n

′

δv0A′

i′ − cz1n
′

δv1A′

j′)
..
.

Vi′,j′,r−1,r−1(c
z0n

′

δv0A′

i′ − cz1n
′

δv1A′

j′)































)

= rank(































(cz0n
′

δv0λi′,0 − cz1n
′

δv1λj′,0)Vi′,j′,0,0

...

(cz0n
′

δv0λi′,0 − cz1n
′

δv1λj′,r−1)Vi′,j′,0,r−1

...

(cz0n
′

δv0λi′,r−1 − cz1n
′

δv1λj′,0)Vi′,j′,r−1,0

..

.

(cz0n
′

δv0λi′,r−1 − cz1n
′

δv1λj′,r−1)Vi′,j′,r−1,r−1































)

= rank(































(δv0cz0n
′+i′ − δv1cz1n

′+j′)Vi′,j′,0,0

.

..

(δv0cz0n
′+i′ − δv1+r−1cz1n

′+j′)Vi′,j′,0,r−1

...

(δv0+r−1cz0n
′+i′ − δv1cz1n

′+j′)Vi′,j′,r−1,0

...

(δv0+r−1cz0n
′+i′ − δv1+r−1cz1n

′+j′)Vi′,j′,r−1,r−1































)

where the first, third, fourth, and fifth equalities follow from

(22), (10), (18), and (20), respectively. Thus, rank(Ai−Aj) =
N if and only if

δv0+t0−v1−t1 6= c(z1−z0)n
′+j′−i′ for all t0, t1 ∈ [0, r). (23)

Note that (23) always holds, otherwise,

δv0+t0−v1−t1 = c(z1−z0)n
′+j′−i′

for some t0, t1 ∈ [0, r). Raising both sides to the power of r,

by δr = 1 one then gets

1 = δr(v0+t0−v1−t1) = cr((z1−z0)n
′+j′−i′). (24)

In the following, we prove that (24) does not hold, i.e.,

0 < |r ((z1 − z0)n
′ + j′ − i′) | < q − 1.

Clearly,

0 < |r ((z1 − z0)n
′ + j′ − i′) | ≤ W

where W = zrn′+rw, z = ⌈ n
rn′ ⌉−1, w = −1 if n%(rn′) = 1

(in this case zrn′+w = n−2 due to j′−i′ 6= 0), w = n%n′−1
if 1 < n%(rn′) < n′ (in this case zrn′ + w = n − 1), and

w = n′ − 1 else (in this case zrn′ + w < n − 1 unless

n%(rn′) = n′) , i.e.,

W=





rn′(⌈ n
rn′ ⌉ − 1)− r, if n%(rn′) = 1

rn′(⌈ n
rn′ ⌉ − 1) + r(n%n′)− r, if 1 < n%(rn′) < n′

rn′⌈ n
rn′ ⌉ − r, else

which together with r | (q−1) implies that (24) does not hold

when (19) is satisfied.

If j ≡ i mod n′, i.e., i′ = j′, then

rank(Ai −Aj)

= rank(cz0n
′

δv0A′
i′ − cz1n

′

δv1A′
j′)

= rank((cz0n
′

δv0 − cz1n
′

δv1)A′
i′ ),

therefore, Ai −Aj is nonsingular if and only if

cz0n
′

δv0 − cz1n
′

δv1

= cz1n
′+ q−1

r
v1
(
c(z0−z1)n

′+ q−1
r

(v0−v1) − 1
)

6= 0 (25)

since A′
i′ is nonsingular. Note that z0, z1 ∈ [0, ⌈ n

rn′ ⌉), v0, v1 ∈
[0, r), and (z0, v0) 6= (z1, v1) according to i′ = j′ and i 6= j,

then we have

0 < |(z0 − z1)n
′ +

q − 1

r
(v0 − v1)|

≤
(
⌈
n

rn′
⌉ − 1

)
n′ +

q − 1

r
(r − 1),

thus (25) holds if q − 1 >
(
⌈ n
rn′ ⌉ − 1

)
n′ + q−1

r (r − 1), i.e.,

q >
(
⌈ n
rn′ ⌉ − 1

)
rn′ + r by combining r | (q − 1).

This finishes the proof after combining the above analysis.

In the following, we give a concrete example of the MDS

code C1 according to Theorem 4.
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Example 1. Let n′ = 3, r = 2 and n = 12, then the parity-

check matrix of the (12, 10) MDS code C1 over F13 is defined

through

A0 =




e0
e1
e2
e3
δe4
δe5
δe6
δe7




, A1 =




ce0
ce1
δce2
δce3
ce4
ce5
δce6
δce7




, A2 =




c2e0
δc2e1
c2e2
δc2e3
c2e4
δc2e5
c2e6
δc2e7




,

A3 =




δe0
δe1
δe2
δe3
e4
e5
e6
e7




, A4 =




δce0
δce1
ce2
ce3
δce4
δce5
ce6
ce7




, A5 =




δc2e0
c2e1
δc2e2
c2e3
δc2e4
c2e5
δc2e6
c2e7




,

A6 =




c3e0
c3e1
c3e2
c3e3
δc3e4
δc3e5
δc3e6
δc3e7




, A7 =




c4e0
c4e1
δc4e2
δc4e3
c4e4
c4e5
δc4e6
δc4e7




, A8 =




c5e0
δc5e1
c5e2
δc5e3
c5e4
δc5e5
c5e6
δc5e7




,

A9 =




δc3e0
δc3e1
δc3e2
δc3e3
c3e4
c3e5
c3e6
c3e7




, A10 =




δc4e0
δc4e1
c4e2
c4e3
δc4e4
δc4e5
c4e6
c4e7




, A11 =




δc5e0
c5e1
δc5e2
c5e3
δc5e4
c5e5
δc5e6
c5e7




,

where c = 2 and δ = c6 = −1.

To save space, we only give the repair matrices and select

matrices of node 0, which are

R0,j =





I, if j = 3, 6, 9,


e0 + e4
e1 + e5
e2 + e6
e3 + e7


 , otherwise,

and

S0,0 = S0,1 =




e0 + e4
e1 + e5
e2 + e6
e3 + e7


 .

Theorem 5. The MDS code C1 has the optimal update

property.

Proof. Note that all the block matrices of the parity-check

matrix of the MDS code C1 are diagonal. By the definition

of the optimal update property and the arguments in [12],

we conclude that the MDS code C1 has the optimal update

property.

B. Two (n, k) MDS codes C2 and C3 by applying the generic

transformation respectively to the YB code 2 in [12] and the

improved YB code 2 in [15]

For consistency, we borrow the notation in [12] and [15]

in what follows. Let N = rn
′−1 where r = n′ − k′. For any

a ∈ [0, N) with (a0, a1, · · · , an′−2) being its r-ary expansion,

define

a(i, u) = (a0, · · · , ai−1, u, ai+1, · · · , an′−2) (26)

and

a(i, j, u, v)

= (a0, · · · , ai−1, u, ai+1, · · · , aj−1, v, aj+1, · · · , an′−2), (27)

where 0 ≤ i < j < n′ − 1 and u, v ∈ [0, r).
For the (n′, k′) YB code 2 in [12] and the (n′, k′) improved

YB code 2 in [15], both of them are defined in the form of

(2) and (3) with the sub-packetization level N . More precisely,

the parity-check matrix (A′
t,i)t∈[0,r),i∈[0,n′) of the (n′, k′) YB

code 2 in [12] is defined by A′
t,i = (A′

i)
t and

A′
i =





N−1∑
a=0

λi,ai
e⊤a ea(i,ai+1), i ∈ [0, n′ − 1),

I, i = n′ − 1,

where

λi,ai
=

{
ci+1, if ai = 0,
1, otherwise,

with c being a primitive element of a finite field with size larger

than n′. While the parity-check matrix (A′
t,i)t∈[0,r),i∈[0,n′) of

the (n′, k′) improved YB code 2 in [15] is defined by A′
t,i =

(A′
i)

t and

A′
i =





N−1∑
a=0

λi,ae
⊤
a ea(i,ai+1), i ∈ [0, n′ − 1),

I, i = n′ − 1,
(28)

where

λi,a =





c, if
i∑

t=0
at = 0,

1, otherwise,
(29)

with c being a primitive element of a finite field Fq with

(q − 1) ∤ (r − 1).
The YB code 2 in [12] and the improved YB code 2 in [15]

have the same repair matrices and select matrices, which are

respectively defined by

R′
i,j =

{
Vi,0, if i ∈ [0, n′ − 1),
V∗,0, if i = n′ − 1,

and

S′
i,t =

{
Vi,0, if i ∈ [0, n′ − 1),
V∗,r−t, if i = n′ − 1,

where Vi,0, V∗,0 and V∗,r−t are defined in (7) and (8).

