
ar
X

iv
:2

10
6.

06
63

5v
1 

 [
cs

.I
T

] 
 1

1 
Ju

n 
20

21
1

On D2D Caching with Uncoded Cache

Placement
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Abstract

We consider a cache-aided wireless device-to-device (D2D) network under the constraint of one-

shot delivery, where the placement phase is orchestrated by a central server. We assume that the devices’

caches are filled with uncoded data, and the whole file database at the server is made available in the

collection of caches. Following this phase, the files requested by the users are serviced by inter-device

multicast communication. For such a system setting, we provide the exact characterization of load-

memory trade-off, by deriving both the minimum average and the minimum peak sum-loads of links

between devices, for a given individual memory size at disposal of each user.

I. INTRODUCTION

The killer application of wireless networks has evolved from real-time voice communication to

on-demand multimedia content delivery (e.g., video), which requires a nearly 100-fold increase in

the per-user throughput, from tens of kb/s to 1 Mb/s. Luckily, the pre-availability of such content

allows for leveraging storage opportunities at users in a proactive manner, thereby reducing the

amount of necessary data transmission during periods of high network utilization.

A caching scheme is composed of two phases. The placement phase refers to the operation

during low network utilization, when users are not requesting any content. During this phase, the
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cache memories of users are filled by a central server proactively. When each user directly stores

a subset of bits, the placement phase is uncoded. The transmission stage when users request their

desired content is termed delivery phase. By utilizing the content stored in their caches during

the placement phase, users aim to reconstruct their desired content from the signals they receive.

The sources of such signals may differ depending on the context and network topology. In this

work, we focus on the device-to-device (D2D) caching scenario, in which the signals available

during the delivery phase are generated merely by the users themselves, whereas the central

server remains inactive.

A coded caching strategy was proposed by Maddah-Ali and Niesen (MAN) [1]. Their model

consists of users with caches and of a server which is in charge of the distribution of content

to users through an error-free shared-link, during both the placement and delivery phases. This

seminal work showed that a global caching gain is possible by utilizing multicasting linear

combinations during the delivery phase. By observing that some MAN linear combinations are

redundant, the authors [2] proposed an improved scheme, which is optimal under the constraint

of uncoded cache placement. It was proved in [3] that the uncoded caching scheme is optimal

generally within a factor of 2, e.g. even when more involved (coded) cache placement schemes

are allowed.

D2D caching problem was originally considered in [4]–[6], where users are allowed to

communicate with each other. By extending the caching scheme in [1] to the D2D scenario,

we can also have the global caching gain. It was proved in [4], [5] that the proposed D2D

caching scheme is order optimal within a constant when the memory size is not small.

Particularly, the D2D caching setting with uncoded placement considered in this work is closely

related to the distributed computing problem originally proposed [7] and distributed data-shuffling

problem [8]. The coded distributed computing setting can be interpreted as a symmetric D2D

caching setting with multiple requests, whereas the coded data shuffling problem can be viewed

as a D2D caching problem with additional constraints on the placement.

Contributions: Based on the D2D achievable caching scheme in [5], with  the number

of users and # the number of files, for # ≥  and the shared-link caching scheme in [2] for

# <  , we propose a novel achievable scheme for D2D caching problem, which is shown to be

order optimal within a factor of 2 under the constraint of uncoded placement, in terms of the

average transmitted load for uniform probability of file requests and the worst-case transmitted

load among all possible demands.
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For each user, if any bit of its demanded file not already in its cache can be recovered from

its cache content and a transmitted packet of a single other user, we say that the delivery phase

is one-shot. Under the constraint of uncoded placement and one-shot delivery, we can divide the

D2D caching problem into  shared-link models. Under the above constraints, we then use the

index coding acyclic converse bound in [9, Corollary 1] to lower bound the total load transmitted

in the  shared-link models. By leveraging the connection among the  shared-link models, we

propose a novel way to use the index coding acyclic converse bound compared to the method

used for single shared-link model in [2], [10], [11]. With this converse bound, we prove that the

proposed achievable scheme is exactly optimal under the constraint of uncoded placement and

one-shot delivery, in terms of the average transmitted load and the worst-case transmitted load

among all possible demands.

In the longer version of this work [12], we also consider random user inactivity where the

identities of inactive users are unknown. The one-shot delivery property allows for an extension

of the proposed scheme that provides robustness against outage that user inactivity may lead to.

