
The Asymptotic Complexity of Coded-BKW with
Sieving Using Increasing Reduction Factors

Erik Mårtensson
Dept. of Electrical and Information Technology

Lund University, Lund, Sweden
Email: erik.martensson@eit.lth.se

Abstract—The Learning with Errors problem (LWE) is one
of the main candidates for post-quantum cryptography. At
Asiacrypt 2017, coded-BKW with sieving, an algorithm combin-
ing the Blum-Kalai-Wasserman algorithm (BKW) with lattice
sieving techniques, was proposed. In this paper, we improve that
algorithm by using different reduction factors in different steps
of the sieving part of the algorithm. In the Regev setting, where
q = n2 and σ = n1.5/(

√
2π log22 n), the asymptotic complexity

is 20.8917n, improving the previously best complexity of 20.8927n.
When a quantum computer is assumed or the number of samples
is limited, we get a similar level of improvement.

I. INTRODUCTION

Given access to large-scale quantum computers, Shor’s al-
gorithm solves both the integer factoring problem and the dis-
crete logarithm problem in polynomial time. To remedy this,
National Institute of Standards and Technology (NIST) has an
ongoing competition to develop post-quantum cryptosystems
[1]. One of the main underlying mathematical problems in the
competition is the Learning with Errors problem (LWE).

The LWE problem was introduced by Regev in [2]. It has
some really nice features, such as a reduction from average-
case LWE instances to worst-case instances of hard lattice
problems. An application of LWE is Fully Homomorphic
Encryption (FHE) [3]. An important special case of LWE is
the Learning Parity with Noise problem (LPN), essentially a
binary version of LWE with Bernoulli distributed noise.

There are mainly three types of algorithms for solving the
LWE problem. For surveys on the concrete and asymptotic
complexity of these algorithms see [4] and [5] respectively.

The first type is the Arora-Ge algorithm, which was intro-
duced in [6], and then improved in [7]. This type of algorithm
is mostly applicable when the noise is too small for Regev’s
reduction proof to apply [2].

The second type of approach is lattice-based algorithms,
where LWE is transformed into a lattice problem and then
solved by methods like lattice-reduction, lattice sieving and
enumeration. Lattice-based algorithms are currently the fastest
algorithms in practice, and have the advantage of not needing
an exponential amount of samples. For more details see [4]
and the references therein.

The third type of approach is the Blum-Kalai-Wasserman
(BKW) set of algorithms. These will be the focus of this paper.

This work was supported by the Swedish Research Council (Grant No.
2015-04528).

The BKW algorithm was introduced in [8] as the first
sub-exponential algorithm for solving the LPN problem. It
was first used to solve the LWE problem in [9]. This was
improved in [10] using Lazy Modulus Switching (LMS).
Further improvements were made in [11], [12] by using a
varying step size and a varying degree of reduction. In [13]
coded-BKW with sieving was introduced, where lattice sieving
techniques were used to improve the BKW algorithm. The
full version in [14] improved the coded-BKW with sieving
algorithm by finding the optimal reduction factor used for
lattice sieving.

In this paper we further improve upon the coded-BKW with
sieving algorithm by increasing the reduction factor for each
step of the algorithm. We achieve a record low time complexity
of 20.8917n in the Regev setting; that is, when q = n2 and σ =
n1.5/(

√
2π log2

2 n). The previous best result was 20.8927n from
[14]. Also if a quantum computer is assumed or the number
of samples is limited we get a similar level of improvement.

The remaining parts of the paper are organized the following
way. We start off in Section II by introducing the LWE
problem. In Section III we go over the previous versions of the
BKW algorithm, when used for solving the LWE problem. In
Section IV we introduce the new algorithm and in Section V
we cover the asymptotic complexity of it and other algorithms
for solving LWE. We show our results in Section VI and
conclude the paper in Section VII.

II. PRELIMINARIES

Let us define the LWE problem.
Definition 1 (LWE):
Let n be a positive integer, q a prime. Let s be a uniformly

random secret vector in Znq . Assume access to m noisy scalar
products between s and known vectors ai, i.e.

zi = 〈ai, s〉+ ei,

for i = 1, . . . ,m. The small error terms ei are discrete
Gaussian distributed with mean 0 and standard deviation σ.
The (search) LWE problem is to find the secret vector s.

In other words, when solving LWE you have access to a
large set of pairs (ai, zi) and want to find the corresponding
secret vector s. In some versions there are restrictions on the
number of samples you have access to.

ar
X

iv
:1

90
1.