By directly applying the generic transformation in Section

III, we have the following result.
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Theorem 6. Respectively choosing the (n′, k′) YB code 2 in

[12] and the (n′, k′) improved YB code 2 in [15] as the base

code for the generic transformation in Section III, two (n, k)
MDS codes C2 and C3 over Fq with k = n − r and q >
N
(
n−1
r−1

)
+ 1 can be obtained. Particularly, for both the MDS

codes C2 and C3, the sub-packetization level is rn
′−1 while

the repair bandwidth for node i (i ∈ [0, n)) is

γi =

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise.

In the following, by a concrete assignment of the coeffi-

cients xt,j , t ∈ [0, r) and j ∈ [0, n) in (11), we provide a

solution to determine the exact field sizes of the MDS codes

C2 and C3, which are much smaller than N
(
n−1
r−1

)
+2. Hereafter,

we only derive the values of xt,j , t ∈ [0, r) and j ∈ [0, n) in

(11) for the MDS code C3 in detail, while for MDS code C2,

we just give the results but omit the analysis since it is similar

to that of the MDS code C3.

Theorem 7. The field size q of the MDS code C2 can be

reduced to q > r⌈n′

r ⌉(⌈
n
n′ ⌉ − 1) + n′ by setting xt,i = xt

i =

c⌊
i

n′ ⌋⌈
n′

r
⌉t in (11) for t ∈ [0, r) and i ∈ [0, n), where c is a

primitive element of Fq .

Before proving the result on C3, we first introduce some

results related to the parity-check matrix (see (28)) of the

(n′, k′) improved YB code 2 in [15].

Lemma 3 (Lemma 2, [15]). For any i, j ∈ [0, n′) with i 6= j,

A′
iA

′
j = A′

jA
′
i, where A′

i and A′
j are defined in (28).

Lemma 4 (Lemma 3, [15]). For any a ∈ [0, N) and i, j ∈
[0, n′ − 1),

(i)
r−1∏
t=0

λi,a(i,j,ai−t,aj+t+l) = c for j > i;

(ii)
r−1∏
t=0

λj,a(i,j,ai−t,aj+t+l) = 1 or cr for j > i;

(iii)
r−1∏
t=0

λj,a(j,aj+t) = c for j ≥ 0,

where l ∈ [0, r) is a constant, c is a primitive element of Fq,

a(i, j, u, v) and λi,a are respectively defined in (27) and (29).

Lemma 5 (Lemma 4, [15]). For any i ∈ [0, n′ − 1) and

X =
N−1∑
a=0

xae
⊤
a ∈ F

N
q , A′

iX =
N−1∑
a=0

λi,axa(i,ai+1)e
⊤
a where

A′
i is defined in (28).

Theorem 8. The field size q of the (n, k) MDS code C3 can

be reduced to q > ⌈ n
n′ ⌉ with q being odd if r is even, and

q > r⌈ n
n′ ⌉ otherwise, by setting

xt,i = xt
i = c⌊

i

n′ ⌋t (30)

in (11) for t ∈ [0, r) and i ∈ [0, n), where c is a primitive

element of Fq .

Proof. Still, we only need to verify the MDS property of the

code C3. It is seen from (30) that the code C3 is defined in the

form of (2) and (3) with

At,i = At
i = (c⌊

i

n′ ⌋A′
i%n′)t, t ∈ [0, r). (31)

That is

Aun′+n′−1 = cuA′
n′−1 = cuI, for u ∈ [0, ⌊

n

n′
⌋), (32)

and

Aun′+i′ = cuA′
i′ =

N−1∑

a=0

cuλi′,ae
⊤
a ea(i′,ai′+1), (33)

for u ∈ [0, ⌈ n
n′ ⌉) and i′ ∈ [0, n′ − 1) with un′ + i′ <

n. According to Lemma 1, the code C3 possesses the MDS

property if AiAj = AjAi and Ai −Aj is nonsingular for all

i, j ∈ [0, n) with i 6= j.

First, by Lemma 3, (32) and (33), we easily see that AiAj =
AjAi holds for any i, j ∈ [0, n) with i 6= j.

Next, we show that Ai−Aj is nonsingular. Note that Ai−Aj

being nonsingular is equivalent to saying that for any X =
N−1∑
a=0

xae
⊤
a , (Ai−Aj)X = 0 implies X = 0. In the following,

we analyze it through three cases. For i, j ∈ [0, n) with i 6= j,

let us rewrite i = un′ + i′ and j = vn′ + j′ for some u, v ∈
[0, ⌈ n

n′ ⌉) and i′, j′ ∈ [0, n′), where (u, i′) 6= (v, j′).
Case 1: If i ≡ j mod n′, i.e., i′ = j′ and u 6= v, then by

(31), we have

Ai −Aj = (cu − cv)A′
i′ = cv(cu−v − 1)A′

i′ ,

which is nonsingular since 0 < |u− v| ≤ ⌈ n
n′ ⌉ − 1 < q − 1.

Case 2: If i 6≡ j mod n′, i′ 6= n′ − 1, and j′ 6= n′ − 1,

then by Lemma 5, we have

(Ai −Aj)X

= (cuA′
i′ − cvA′

j′ )X

=
N−1∑

a=0

(cuλi′,axa(i′,ai′+1)e
⊤
a − cvλj′,axa(j′,aj′+1)e

⊤
a )

= 0

if and only if

cuλi′,axa(i′,ai′+1) − cvλj′,axa(j′,aj′+1) = 0, a ∈ [0, N),

which is equivalent to

xa =
cvλj′,a(i′,ai′−1)

cuλi′,a(i′,ai′−1)
xa(i′,j′,ai′−1,aj′+1)

=

∏r−1
t=0 cvλj′,a(i′,j′,ai′−t,aj′+t−1)

∏r−1
t=0 c

uλi′,a(i′,j′,ai′−t,aj′+t−1)

xa, a ∈ [0, N). (34)

Applying Lemma 4 to (34), if j′ > i′, we get

(crv − cru+1)xa = crv(1− cru−rv+1)xa = 0,

or

(crv+r−1 − cru)xa = cru(crv−ru+r−1 − 1)xa = 0,

otherwise, we have

(crv+1 − cru)xa = cru(crv−ru+1 − 1)xa = 0,

or

(crv − cru+r−1)xa = crv(1− cru−rv+r−1)xa = 0.
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If r is even, then ru− rv + 1, rv − ru+ r − 1, rv − ru+ 1,

and ru − rv + r − 1 is odd, thus

cru−rv+1, crv−ru+r−1, crv−ru+1, cru−rv+r−1 6= 1

when q is odd; Otherwise, for any

W ∈ {|ru−rv+1|, |rv−ru+r−1|, |rv−ru+1|, |ru−rv+r−1|},

we have

0 < W ≤ r⌈
n

n′
⌉ − 1 < q − 1

when q > r⌈ n
n′ ⌉, i.e.,

cru−rv+1, crv−ru+r−1, crv−ru+1, cru−rv+r−1 6= 1

when q > r⌈ n
n′ ⌉. Hence, if q is odd and r is even, or q > r⌈ n

n′ ⌉
and r is odd, we have that

(crv−cru+1)(crv+r−1−cru)(crv+1−cru)(crv−cru+r−1) 6= 0,

thus xa = 0 for all a ∈ [0, N), i.e., X = 0. Then, Ai −Aj is

nonsingular.

Case 3: If i 6≡ j mod n′ and either i′ = n′ − 1 or j′ =
n′− 1, W.L.O.G., assuming that i′ = n′− 1, then j′ 6= n′− 1.