II. PROBLEM SETTING

A. Notations

| · | is used to represent the cardinality of a set or the length of a file in bits; we let A \ B :=

{G ∈ A|G ∉ B}, [0 : 1 : 2] := {0, 0 + 1, 0 + 21, ..., 2}, [0 : 2] = [0 : 1 : 2] and [=] = [1 : =]; the

bit-wise XOR operation between binary vectors is indicated by ⊕; for two integers G and H, we

let
(G
H

)
= 0 if G < H or G ≤ 0.

B. D2D Caching Problem Setting

We consider a D2D network composed of  users, which are able to receive all the other

users’ transmissions. Users make requests from a database of # files ] = (,1, . . . ,,# ), each

with a length of � bits. Every user has a memory of "� bits, where " ∈ [#/ , #).

The system operation can be divided into the placement and delivery phases. During the

placement phase users have access to a central server. In this work, we only consider the caching

problem with uncoded cache placement, where each user : directly stores "� bits of # files

in its memory. For the sake of simplicity, we do not repeat this constraint in the rest of paper.

Since the placement is uncoded, we can divide each file into subfiles, ,@ = {,@,V : V ⊆ [ ]},

where ,@,V represents the set of bits exclusively cached by users in V. We denote the indices
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of the stored bits at user : by M: . For convenience, we denote the cache placement of the

whole system by M := (M1, . . . ,M ). During the delivery phase, each user demands one file.

We define demand vector d := (31, . . . , 3 ), with 3: ∈ [#] denoting user :’s requested file

index. The set of all possible demands is denoted by D, so that D = [#] . Given the demand

information, each user : generates a codeword -: of length ':� bits and broadcasts it to other

users, where ': indicates the load of user : . For a given subset of users S ⊆ [ ], we let -S

denote the ensemble of codewords broadcasted by these users. From M: and -[ ]\: , each user

: recovers its desired file.

In this work we concentrate on the special case of one-shot delivery, which we formally define

in the following.

Definition 1 (One-shot delivery) If each user : ∈ [ ] can decode any bit of its requested file

not already in its own cache from its cache and the transmission of a single other user, we say

that the delivery phase is one-shot. Mathematically, we indicate by , :,8

3:
the block of bits needed

by user : and recovered from the transmission of user i, i.e., � (,
:,8

3:
|-8,M: ) = 0, indicating

that , :,8

3:
is a deterministic function of -8 and M: . Then, a one-shot scheme implies that (,3: \

M: ) ⊆
⋃
8∈[ ]\{:},

:,8

3:
. In addition, we also define ,

:,8

3: ,V
as the block of bits needed by user :

and recovered from the transmission of user 8, which are exclusively cached by users in V. Hence,

we have for each user : ∈ [ ]
⋃

V⊆([ ]\{:}):8∈V ,
:,8

3: ,V
= ,

:,8

3:
,∀8 ∈ [ ] \ {8}.

Letting ' =
∑ 
:=1

': , we say that a communication load ' is achievable for a demand d

and placement M, with |M: | = ", ∀: ∈ [ ], if and only if there exists an ensemble of

codewords -[ ] of size '� such that each user : can reconstruct its requested file ,3: . We

let '∗(d,M) indicate the minimum achievable load given d and M. We also define '∗
o(d,M)

as the minimum achievable load given d and M under the constraint of one-shot delivery. We

consider uniform demand distribution and aim to minimize the average and worst-case loads,

'∗
ave = minM Ed ['

∗(d,M)] and '∗
worst = minM maxd '

∗(d,M). Similarly, we define '∗
ave, o and

'∗
worst, o as the minimum average and worst-case loads under the constraint of one-shot delivery,

respectively.

Further, for a demand d, we let #e(d) denote the number of distinct indices in d. In addition,

we let d\{:} and #e(d\{:}) stand for the demand vector of users [ ]\{:} and the number of

distinct files requested by all users but user : , respectively. As in [2], [13], we group the demand

vectors in D according to the frequency of common entries that they have. Towards this end,
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for a demand d, we stack in a vector of length # the number of appearances of each request in

descending order, and denote it by s(d). We refer to this vector as composition of d. Clearly,
∑#
==1

B=(d) =  . By � we denote the set of all possible compositions. We denote the set of

demand vectors with the same composition s ∈ � by Ds. We refer to these subsets as types.

Obviously, they are disjoint and
⋃
s∈�

Ds = D.