Similar to Case 2, we have

xa = xa

r−1∏

t=0

cvλj′,a(j′,aj′+t)

cu
, a ∈ [0, N),

which in conjunction with Lemma 4, we have

(crv+1 − cru)xa = 0

for all a ∈ [0, N). This implies that xa = 0 for all a ∈ [0, N)
by a similar analysis as in Case 2, i.e., X = 0. Thus, Ai−Aj

is nonsingular.

Collecting the above three cases, we finish the proof.

Let us see to what extent the field size q of the (n, k) MDS

code C3 can be reduced by Theorem 8. For example, when

n′ = 12, r = 3, and n = 24. According to Theorem 8, we

can set xt,i = xt
i = 2⌊

i
12 ⌋t in (11) over F7 for t ∈ [0, 3) and

i ∈ [0, 24), where 2 is a primitive element of F7. Whereas,

by Theorem 6, the existence of the MDS code C3 requires a

finite field with size larger than 4× 107.

C. An (n, k) MDS code C4 obtained by applying the generic

transformation to a newly constructed MDS code C′
4

In this section, by using the approach of [12], we first

construct an (n′ = (r + 1)m, k′ = n′ − r) MDS code C′
4 with

sub-packetization level rm, and then propose an (n, k) MDS

code C4 with small sub-packetization level by applying the

generic transformation to the code C′
4. In fact, the code C′

4 can

be viewed as an extension of the (n′ = rm, k′ = r(m − 1))
MDS code in [13] with a longer code length. Besides, C′

4 in

parity-check form can also be regarded as the counterpart of

the (n′ = k′+r, k′ = (r+1)m) long minimum storage regen-

erating (MSR) code [9] in systematic form. For simplicity, we

call C′
4 the long code in this paper. In the following, we give

the parity-check matrix, repair matrices and select matrices of

the long code C′
4.

The parity-check matrix (A′
t,i′)t∈[0,r),i′∈[0,n′) of the (n′ =

(r + 1)m, k′ = n′ − r) long code C′
4 satisfies

A′
t,i′ = yt,i′B

′
t,i′ (35)

and (36) in the next page, where yt,i′ , λi′,u ∈ Fq′\{0} for

i′ ∈ [0, n′) and t, u ∈ [0, r), Vi′,0, . . . , Vi′,r−1 are respectively

defined by (7) for i′ ∈ [0,m) and (9) for i′ ∈ [m,n′), i.e.,

Vi′,vB
′
t,i′

=





λt
i′,vVi′,v +

r−1∑
u=0,u6=v

(λt
i′,v−λ

t
i′,u)Vi′,u, if ⌊ i′

m⌋ = v,

λt
i′,vVi′,v, otherwise,

(37)

for i′ ∈ [0, n′) and v, t ∈ [0, r). The repair matrices and select

matrices of the (n′, k′) MDS code C′
4 are respectively defined

by

R′
i′,j′ = S′

i′,t =





Vi′,⌊ i′

m
⌋, if 0 ≤ i′ < rm,

r−1∑
u=0

Vi′,u, if rm ≤ i′ < n′,
(38)

for j′ ∈ [0, n′)\{i′} and t ∈ [0, r).
Obviously, B′

t,i′ is nonsingular for t ∈ [0, r) and i′ ∈ [0, n′)
according to (36). Then we have the following result.

Theorem 9. The code C′
4 has the MDS property over Fq′ if

q′ > N
(
n′−1
r−1

)
+ 1.

Proof. It can be proven similar to that of Theorem 1.

Theorem 10. The code C′
4 has the optimal repair bandwidth if

λi′,0, λi′,1, · · · , λi′,r−1 are r distinct elements in Fq′ for any

i′ ∈ [0, n′).

Proof. The proof is given in Appendix B.

Based on the long code C′
4, we have the following result by

directly applying the generic transformation.

Theorem 11. By applying the generic transformation in

Section III to the (n′, k′) long code C′
4, an (n, k) MDS code C4

over Fq with k = n−r and q > N
(
n−1
r−1

)
+1 can be obtained.

Specifically, the sub-packetization level of the MDS code C4 is

r
n′

r+1 while its repair bandwidth for node i (i ∈ [0, n)) is

γi =

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise.

In what follows, we present a solution to determine the exact

field size of the MDS code C4 for the case of r = 2, which is

much smaller than N
(
n−1
r−1

)
+ 2.

By (11) and (35), the parity-check matrix

(At,i)t∈[0,r),i∈[0,n) of the (n, k) MDS code C4 satisfies

At,i = xt,iA
′
t,i%n′ = xt,iyt,i%n′B′

t,i%n′ = zt,iB
′
t,i%n′ , (39)

where

zt,i = xt,iyt,i%n′ , t ∈ [0, r), i ∈ [0, n).

Then we have the following result.

Theorem 12. When r = 2, the field size q of the (n, k) MDS

code C4 can be reduced to

q >

{
2m(⌈ n

n′ ⌉ − 1) + 2(n%n′), if 0 < n%n′ < m,
2m⌈ n

n′ ⌉, otherwise,
(40)
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by setting

zt,i = c2mt⌊ i

n′ ⌋ (41)

for t = 0, 1, i ∈ [0, n) and

λi′,0 = λi′+m,0 = λi′+2m,1 = c2i
′

, (42)

λi′,1 = λi′+m,1 = λi′+2m,0 = c2i
′+1, (43)

in (36) for i′ ∈ [0,m), where n′ = 3m and c is a primitive

element of Fq .

Proof. According to (36), the code C4 has the MDS property

if and only if any 2× 2 sub-block matrix of

(
A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

)
=

(
I I · · · I

A1,0 A1,1 · · · A1,n−1

)

is nonsingular, i.e, A1,i − A1,j is nonsingular for any i, j ∈
[0, n) with i 6= j. Let us rewrite i = un′+ i′ and j = vn′+ j′

for some u, v ∈ [0, ⌈ n
n′ ⌉) and i′, j′ ∈ [0, n′), where (u, i′) 6=

(v, j′). In the following, we analyze the nonsingularity of

A1,i −A1,j in the following 6 cases according to (39)-(43).

Case 1: When 0 ≤ i′ = j′ < 3m, then

rank (A1,i −A1,j)

= rank
(
z1,iB

′
1,i′ − z1,jB

′
1,j′
)

= rank
(
(z1,i − z1,j)B

′
1,i′
)

= rank((c2mu − c2mv)B′
1,i′)

= N

⇔ c2mv
(
c2m(u−v) − 1

)
6= 0,

which always holds since

0 < |2m(u− v)| ≤ 2m⌈
n

n′
⌉ − 2m < q − 1.

Case 2: When 0 ≤ i′ < j′ < m, then

rank(A1,i −A1,j)

= rank(z1,iB
′
1,i′ − z1,jB

′
1,j′)

= rank(




Vi′,j′,0,0

Vi′,j′,0,1

Vi′,j′,1,0

Vi′,j′,1,1


 (z1,iB

′
1,i′ − z1,jB

′
1,j′))

= rank(




Vi′,j′,0,0(z1,iB
′
1,i′ − z1,jB

′
1,j′)

Vi′,j′,0,1(z1,iB
′
1,i′ − z1,jB

′
1,j′)

Vi′,j′,1,0(z1,iB
′
1,i′ − z1,jB

′
1,j′)

Vi′,j′,1,1(z1,iB
′
1,i′ − z1,jB

′
1,j′)


)

= rank(




(z1,iλi′,0 − z1,jλj′,0)Vi′,j′,0,0

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,0

−z1,j(λj′,0 − λj′,1)Vi′,j′,0,1

(z1,iλi′,0 − z1,jλj′,1)Vi′,j′,0,1

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,1

(z1,iλi′,1 − z1,jλj′,0)Vi′,j′,1,0

−z1,j(λj′,0 − λj′,1)Vi′,j′,1,1

(z1,iλi′,1 − z1,jλj′,1)Vi′,j′,1,1




)

= N

⇔ z1,iλi′,a − z1,jλj′,b 6= 0 for all a, b = 0, 1,

⇔ c2m(u−v)+2(i′−j′)+a−b − 1 6= 0 for all a, b = 0, 1,

which is equivalent to

0 < |2m(u−v)+2(i′−j′)+a−b| < q−1, a, b = 0, 1. (44)




Vi′,0

Vi′,1

...

Vi′,r−1


B′

t,i′ =









λt
i′,0Vi′,0 +

r−1∑
u=1

(λt
i′,0 − λt

i′,u)Vi′,u

λt
i′,1Vi′,1

...

λt
i′,r−1Vi′,r−1




, if 0 ≤ i′ < m,




λt
i′,0Vi′,0

λt
i′,1Vi′,1 +

r−1∑
u=0,u6=1

(λt
i′,1 − λt

i′,u)Vi′,u

λt
i′,2Vi′,2

...

λt
i′,r−1Vi′,r−1




, if m ≤ i′ < 2m,

...
...



λt
i′,0Vi′,0

...

λt
i′,r−2Vi′,r−2

λt
i′,r−1Vi′,r−1 +

r−2∑
u=0

(λt
i′,r−1 − λt

i′,u)Vi′,u




, if (r − 1)m ≤ i′ < rm,




λt
i′,0Vi′,0

λt
i′,1Vi′,1

...

λt
i′,r−1Vi′,r−1


 , if rm ≤ i′ < (r + 1)m,

(36)
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Obviously,

0 < |2m(u− v) + 2(i′ − j′) + a− b| ≤ W

where W = 2mz + 2w + 1, z = ⌈ n
n′ ⌉ − 1, w = n%n′ − 1 if

0 < n%n′ < m and w = m− 1 otherwise, i.e.,

W =

{
2m
(
⌈ n
n′ ⌉ − 1

)
+ 2(n%n′)− 1, if 0 < n%n′ < m,

2m⌈ n
n′ ⌉ − 1, otherwise.

Therefore, (44) holds if (40) is satisfied.

Case 3: When m ≤ i′ < j′ < 2m or 2m ≤ i′ < j′ < 3m,

similar to that of Case 2, we also have that

rank(A1,i −A1,j) = N ⇔ c2m(u−v)+2(i′−j′)±(a−b) − 1 6= 0

for all a, b = 0, 1, which holds from a similar analysis as in

Case 2.
Case 4: When 0 ≤ i′ < m and m ≤ j′ < 2m, if j′ = i′+m,

then by (9) we have

rank(A1,i − A1,j)

= rank(z1,iB
′

1,i′ − z1,jB
′

1,j′ )

= rank(

(

Vi′,0(z1,iB
′

1,i′ − z1,jB
′

1,j′ )
Vi′,1(z1,iB

′

1,i′ − z1,jB
′

1,j′ )

)

)

= rank(

(

z1,iλi′,0Vi′,0 + z1,i(λi′,0−λi′,1)Vi′,1 − z1,jλj′,0Vi′,0

z1,iλi′,1Vi′,1 − z1,jλj′,1Vi′,1 − z1,j(λj′,1−λj′,0)Vi′,0

)

)

= rank(

(

(z1,iλi′,0 − z1,jλj′,0)Vi′,0 + z1,i(λi′,0 − λi′,1)Vi′,1

(z1,iλi′,1 − z1,jλj′,1)Vi′,1 − z1,j(λj′,1 − λj′,0)Vi′,0

)

)

= rank(

(

(z1,iλi′,0 − z1,jλj′,1)(Vi′,0 + Vi′,1)
(z1,iλi′,1 − z1,jλj′,1)Vi′,1 − z1,j(λj′,1 − λj′,0)Vi′,0

)

)

= N,

which is equivalent to

(z1,iλi′,0−z1,jλj′,1) ((z1,iλi′,1−z1,jλj′,1)+z1,j(λj′,1−λj′,0)) 6=0,

i.e.,

(c2mu+2i′ − c2mv+2i′+1)
(
(c2mu+2i′+1 − c2mv+2i′+1)

+c2mv(c2i
′+1 − c2i

′

)
)

=c2mv+2i′+1(c2m(u−v)−1 − 1)c2mv+2i′(c2m(u−v)+1 − 1)

6=0.

The above inequality always holds since

0 < |2m(u− v)± 1| ≤ 2m⌈
n

n′
⌉ − 2m+ 1 < q − 1;

Otherwise, similar to Case 2, we have that

rank(A1,i −A1,j) = N

is equivalent to

c2m(u−v)+2(i′−j′+m)+a−b − 1 6= 0, for all a, b = 0, 1,

which holds according to a similar analysis as in Case 2.

Case 5: When 0 ≤ i′ < m and 2m ≤ j′ < 3m, if j′ =
i′ + 2m, then by (9) we have

rank(A1,i − A1,j)

= rank(z1,iB
′

1,i′ − z1,jB
′

1,j′)

= rank(

(

Vi′,0(z1,iB
′

1,i′ − z1,jB
′

1,j′)
Vi′,1(z1,iB

′

1,i′ − z1,jB
′

1,j′)

)

)

= rank(

(

z1,iλi′,0Vi′,0+z1,i(λi′,0−λi′,1)Vi′,1−z1,jλj′,0Vi′,0

z1,iλi′,1Vi′,1 − z1,jλj′,1Vi′,1

)

)

= rank(

(

(z1,iλi′,0−z1,jλj′,0)Vi′,0 + z1,i(λi′,0−λi′,1)Vi′,1

(z1,iλi′,1 − z1,jλj′,1)Vi′,1

)

)

= N

⇔ c
2mv+2i′+1(c2m(u−v)−1 − 1)c2mv+2i′ (c2m(u−v)+1 − 1) 6= 0;

which holds for a similar reason as in Case 4; Otherwise,

rank(A1,i −A1,j)

= rank(z1,iB
′
1,i′ − z1,jB

′
1,j′)

= rank(




Vi′,j′,0,0(z1,iB
′
1,i′ − z1,jB

′
1,j′ )

Vi′,j′,0,1(z1,iB
′
1,i′ − z1,jB

′
1,j′ )

Vi′,j′,1,0(z1,iB
′
1,i′ − z1,jB

′
1,j′ )

Vi′,j′,1,1(z1,iB
′
1,i′ − z1,jB

′
1,j′ )


)

= rank(




z1,iλi′,0Vi′,j′,0,0 − z1,jλj′,0Vi′,j′,0,0

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,0

z1,iλi′,0Vi′,j′,0,1 − z1,jλj′,1Vi′,j′,0,1

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,1

z1,iλi′,1Vi′,j′,1,0 − z1,jλj′,0Vi′,j′,1,0

z1,iλi′,1Vi′,j′,1,1 − z1,jλj′,1Vi′,j′,1,1



)

= rank(




(z1,iλi′,0 − z1,jλj′,0)Vi′,j′,0,0

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,0

(z1,iλi′,0 − z1,jλj′,1)Vi′,j′,0,1

+z1,i(λi′,0 − λi′,1)Vi′,j′,1,1

(z1,iλi′,1 − z1,jλj′,0)Vi′,j′,1,0

(z1,iλi′,1 − z1,jλj′,1)Vi′,j′,1,1



)

= N,

which is equivalent to

z1,iλi′,a − z1,jλj′,b 6= 0, for all a, b = 0, 1,

i.e.,

c2mv+2(j′−2m)+1−b(c2m(u−v)+2(i′−j′+2m)+a+b−1 − 1) 6= 0

for all a, b = 0, 1, which holds due to a similar analysis as in

Case 2.

Case 6: When m ≤ i′ < 2m and 2m ≤ j′ < 3m, similar

to that of Case 5, if j′ = i′ +m, we have

rank(A1,i −A1,j) = N,

is equivalent to

(c2m(u−v)+1 − 1)(c2m(u−v)−1 − 1) 6= 0,

otherwise

rank(A1,i −A1,j) = N

is equivalent to

c2m(u−v)+2(i′−j′+m)+a+b−1 − 1 6= 0 for all a, b = 0, 1.

The above two inequalities always hold due to a similar reason

as in Case 5.
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Combining the above 6 cases, we finish the proof.