III. MAIN RESULTS

In the following theorem, we characterize the exact memory-average load trade-off under

the constraint of one-shot delivery. The achievable scheme is introduced in Section IV and the

converse bound is proved in Section V.

Theorem 1 (Average load): For a D2D caching scenario with a database of # files and  

users each with a cache of size " , the following average load under the constraint of uncoded

placement and one-shot delivery with uniform demand distribution, is optimal

'∗
ave, o = Ed

[ ( −1

C

)
− 1

 

∑ 
:=1

( −1−#e (d\{: })
C

)

( −1

C−1

)

]

(1)

with C =  "
#

∈ [ ], where d is uniformly distributed over D = {1, ..., #} . Additionally, '∗
ave, o

corresponds to the lower convex envelope of its values at C ∈ [ ], when C ∉ [ ].

We can extend the above results to worst-case load in the following theorem, whose proof

can be found in [12].

Theorem 2 (Worst-case load): For a D2D caching scenario with a database of # files and  

users each with a cache of size " , the following peak load '∗
worst, o under the constraint of

uncoded placement and one-shot delivery, is optimal

'∗
worst, o =





( −1

C )
( −1

C−1 )
 ≤ #

( −1

C )−
2#− 
 ( −#

C )− 2( −# )
 ( −1−#

C )
( −1

C−1 )
otherwise

( −1

C )−(
 −1−#

C )
( −1

C−1 )
 ≥ 2#

(2)

with C =  "
#

∈ [ ]. Additionally, '∗
worst, o corresponds to the lower convex envelope of its values

at C ∈ [ ], when C ∉ [ ].

Remark 1: As we will present in Section IV and discuss in Remark 2, our achievable scheme

is in fact composed of  shared-link sub-systems, where each 8th sub-system includes #e(d) =

#e(d\{8}) demanded files. The scheme is symmetric in the file-splitting step in the delivery phase.
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It is interesting to observe that, even if the system is asymmetric in the sense that each  shared-

link sub-system may not have the same #e(d\{8}), the symmetric file-splitting is nevertheless

optimal.

By comparing the achievable load by our proposed scheme and the minimum achievable load

for shared-link model, we obtain the following order optimality result (see the longer version

[12] of this paper for the proof).

Theorem 3 (Order optimality): For a D2D caching scenario with a database of # files and  

users each with a cache size of " , the proposed achievable average and worst-case transmitted

loads in (1) and (2), is order optimal within a factor of 2.

IV. A NOVEL ACHIEVABLE D2D CODED CACHING SCHEME

In this section, we present a caching scheme that achieves the loads stated in Theorem 1 and

Theorem 2. To this end, we show that for any demand vector d the proposed scheme achieves

the load

'∗(d,MMAN) =

( −1

C

)
− 1

 

∑ 
8=1

( −1−#e (d\{8 })
C

)

( −1

C−1

) , (3)

where MMAN refers to the symmetric placement which was originally presented in [1]. This

immediately proves the achievability of the average and worst case loads given in Theorem 1 and

Theorem 2, respectively. In Subsection IV-A, we will present our achievable scheme and provide

a simple example, illustrating how the idea of exploiting common demands [2] is incorporated

in the D2D setting. In Remark 2, we will discuss our approach of decomposing the D2D model

into  shared-link models.

A. Achievability of '∗(d,MMAN)

In the following, we present the proposed caching scheme for integer values of C ∈ [ ]. For

non-integer values of C, resource sharing schemes [1], [5], [14] can be used to achieve the lower

convex envelope of the achievable points.

1) Placement phase: Our placement phase is based on the MAN placement [1], where each

file ,@ is divided into
( 
C

)
disjoint sub-files denoted by ,@,V where V ⊆ [ ] and |V| = C.

During the placement phase, each user : caches all bits in each sub-file ,@,V if : ∈ V. As

there are
( −1

C−1

)
sub-files for each file where : ∈ V and each sub-file is composed of �/

( 
C

)
bits,

each user caches #�C/ = "� bits.
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2) Delivery phase: The delivery phase starts with the file-splitting step: Each sub-file is

divided into C equal length disjoint sub-pieces of �/C
( 
C

)
bits which are denoted by ,@,V,8, where

8 ∈ V. Subsequently, each user 8 selects any subset of #e(d\{8}) users from [ ]\{8}, denoted

by U8
= {D8

1
, ..., D8

#e (d\{8 })
}, which request #e(d\{8}) distinct files. Extending the nomenclature

in [2], we refer to these users as leading demanders of user 8.