Finally, we demonstrate to what extent Theorem 12 can

reduce the field size q of the (n, k) MDS code C4. For example,

when n′ = 6, m = 2, and n = 24. According to Theorem 12,

we can set

z0,i = 1, z1,i = 34⌊
i
6 ⌋,

for i ∈ [0, 24) in (39) and

λi′,0 = λi′+2,0 = λi′+4,1 = 32i
′

,

λi′,1 = λi′+2,1 = λi′+4,0 = 32i
′+1,

in (36) for i′ = 0, 1 over F17 with 3 being the primitive

element. Whereas, by Theorem 11, the existence of the MDS

code C4 requires a finite field with size larger than 92.

V. AN (n, k) MDS CODE C5 WITH THE OPTIMAL UPDATE

PROPERTY AND SMALL SUB-PACKETIZATION OVER SMALL

FINITE FIELDS

Note from (22) that the parity-check matrix of the MDS

code C1 has a constraint, that is, block matrices At,i should

satisfy that At,j1A
−1
t,j2

is a scalar matrix over Fq for all

j1 ≡ j2(mod n′) and t ∈ [0, r), which reduces the designing

space for the parameters λi,0, . . . , λi,r−1 in (18) to guaran-

tee the MDS property. In this section, we propose another

explicit (n, k) MDS code which has a similar structure as

that of the MDS code C1, but allows more flexible choices of

λi,0, . . . , λi,r−1, and thus can further reduce the field size.

Let N = rn
′

and n > n′, where n and n′ are two positive

integer. Construct an (n, k) code C5 with longer code length

given by (2) and (3), where Ai, i ∈ [0, n) satisfy



Vi,0

Vi,1

...

Vi,r−1


Ai =




λi,0Vi,0

λi,1Vi,1

...

λi,r−1Vi,r−1


 , (45)

with λi,t ∈ Fq\{0} and Vi,t being defined by (7) and (9)

for t ∈ [0, r). The repair matrices and select matrices are

respectively defined by

Ri,j =

{
Vi,0 + Vi,1 + · · ·+ Vi,r−1, if j 6≡ i mod n′,
I, otherwise.

(46)

and

Si,t = Vi,0 + Vi,1 + · · ·+ Vi,r−1, t ∈ [0, r). (47)

Theorem 13. Every failed node of the code C5 can be

regenerated by the repair matrices defined in (46) and (47) if

λi,0, λi,1, · · · , λi,r−1 are pairwise distinct for each i ∈ [0, n).
Furthermore, the repair bandwidth for node i (i ∈ [0, n)) is

γi =

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise.

Proof. Firstly, for i ∈ [0, n), by (45), we have



Vi,0

Vi,1

...

Vi,r−1


At

i =




λt
i,0Vi,0

λt
i,1Vi,1

...

λt
i,r−1Vi,r−1


 , t ∈ [0, r). (48)

Then,

rank(




Si,0A0,i

Si,1A1,i

...

Si,r−1Ar−1,i


)

=rank(




Si,0

Si,1Ai

...

Si,r−1A
r−1
i


)

=rank(




Vi,0 + Vi,1 + · · ·+ Vi,r−1

λi,0Vi,0 + λi,1Vi,1 + · · ·+ λi,r−1Vi,r−1

...

λr−1
i,0 Vi,0 + λr−1

i,1 Vi,1 + · · ·+ λr−1
i,r−1Vi,r−1


)

=rank(




1 1 1 1
λi,0 λi,1 · · · λi,r−1

...
...

. . .
...

λr−1
i,0 λr−1

i,1 · · · λr−1
i,r−1







Vi,0

Vi,1

...

Vi,r−1


).

Obviously, the rank is N if λi,u 6= λi,v for all u, v ∈ [0, r)
with u 6= v.

Next, we prove that (5) holds. By means of (10) and (48),

if j 6≡ i mod n′, then we have

rank(

(
Ri,j

Si,tAt,j

)
) = rank(




r−1∑
u=0

Vi,u

r−1∑
u=0

Vi,uA
t
j


)

= rank(




r−1∑
u=0

Vi,u

r−1∑
u=0

Vi,j,u,0A
t
j

r−1∑
u=0

Vi,j,u,1A
t
j

...
r−1∑
u=0

Vi,j,u,r−1A
t
j




)

= rank(




r−1∑
u=0

Vi,u

λt
j,0

r−1∑
u=0

Vi,j,u,0

λt
j,1

r−1∑
u=0

Vi,j,u,1

...

λt
j,r−1

r−1∑
u=0

Vi,j,u,r−1




)

= rank(Ri,j);
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Otherwise, we have

rank(

(
Ri,j

Si,tAt,j

)
) = rank(




I
r−1∑
u=0

Vi,uA
t
j


)

= rank(




I

r−1∑
u=0

λt
j,uVj,u



)

= rank(Ri,j).

Therefore, by (6) and (46), the repair bandwidth of node i is

γi=

n−1∑

j=0,j 6=i

rank(Ri,j)

=(n− 1)
N

r
+
(r − 1)N

r
|{j : j ∈ [0, n)\{i}, j ≡ i mod n′}|

=

{
(1 +

(⌈ n

n′ ⌉−1)(r−1)

n−1 )γ∗, if 0 ≤ i%n′ < n%n′,

(1 +
(⌊ n

n′ ⌋−1)(r−1)

n−1 )γ∗, otherwise,

where γ∗ = (n − 1)Nr is the optimal value for repair

bandwidth.

Theorem 14. The code C5 possesses the MDS property if

(i) λi,u 6= λj,v for all u, v ∈ [0, r) and i, j ∈ [0, n) with

j 6≡ i mod n′,

(ii) λi,u 6= λi+gn′,u for all u ∈ [0, r), g ∈ [1, ⌈ n
n′ ⌉), i ∈

[0, n′) with i+ gn′ < n.

Proof. The proof can be proceeded in the same fashion as that

of Theorem 4.

In the following, we give an assignment of the values λi,u,

i ∈ [0, n), u ∈ [0, r) so that the requirements in Theorems 13

and 14 can be satisfied.

Theorem 15. The requirements in Theorems 13 and 14 can

be satisfied if q is a prime power such that

q >

{
rn′(⌈ n

rn′ ⌉ − 1) + (n%n′)r, if 0 < n%(rn′) < n′,
rn′⌈ n

rn′ ⌉, otherwise.

Proof. If 0 < n%(rn′) < n′, then ⌈ n
rn′ ⌉ − 1 = ⌊ n

rn′ ⌋ and

n%(rn′) = n%n′, let ξ
(z)
i′,v , z ∈ [0, ⌊ n

rn′ ⌋), i
′ ∈ [0, n′), v ∈

[0, r), and ξ
(⌊ n

rn′ ⌋)

i′,v , i′ ∈ [0, n%n′), v ∈ [0, r) be rn′⌊ n
rn′ ⌋ +

(n%n′)r pairwise distinct nonzero elements in Fq; Otherwise,

let ξ
(z)
i′,v , z ∈ [0, ⌈ n

rn′ ⌉), i
′ ∈ [0, n′), v ∈ [0, r) be rn′⌈ n

rn′ ⌉
pairwise distinct nonzero elements in Fq . Then for i = zrn′+
un′+i′, i′ ∈ [0, n′), u ∈ [0, r), z ∈ [0, ⌈ n

rn′ ⌉), if we set λi,t =

ξ
(z)
i′,t+u for i ∈ [0, n) and t ∈ [0, r), where the subscript t+u is

computed modulo r, it is easy to verify that the requirements

in Theorems 13 and 14 can be satisfied.

In the following, we give a concrete example of the MDS

code C5 according to Theorem 15.

Example 2. Let r = 2, n′ = 3, and n = 12, then the parity-

check matrix of the (12, 10) MDS code C5 over F13 is defined

through

A0 =




e0
e1
e2
e3
ce4
ce5
ce6
ce7




, A1 =




c2e0
c2e1
c3e2
c3e3
c2e4
c2e5
c3e6
c3e7




, A2 =




c4e0
c5e1
c4e2
c5e3
c4e4
c5e5
c4e6
c5e7




,

A3 =




ce0
ce1
ce2
ce3
e4
e5
e6
e7




, A4 =




c3e0
c3e1
c2e2
c2e3
c3e4
c3e5
c2e6
c2e7




, A5 =




c5e0
c4e1
c5e2
c4e3
c5e4
c4e5
c5e6
c4e7




,

A6 =




c6e0
c6e1
c6e2
c6e3
c7e4
c7e5
c7e6
c7e7




, A7 =




c8e0
c8e1
c9e2
c9e3
c8e4
c8e5
c9e6
c9e7




, A8 =




c10e0
c11e1
c10e2
c11e3
c10e4
c11e5
c10e6
c11e7




,

A9 =




c7e0
c7e1
c7e2
c7e3
c6e4
c6e5
c6e6
c6e7




, A10 =




c9e0
c9e1
c8e2
c8e3
c9e4
c9e5
c8e6
c8e7




, A11 =




c11e0
c10e1
c11e2
c10e3
c11e4
c10e5
c11e6
c10e7




,

where c = 2.

Similar to the MDS code C1, we have the following result.

Theorem 16. The MDS code C5 has the optimal update

property.

VI. COMPARISONS

In this section, we give comparisons of some key parameters

among the proposed MDS codes and some existing notable

MDS codes.

Table II compares the details of these codes, while Tables

III-V compare the new MDS code C4 and the RTGE code

1 in terms of the sub-packetization level, the field size, and

the repair bandwidth for r = 2, 3 and 4, respectively. From

these tables, we see that the proposed MDS codes have the

following advantages:
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TABLE II
A COMPARISON OF SOME KEY PARAMETERS AMONG THE (n, k) MDS CODES PROPOSED IN THIS PAPER AND SOME EXISTING NOTABLE (n, k) MDS

CODES, WHERE WE SET n = sn′ FOR CONVENIENCE AND r = n− k

Sub-packetization
Field size

The ratio of repair bandwidth
Remark References

level N to the optimal value γ∗

The new MDS code C1 rn
′

q > rn′⌈ n
rn′ ⌉, r|(q − 1) = 1 +

(s−1)(r−1)
n−1

< 1 + r
n′ Optimal update Thms 3-5

The new MDS code C5 rn
′

q > rn′⌈ n
rn′ ⌉ = 1 + (s−1)(r−1)

n−1
< 1 + r

n′ Optimal update Thms 15, 16

The RTGE code 2 O(rrτ logn) O(n) ≤ 1 + 1
τ

τ > 0 [23]

The YB code 1 rn q ≥ rn 1 (Optimal) Optimal update [12]

The new MDS code C2 rn
′
−1 q > r⌈n′

r
⌉(⌈ n

n′ ⌉ − 1) + n′ = 1 + (s−1)(r−1)
n−1

< 1 + r
n′ Thm 7

The new MDS code C3 rn
′
−1 q > s, q is odd, if r is even

q > sr, otherwise
= 1 +

(s−1)(r−1)
n−1

< 1 + r
n′ Thm 8

The improved YB code 2 rn−1 q > r 1 (Optimal) [15]

Shortened duplication-zigzag rn
′
−1 q > s = 1 + (s−1)(r−1)

n−1
< 1 + r

n′ [3]

The new MDS code C4 r
n′

r+1
q > 2n

3
, if r = 2

q > N
(

n−1
r−1

)

+ 1, if r > 2
= 1 + (s−1)(r−1)

n−1
< 1 + r

n′ Implicit when r > 2 Thms 11, 12

The RTGE code 1 rτ q > n(r−1)N+1 = 1 +
(s−1)(r−1)

n−1
< 1 + 1

τ

τ is an integer
1 ≤ τ ≤ ⌈n

r
⌉ − 1

[23]

Long code C′

4 r
n

r+1 q > N
(

n−1
r−1

)

+ 1 1 (Optimal) Implicit when r > 2 Thms 9, 10

TABLE III
A COMPARISON OF SOME KEY PARAMETERS AMONG THE MDS CODES C4 AND THE RTGE CODE 1 UNDER SOME SPECIFIC CODE LENGTHS FOR r = 2

Code length Number of Sub-packetization Field size γ

γ∗
n parties r level N q

The new MDS code C4
12 2 22 32 1 + 1

11
18 2 22 13 1 + 2

17
24 2 22 17 1 + 3

23

The RTGE code 1
12 2 23 > 109 1 + 1

11
18 2 23 > 1011 1 + 2

17
24 2 23 > 1012 1 + 3

23

TABLE IV
A COMPARISON OF SOME KEY PARAMETERS AMONG THE MDS CODES C4 AND THE RTGE CODE 1 UNDER SOME SPECIFIC CODE LENGTHS FOR r = 3

Code length Number of Sub-packetization Field size γ

γ∗ Remark
n parties r level N q

The new MDS code C4
24 3 33 > 6831 1 + 1

23 Implicit construction
36 3 33 > 16065 1 + 2

35

The RTGE code 1
24 3 34 > 10224 1 + 1

23
36 3 34 > 10253 1 + 2

35

TABLE V
A COMPARISON OF SOME KEY PARAMETERS AMONG THE MDS CODES C4 AND THE RTGE CODE 1 UNDER SOME SPECIFIC CODE LENGTHS FOR r = 4

Code length Number of Sub-packetization Field size γ

γ∗ Remark
n parties r level N q

The new MDS code C4
40 4 44 > 2339584 1 + 1

13 Implicit construction
60 4 44 > 8322304 1 + 6

59

The RTGE code 1
40 4 45 > 104923 1 + 1

13
60 4 45 > 105464 1 + 6

59
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• The new MDS codes C1, C2, C3, and C5 can support any

number of parity nodes while the shortened duplication-

zigzag code2 in [3] can only support two parity nodes.

• The new MDS codes C1 and C5 have the optimal update

property.

• The new (n = sn′, k) MDS codes derived in this

paper indeed have a small sub-packetization level N .

Specifically, N = rn
′

for the codes C1 and C5, N = r
n′

r+1

for the code C4, and N = rn
′−1 for the codes C2 and C3.

Note that n′ can be fixed as a constant. Consequently, for

each new MDS code, the sub-packetization level can be

a constant, which is independent of code length n.

• Compared with the RTGE code 1 in [23], when n′ =
rτ , the new explicit MDS codes C1, C2, C3, and C5 are

built on much smaller finite fields, but have larger sub-

packetization levels. Besides, all the proposed MDS codes

have the same repair bandwidth as the RTGE code 1 in

[23] under the same parameters n and k.

• Particularly, the new (n, k) MDS code C4 has not only a

smaller sub-packetization level, but also a much smaller

finite field when compared to the RTGE code 1.

Nevertheless, the code C4 is explicit only for r = 2,

which requires a finite field with size q > 2n′

3 ⌈ n
n′ ⌉. For

r > 2, further investigation is needed to find the explicit

construction.

• In contrast to RTGE code 2 in [23], which has sub-

packetization growing logarithmically with the code

length n, the new codes have smaller sub-packetizations.

For example, the sub-packetization level of the MDS code

C5 is around 1
logn times that of the RTGE code 2 in [23]

when n′ = rτ .

• The RTGE codes 1 and 2 in [23] show that it is possible

to trade repair bandwidth for sub-packetization, while the

proposed codes C1, C2, C3, and C5 further show that it is

possible to trade sub-packetization for field size base on

the RTGE code 1, as these new codes are explicit and

are over small finite fields.

In addition to the above advantages, the new codes C1-C5 have

a defect that they do not possess the load balancing property

as some of the helper nodes contribute a higher amount of data

during the node repair process. Whereas, the RTGE code 2 in

[23] is load balanced, where all the contacted nodes provide

(approximately) the same amount of information during the

repair process.

VII. CONCLUSION

In this paper, we provided a powerful transformation that

can greatly reduce the sub-packetization level N of the original

codes with respect to the same code length n. Four applications

of the transformation were demonstrated, three of which are

explicit and over a small finite field. In addition, another

explicit MDS code construction over a small finite field and

with small sub-packetization level, small repair bandwidth

2Note that the code length of the duplication-zigzag code in [3] is in the
form of uk′ + 2 with uk′ ≫ 2, in order to do a fair comparison under the
same code length, we delete two nodes of the duplication-zigzag code in [3]
and term the resultant code as shortened duplication-zigzag code.

as well as the optimal update property was presented. The

comparisons show that the obtained MDS codes outperform

existing MDS codes in terms of the field size and/or the sub-

packetization level. Extending our transformation and con-

structions to the case of d < n − 1 or multiple node failures

are part of our ongoing work.