Let us now fix a user 8 and consider an arbitrary subset A8 ⊆ [ ]\{8} of C users. Each user

: ∈ A8 needs the sub-piece ,3: ,{A8∪{8}}\{:},8, which is cached by all the other users in A8 and

the user 8. Precisely, all users in a set A8 wants to exchange these sub-pieces ,3: ,{A8∪{8}}\{:},8

from the transmissions of user 8. By letting user 8 broadcast

. 8
A8 :=

⊕

:∈A8

,3: ,{A8∪{8}}\{:},8, (4)

this sub-piece exchanging can be accomplished, as each user : ∈ A8 has all the sub-pieces on

the RHS of (4), except for ,3: ,{A8∪{8}}\{:},8.

We let each user 8 broadcast the binary sums that are useful for at least one of its leading

demanders. That is, each user 8 broadcasts all . 8
A8 for all subsets A8 that satisfy A8 ∩U8

≠ ∅,

i.e. -8 = {. 8
A8 }A8∩U8≠∅. For each user 8 ∈ [ ], the size of the broadcasted codeword amounts to

( −1

C

)
−

( −1−#e (d\{8 })
C

)
times the size of a sub-piece, summing which for all 8 ∈ [ ] results in

the load stated in (3).

We now show that each user : ∈ [ ] is able to recover its desired sub-pieces. When : is

a leading demander of a user 8, i.e., : ∈ U8, it can decode any sub-piece ,3: ,B:∪{8},8
, for any

B: ⊆ A8\{:}, |B: | = C − 1 , from . 8
B:∪{:}

which is broadcasted from user 8, by performing

,3: ,B:∪{8},8 =

(
⊕

G∈B:

,3: ,{B:∪{8,:}}\{G},8

)
⊕

. 8
B:∪{:}

(5)

as can be seen from (4).

However, when : ∉ U8 , not all of the corresponding codewords . 8
B:∪{:}

for its required

sub-pieces ,3: ,B:∪{8},8 are directly broadcasted from user 8. User : can still decode its desired

sub-piece by generating the missing codewords based on its received codewords from user 8 (see

[12] for the proof).

In the following, we provide a short demonstration of the above presented ideas.
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An example: Let us consider the case when # = 2,  = 4, " = 1, C =  "/# = 2 and

d = (1, 2, 1, 1). Notice that #e(d\{2}) = 1 and #e(d\{8}) = 2 for 8 ∈ {1, 3, 4}. Each file is divided

into
(
4

2

)
= 6 sub-files and users cache the following sub-files for each 8 ∈ {1, 2}:

M1 = {,8,{1,2},,8,{1,3}, ,8,{1,4}},

M2 = {,8,{1,2},,8,{2,3}, ,8,{2,4}},

M3 = {,8,{1,3},,8,{2,3}, ,8,{3,4}},

M4 = {,8,{1,4},,8,{2,4}, ,8,{3,4}}.

After splitting the sub-files into 2 equal length sub-pieces, users 1, 3, 4 transmit the codewords

-1 = {.1

{2,3}
, .1

{2,4}
, .1

{3,4}
}, -3 = {.3

{1,2}
, .3

{1,4}
, .3

{2,4}
}, -4 = {.4

{1,2}
, .4

{1,3}
, .4

{2,3}
}, where . 8

A8 is

given by (4).

Notice that for these users, there exists no subset A8 s.t. A8 ⊆ [ ]\{8}, |A8 | = C = 2 which

satisfies U8∩A8
≠ ∅. However, depending on the choice of U2, user 2 can find

( −1−#e (d\{2})
C

)
= 1

subset A2 with U2 ∩ A2
≠ ∅. Such an A2 can be determined as {3, 4}, {1, 4}, {1, 3} for the

cases of U2
= {1}, U2

= {3}, U2
= {4}, respectively.

Picking user 1 as its leading demander, i.e., U2
= {1}, user 2 only transmits -2 =

{.2

{1,3}
, .2

{1,4}
} sparing the codeword .2

{3,4}
= ,1,{2,3},2⊕,1,{2,4},2. As mentioned before, the choice

of the leading demanders is arbitrary and any one of the .2

{1,3}
, .2

{1,4}
, .2

{3,4}
can be determined

as the superfluous codeword. In fact, any one of these codewords can be attained by summing

the other two, since .2

{1,3}
⊕.2

{1,4}
⊕.2

{3,4}
= 0.

From the broadcasted codewords, all users can decode all their missing sub-pieces by using the

sub-pieces in their caches as side-information, by performing (5). As each sub-piece is composed

of �/C
( 
C

)
= �/12 bits and as 3 × 3 + 1 × 2 = 11 codewords of such size are broadcasted, our

scheme achieves a load of 11/12, which could be directly calculated by (3).

Remark 2: Notice that the proposed scheme is in fact composed of  shared-link models each

with # files of size �′
= �/ bits and  ′

=  − 1 users with caches of size "′
=

# (C−1)
( −1)

units

each. The corresponding parameter for each model is found to be C′ =  ′" ′

#
= C − 1. Summing

the loads of each 8 ∈ [ ] shared-link sub-systems ((3) in [2]) with parameters � = �′,  =

 ′, " = "′, C = C′, #e(d) = #e(d\{8}), yields (3).

Remark 3: When each user requests a distinct file (#e(d) =  ), our proposed scheme

corresponds to the one presented in [5]. The potential improvement of our scheme when
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#e(d) <  hinges on identifying the possible linear dependencies among the codewords

generated by a user.

V. CONVERSE BOUND UNDER THE CONSTRAINT OF ONE-SHOT DELIVERY

In this section we propose the converse bound under the constraint of one-shot delivery given

in Theorem 1. Under the constraint of one-shot delivery, we can divide each sub-file ,8,V into

sub-pieces. Recall that , :,8

3: ,V
represents the bits of ,3: decoded by user : from -8. Under

the constraint of one-shot delivery, we can divide the D2D caching problem into  shared-link

models. In the 8th shared-link model where 8 ∈ [ ], user 8 transmits -8 such that each user

: ∈ [ ] \ {8} can recover , :,8

3: ,V
for all V ⊆ ([ ] \ {:}) where 8 ∈ V.

A. Converse Bound for '∗
o(d,M)

Fix a demand vector d and a cache placement M. We first focus on the shared-link model

where user 8 ∈ [ ] broadcasts.

Consider a permutation of [ ] \ {8}, denoted by u = (D1, D2, ..., D −1), where user D1 is in

position 1 of u, user D2 is in position 2 of u, etc. We define a function 5 which maps the vectors

u into another vector 5 (u, d) based on the demand vector d,

5 (u, d) :=
(
D 9 : 9 ∈ [ − 1] and { 9 ′ ∈ [1 : 9 − 1] : 3D 9′ = 3D 9 } = ∅

)
.

In other words, to obtain 5 (u, d), for each demanded file, from the vector u we remove all the

users in u demanding this file except the user in the lowest position demanding this file. For

example, if u = (2, 3, 5, 4), d = (1, 2, 2, 3, 3), we have 3D1
= 3D2

= 2 and 3D3
= 3D4

= 3, and thus

5 (u, d) = (D1, D3) = (2, 5). It can be seen that 5 (u, d) contains #e(d\{:}) elements. Furthermore,

we denote the 9 th element of 5 (u, d) by 5 9 (u, d). For the permutation u, we can choose a set

of sub-pieces,
(
,

5 9 (u,d),8

3 59 (u,d) ,V9
: V9 ⊆ [ ]\{ 51 (u, d), . . . , 5 9 (u, d)}, 8 ∈ V9 , 9 ∈ [#e(d\{8})]

)
. By a

similar proof as [10, Lemma 1], we have the following lemma.

Lemma 1: For each permutation of [ ] \ {8}, denoted by u = (D1, D2, ..., D −1), we have

� (-8) ≥
∑

9∈[#e (d\{8 })]

∑

V9⊆[ ]\{ 51 (u,d),..., 5 9 (u,d)}:8∈V9

|,
5 9 (u,d),8

3 58 (u,d) ,V9
|. (6)

Considering all the permutations of [ ] \ {8} and all 8 ∈ [ ], we sum the inequalities in form

of (6) to obtain,

( − 1)!
(
� (-1) + . . . + � (- )

)
≥

∑

:∈[ ]

∑

V⊆[ ]\{:}

∑

8∈V

0
:,8

V
|,

:,8

3: ,V
|, (7)
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where 0
:,8

V
represents the coefficient of |,

:,8

3: ,V
| in the sum. In [12], we prove the following

lemma.