APPENDIX A

PROOF OF THEOREM 1

Before proving Theorem 1, let us introduce some necessary

definitions and results on determinants.

Definition 1 ( [25]). A k-rowed minor of an n-rowed determi-

nant D = det(ai,j)i∈[0,n),j∈[0,n) is any k-rowed determinant

obtained when n − k rows and n − k columns are deleted

from D. The k-rowed minor obtained from D by retaining

only the elements belonging to rows r0, . . . , rk−1 and columns

s0, . . . , sk−1 will be denoted by

D(r0, . . . , rk−1|s0, . . . , sk−1).

The cofactor D̃(r0, . . . , rk−1|s0, . . . , sk−1) of the minor

D(r0, . . . , rk−1|s0, . . . , sk−1) in a determinant D is defined

as

D̃(r0, . . . , rk−1|s0, . . . , sk−1)

=(−1)r0+...+rk−1+s0+...+sk−1D(rk, . . . , rn−1|sk, . . . , sn−1),

where rk, . . . , rn−1 are the n− k numbers among 0, . . . , n−
1 other than r0, . . . , rk−1 and sk, . . . , sn−1 are the n − k
numbers among 0, . . . , n− 1 other than s0, . . . , sk−1.

Lemma 6 (Laplace’s expansion theorem [25]). Let D be an

n-rowed determinant, and let r0, . . . , rk−1 be integers such

that 0 ≤ k < n− 1 and 0 ≤ r0 < . . . < rk−1 < n. Then

D =
∑

0≤u0<...<uk−1<n

D(r0, . . . , rk−1|u0, . . . , uk−1)

× D̃(r0, . . . , rk−1|u0, . . . , uk−1).

Proposition 1. Let u ≥ 2 and let

B =









y0,0B0,0 y0,1B0,1 · · · y0,u−1B0,u−1

y1,0B1,0 y1,1B1,1 · · · y1,u−1B1,u−1

...
...

. . .
...

yu−1,0Bu−1,0 yu−1,1Bu−1,1 · · · yu−1,u−1Bu−1,u−1









be a block matrix of order uN over a certain finite field

Fq , where yi,j is an indeterminate in Fq and Bi,j is a full

rank matrix of order N for i, j ∈ [0, u). Then det(B) is a

homogeneous polynomial of degree uN which includes the

term (
u−1∏

t=0

det(Bt,t)

)
yN0,0y

N
1,1 · · · y

N
u−1,u−1. (49)

Proof. Clearly, det(B) is a uN -rowed determinant, the ex-

pansion of which includes (uN)! terms, where each term is a

monomial of degree uN . Therefore, det(B) is a homogeneous

polynomial of degree uN . In the following, we prove that

det(B) includes the term in (49) by induction.

Let D = det(B), when u = 2, then by Definition 1 and

Lemma 6, we can get (50) in the next page, which implies
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that D includes the term in (49).

Assume that the induction hypothesis holds, i.e., D includes

the term in (49) for u = v ≥ 2. Then, when u = v + 1, simi-

larly, we can obtain (51) in the next page. Note from Definition

1 that D̃(vN, . . . , (v + 1)N − 1|vN, . . . , (v + 1)N − 1) is a

vN -rowed determinant, which includes the term
(

v−1∏

t=0

det(Bt,t)

)
yN0,0y

N
1,1 · · · y

N
v−1,v−1

by the induction hypothesis. Hence, D includes the term
(

v∏

t=0

det(Bt,t)

)
yN0,0y

N
1,1 · · · y

N
v,v.

Based on the above analysis, we proved that det(B) in-

cludes the term in (49) for any u ≥ 2.

Proof of Theorem 1: By (11), the parity-check matrix of

the new (n, k) code is

A =




A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

...
...

. . .
...

Ar−1,0 Ar−1,1 · · · Ar−1,n−1




with the j-th block column being




x0,jA
′
0,j%n′

x1,jA
′
1,j%n′

...

xr−1,jA
′
r−1,j%n′


 .

Then the new code is MDS if and only if any r× r sub-block

matrix of A is nonsingular.

For any J = {j0, j1, · · · , jr−1} ⊂ [0, n), let PJ be the

r × r sub-block matrix of A formed by the r block columns

indicated by J , i.e.,

PJ =




x0,j0A
′
0,j0%n′ · · · x0,jr−1A

′
0,jr−1%n′

x1,j0A
′
1,j0%n′ · · · x1,jr−1A

′
1,jr−1%n′

...
. . .

...

xr−1,j0A
′
r−1,j0%n′ · · · xr−1,jr−1A

′
r−1,jr−1%n′


 ,

which is nonsingular if det(PJ ) is nonzero. Define P =∏
J⊂[0,n),|J|=r

PJ , then det(P ) =
∏

J⊂[0,n),|J|=r

det(PJ ). Thus,

it suffices to prove that there is an assignment to the variables

xi,j , i ∈ [0, r), j ∈ [0, n) that does not evaluate det(P ) to

zero.

By Proposition 1, det(PJ ) is a homogeneous polynomial of

degree rN which includes the term

(
r−1∏

t=0

det(A′
t,jt%n′)

)
xN
0,j0x

N
1,j1 · · ·x

N
r−1,jr−1

.

Then, det(P ) is a homogeneous polynomial of degree rN
(
n
r

)
,

where each indeterminate xi,j has degree at most N
(
n−1
r−1

)
.

Therefore, by Lemma 2, if q > N
(
n−1
r−1

)
+ 1, then there

are x0,0, . . . , x0,n−1, . . . , xr−1,0, . . . , xr−1,n−1 ∈ Fq\{0} that

does not evaluate det(P ) to zero. This finishes the proof. �

APPENDIX B

PROOF OF THEOREM 10

The new storage code C′
4 has the optimal repair bandwidth

if and only if (4) and (5) hold.

(i) Firstly, by (35), (36), and (38), we determine the neces-

sary and sufficient conditions for (4) according to the following

two cases.

Case 1: For any i′ ∈ [0, rm), let u = ⌊ i′

m⌋, then we have

rank(




S′
i′,0A

′
0,i′

S′
i′,1A

′
1,i′

...

S′
i′,r−1A

′
r−1,i′


)

=rank(




y0,i′Vi′,uB
′
0,i′

y1,i′Vi′,uB
′
1,i′

...

yr−1,i′Vi′,uB
′
r−1,i′


)

=rank(




Vi′,u

λi′,uVi′,u +
r−1∑

a=0,a 6=u

(λi′,u − λi′,a)Vi′,a

...

λr−1
i′,u Vi′,u +

r−1∑
a=0,a 6=u

(λr−1
i′,u − λr−1

i′,a )Vi′,a




),

which is of full rank if and only if (52) in the next page

holds, i.e., λi′,0, λi′,1, · · · , λi′,r−1 are pairwise distinct.

D = D(0, . . . , N − 1|0, . . . , N − 1)D̃(0, . . . , N − 1|0, . . . , N − 1)

+
∑

0≤j0<...<jN−1<2N

(j0,...,jN−1)6=(0,...,N−1)

D(0, . . . , N − 1|j0, . . . , jN−1)D̃(0, . . . , N − 1|j0, . . . , jN−1)

= det(y0,0B0,0) det(y1,1B1,1) +
∑

0≤j0<...<jN−1<2N

(j0,...,jN−1)6=(0,...,N−1)

D(0, . . . , N − 1|j0, . . . , jN−1)D̃(0, . . . , N − 1|j0, . . . , jN−1)

=

(
1∏

t=0

det(Bt,t)

)
yN0,0y

N
1,1 +

∑

0≤j0<...<jN−1<2N

(j0,...,jN−1)6=(0,...,N−1)

D(0, . . . , N − 1|j0, . . . , jN−1)D̃(0, . . . , N − 1|j0, . . . , jN−1). (50)
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Case 2: For i′ ∈ [rm, (r + 1)m),

rank(




S′
i′,0A

′
0,i′

S′
i′,1A

′
1,i

...