Lemma 2: 0
:,81
V

= 0
:,82
V

, for each 81, 82 ∈ V.

From Lemma 2, we define 0:
V

=
0
:,8

V

( −1)!
for all 8 ∈ V. Hence, from (7) we have

'∗
o(d,M)� ≥

(
� (-1) + . . . + � (- )

)
(8)

≥
∑

:∈[ ]

∑

V⊆[ ]\{:}

0:V |,3: ,V | (9)

where in (9) we used

∑

8∈V

|, :,8

3: ,V
| ≥ |,3: ,V |. (10)

Remark 4: To derive the converse bound under the constraint of uncoded cache placement

in [2], [11], the authors consider all the demands and all the permutations and sum the

inequalities together. By the symmetry, it can be easily checked that in the summation expression,

the coefficient of subfiles known by the same number of users is the same. However, in our

problem, notice that (8) and (10) only hold for one demand. So each time we should consider

one demand and let the coefficients of � (-:) where : ∈ [ ] be the same. Meanwhile, for each

demand, we also should let the cofficients in Lemma 2 be the same. However, for each demand,

the  shared-link models are not the symmetric. If we use the choice of the acyclic sets in [2],

[11] for each of the K shared-link models, we cannot ensure that for one demand, the coefficients

are the symmetric.

B. Converse Bound for '∗
ave, o

We focus on a type of demands s. For each demand vector d ∈ Ds, we lower bound '∗
o(d,M)

as (9). Considering all the demands in Ds, we then sum the inequalities in form of (9),

∑

d∈Ds

'∗
o(d,M)� ≥

∑

@∈[#]

∑

V⊆[ ]

1@,V |,@,V | (11)

where 1@,V represents the coefficient of |,@,V |. By the symmetry, it can be seen that 1@1,V1
=

1@2,V2
if |V1 | = |V2 |. So we let 1C := 1@,V for each @ ∈ [#] and V ⊆ [ ] where |V| = C.

Hence, from (11) we get

|Ds |�Ed∈Ds
['∗

o(d,M)] =
∑

d∈Ds

'∗
o(d,M)� ≥

∑

C∈[0: ]

1CGC (12)
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where we define GC :=
∑
@∈[#]

∑
V⊆[ ]:|V |=C |,@,V |. The value of 1C is found as (see [12])

1C =
|Ds |

( ∑
8∈[ ]

( −1

C

)
−

( −#e (d\{8 })−1

C

) )

C#
( 
C

) . (13)

We take (13) into (12) to obtain

Ed∈Ds
['∗

o(d,M)] ≥
∑

C∈[0: ]

( −1

C

)
− 1

 

∑
8∈[ ]

( −#e (d\{8 })−1

C

)

( −1

C−1

)
#�

GC . (14)

We also have the constraint of file size
∑
C∈[0: ] GC = #�, and the constraint of cache size

∑
C∈[1: ] CGC ≤  "�.

We let AC,s :=
( −1

C )−
1

 

∑
8∈[ ] (

 −#e (d\{8 })−1

C
)

( −1

C−1 )#�
. Similar to [2], we can lower bound (14) using

Jensen’s inequality and the monotonicity of Conv(AC,s),

Ed∈Ds
['∗

o(d,M)] ≥ Conv(AC,s). (15)

So we have

min
M
Ed∈Ds

['∗
o(d,M)] ≥ min

M
Conv(AC,s) = Conv(AC,s). (16)

Considering all the demand types and from (16), we have

'∗
ave, o ≥ Es

[
min
M
Ed∈Ds

['∗
o(d,M)]

]
≥ Es [Conv(AC,s)] . (17)

Since AC,s is convex, we can change the order of the expectation and the Conv in (17), to obtain

Theorem 1. Similarly, we can derive the converse bound on the worst-case load.

VI. NUMERICAL EVALUATIONS AND CONCLUSIONS

We compare the load achieved by the presented one-shot scheme with the achievable load in

[5] and with the minimum achievable load for the shared-link model [2]. We also provide the

converse bounds in [5], [15].

In this work, we characterized the load-memory trade-off for cache-aided D2D networks under

the constraints of uncoded placement and one-shot delivery. We presented a caching scheme and

proved its exact optimality in terms of both average and peak loads. The presented scheme is

optimal within a factor of 2, when the constraint of one-shot delivery is removed [12].
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Fig. 1. # = 10,  = 20, worst-case demand
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