S′
i′,r−1A

′
r−1,i′


)

= rank(




y0,i′(Vi′,0 + · · ·+ Vi′,r−1)B
′
0,i′

y1,i′(Vi′,0 + · · ·+ Vi′,r−1)B
′
1,i′

...

yr−1,i′(Vi′,0 + · · ·+ Vi′,r−1)B
′
r−1,i′


)

= rank(




Vi′,0 + · · ·+ Vi′,r−1

λi′,0Vi,0 + · · ·+ λi′,r−1Vi,r−1

...

λr−1
i′,0 Vi′,0 + · · ·+ λr−1

i′,r−1Vi′,r−1


)

= N

⇔

∣∣∣∣∣∣∣∣∣

1 · · · 1
λi′,0 · · · λi′,r−1

...
. . .

...

λr−1
i′,0 · · · λr−1

i′,r−1

∣∣∣∣∣∣∣∣∣

6= 0,

which holds if and only if λi′,0, λi′,1, · · · , λi′,r−1 are

pairwise distinct.

(ii) Secondly, by (9), (35), (37), and (38), we establish the

necessary and sufficient conditions for (5) according to the

following four cases.

Case 1: For t ∈ [0, r) and i′, j′ ∈ [0, rm) with i′ 6= j′,

let u = ⌊ i′

m⌋ and v = ⌊ j′

m⌋. If j′ 6≡ i′ mod m, then we

have

rank(

(
R′

i′,j′

S′
i′,tA

′
t,j′

)
)

= rank(

(
Vi′,u

Vi′,uA
′
t,j′

)
)

= rank(




Vi′,u

Vi′,j′,u,0B
′
t,j′

...

Vi′,j′,u,v−1B
′
t,j′

Vi′,j′,u,vB
′
t,j′

Vi′,j′,u,v+1B
′
t,j′

...

Vi′,j′,u,r−1B
′
t,j′




)

= rank(




Vi′,u

λt
j′,0Vi′,j′,u,0

...

λt
j′,v−1Vi′,j′,u,v−1

λt
j′,vVi′,j′,u,v+

r−1∑
a=0,a 6=v

(λt
j′,v−λ

t
j′,a)Vi′,j′,u,a

λt
j′,v+1Vi′,j′,u,v+1

...

λt
j′,r−1Vi′,j′,u,r−1




)

= rank(




Vi′,u

Vi′,j′,u,0

...

Vi′,j′,u,r−1


)

= N/r;

Otherwise, u 6= v, thus we have

D =D(vN, . . . , (v + 1)N − 1|vN, . . . , (v + 1)N − 1)D̃(vN, . . . , (v + 1)N − 1|vN, . . . , (v + 1)N − 1)

+
∑

0≤j0<...<jN−1<(v+1)N

(j0 ,...,jN−1)6=(vN,...,(v+1)N−1)

D(vN, . . . , (v + 1)N − 1|j0, . . . , jN−1)D̃(vN, . . . , (v + 1)N − 1|j0, . . . , jN−1)

= det(yv,vBv,v)D̃(vN, . . . , (v + 1)N − 1|vN, . . . , (v + 1)N − 1)

+
∑

0≤j0<...<jN−1<(v+1)N

(j0 ,...,jN−1)6=(vN,...,(v+1)N−1)

D(vN, . . . , (v + 1)N − 1|j0, . . . , jN−1)D̃(vN, . . . , (v + 1)N − 1|j0, . . . , jN−1). (51)

∣∣∣∣∣∣∣∣∣

0 · · · 0 1 0 · · · 0
λi′,u − λi′,0 · · · λi′,u − λi′,u−1 λi′,u λi′,u − λi′,u+1 · · · λi′,u − λi′,r−1

...
. . .

...
...

...
. . .

...

λr−1
i′,u − λr−1

i′,0 · · · λr−1
i′,u − λr−1

i′,u−1 λr−1
i′,u λr−1

i′,u − λr−1
i′,u+1 · · · λr−1

i′,u − λr−1
i′,r−1

∣∣∣∣∣∣∣∣∣

=(−1)r−1

∣∣∣∣∣∣∣∣∣

1 · · · 1 1 1 · · · 1
λi′,0 · · · λi′,u−1 λi′,u λi′,u+1 · · · λi′,r−1

...
. . .

...
...

...
. . .

...

λr−1
i′,0 · · · λr−1

i′,u−1 λr−1
i′,u λr−1

i′,u+1 · · · λr−1
i′,r−1

∣∣∣∣∣∣∣∣∣

6=0, (52)
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rank(

(
R′

i′,j′

S′
i′,tA

′
t,j′

)
) = rank(

(
Vi′,u

yt,j′Vi′,uB
′
t,j′

)
)

= rank(

(
Vi′,u

λt
j′,uVi′,u

)
)

= N/r.

Case 2: For t ∈ [0, r), i′ ∈ [rm, (r + 1)m) and j′ ∈

[0, rm), let u = ⌊ j′

m⌋. If j′ 6≡ i′ mod m, we have

rank(

(
R′

i′,j′

S′
i′,tAt,j′

)
)

= rank(

(
Vi′,0 + Vi′,1 + · · ·+ Vi′,r−1

(Vi′,0 + Vi′,1 + · · ·+ Vi′,r−1)Bt,j′

)
)

= rank(




r−1∑
a=0

Vi′,a

r−1∑
a=0

Vi′,j′,a,0B
′
t,j′

...
r−1∑
a=0

Vi′,j′,a,u−1B
′
t,j′

r−1∑
a=0

Vi′,j′,a,uB
′
t,j′

r−1∑
a=0

Vi′,j′,a,u+1B
′
t,j′

...
r−1∑
a=0

Vi′,j′,a,r−1B
′
t,j′




)

= rank(




r−1∑
a=0

Vi′,a

λt
j′,0

r−1∑
b=0

Vi′,j′,a,0

...

λt
j′,u−1

r−1∑
a=0

Vi′,j′,a,u−1

r−1∑
a=0

(λt
j′,uVi′,j′,a,u

−
r−1∑

b=0,b6=u

(λt
j′,u − λj′,b)Vi′,j′,a,b)

λt
j′,u+1

r−1∑
a=0

Vi′,j′,a,u+1

...

λt
j′,r−1

r−1∑
a=0

Vi′,j′,a,r−1




)

= rank(




r−1∑
a=0

Vi′,a

r−1∑
a=0

Vi′,j′,a,0

...
r−1∑
a=0

Vi′,j′,a,r−1




)

= N/r;

Otherwise,

rank(

(
R′

i′,j′

S′
i′,tAt,j′

)
)

=rank(




r−1∑
a=0

Vi′,a

r−1∑
a=0

Vi′,aB
′
t,j′


)

=rank(




r−1∑
a=0

Vi′,a

λt
j′,u

r−1∑
a=0

Vj′,a


)

=N/r.

Case 3: For t ∈ [0, r), i′ ∈ [0, rm) and j′ ∈ [rm, (r +
1)m), we easily have

rank(

(
R′

i′,j′

S′
i′,tA

′
t,j′

)
) = rank(

(
Vi′,⌊ i′

m
⌋

yt,j′Vi′,⌊ i′

m
⌋B

′
t,j′

)
)

= N/r.

Case 4: For i′, j′ ∈ [rm, (r + 1)m) and i′ 6= j′, we have

rank(

(
R′

i′,j′

S′
i′,tA

′
t,j′

)
)

=rank(




r−1∑
a=0

Vi′,a

r−1∑
a=0

Vi′,aB
′
t,j′


)

=rank(




r−1∑
a=0

Vi′,a

r−1∑
a=0

Vi′,j′,a,0B
′
t,j′

...
r−1∑
a=0

Vi′,j′,a,r−1B
′
t,j′




)

=rank(




r−1∑
a=0

Vi′,a

λt
j′,0

r−1∑
a=0

Vi′,j′,a,0

...

λt
j′,r−1

r−1∑
a=0

Vi′,j′,a,r−1




)

=N/r.

This finishes the proof after combining (i) and (ii).
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