06
55

8v
2 

 [
cs

.C
R

] 
 1

7 
M

ay
 2

01
9



III. BKW

BKW was introduced as the first sub-exponential algorithm
for solving LPN (essentially LWE with q = 2) in [8]. It was
first used for solving LWE in [9].

A. Plain BKW

The BKW algorithm consists of two steps, dimension re-
duction and guessing.

1) Reduction: Map all the samples into categories, such
that the first b positions get canceled when adding/subtracting
a pair of a vectors within the same category.

Given two samples ([±a0,a1], z1) and ([±a0,a2], z2)
within the same category. By adding/subtracting the a vectors
we get

a1,2 = [0 0 · · · 0︸ ︷︷ ︸
b symbols

∗ ∗ · · · ∗].

By also calculating the corresponding z value we get
z1,2 = z1 ± z2. Now we have a new sample (a1,2, z1,2).
The corresponding noise variable is e1,2 = e1 ± e2. Thus
the variance of the new noise is 2σ2, where σ2 is the
variance of the originial noise. By going through all categories
and calculating a suitable amount of new samples we have
reduced the dimensionality of the problem by b, at the cost
of increasing the noise. If we repeat the reduction process t0
times we end up with a dimensionality of n− t0b, and a noise
variance of 2t0 · σ2.

2) Guessing: The final positions of the secret vector s
can be guessed and then each guess can be tested using
a distinguisher. The guessing procedure does not affect the
asymptotics, but is important for concrete complexity. The
guessing procedure was improved in [15] using the Fast
Fourier Transform (FFT).

B. Lazy Modulus Switching

The basic BKW algorithm was improved in [10] by Albrecht
et al. The main idea there was to map samples that, almost but
not completely, canceled each other, into the same category.
This technique is called Lazy Modulus Switching (LMS).

By doing this an extra error term gets added in each step.
The variance of this noise also doubles in each new reduction
step. However, LMS allows us to use a larger step size,
allowing us to solve larger LWE problems.

One problem with this version of the algorithm is that the
extra added noise of the earlier steps grows in size much more
than the noise of the later steps, leading to an uneven noise
distribution among the positions of the final samples used for
the guessing procedure.

C. Coded-BKW

The problem with the uneven noise distribution was
adressed independently in [11], [12]. The idea was to use a
small step size and almost reduce the positions in the a vectors
to 0 in the first step, and then gradually increase the step size
ni and use less strict reduction for each step.

In [11] different q-ary linear codes Ci with parameters [ni, b]
were used, to vary the strictness of reduction. That version
of BKW is called coded-BKW. For simplicity, consider the
first reduction step. Pick two samples, such that the first n1

positions of the a vectors map to the same codeword c0 in
C1. In other words, we can write

z1 = 〈[c0 + ê1,a1], s〉+ e1

z2 = 〈[c0 + ê2,a2], s〉+ e2,

where ê1 and ê2 have small Euclidean norms. We can get
a new sample by calculating

z1 − z2 = 〈[ê1 − ê2,a1 − a2], s〉+ e1 − e2.

Just like when using LMS, using this version of BKW adds
an extra noise term, but allows us to use larger step sizes.

D. Coded-BKW with Sieving

In [13] an idea for combining BKW with lattice sieving
techniques was introduced. Just like in [11], [12] in step i,
samples were mapped into categories based on the current
ni positions. Let Ni =

∑i
j=1 nj . The new idea was to only

add/subtract samples within a category such that also the
previous Ni−1 positions of the resulting a vector were equally
small. This could have been done by looking at all possible
pairs and picking only the ones with the smallest values in
these positions. However, a more efficient way of doing this
was to use lattice sieving techniques to find close pairs of
vectors within a category faster.

A micro picture of coded-BKW with sieving can be found
in Figure 1. After step i, the average magnitude of the first
Ni positions in the a vector is less than a constant B.

1) Using Different Reduction Factors: In [14] the idea of
finding an optimal reduction factor was introduced. Instead of
making sure the Ni positions currently considered are as small
as the Ni−1 positions in the previous step, they are made to
be γ times as large. Depending on the parameter setting the
optimal strategy is either to use γ < 1 or γ > 1, or in other
words to gradually decrease or increase the values in the a
vector. The final average magnitude is still less than the same
constant B.

The original coded-BKW with sieving algorithm from [13]
is the special case where γ = 1 and coded-BKW is the special
case where γ =

√
2.

For an illustration of how the different BKW algorithms
reduce the a vector, see Figure 2.

IV. CODED-BKW WITH SIEVING WITH INCREASING
REDUCTION FACTORS

The new idea in this paper is to use different reduction
factors γi in different steps i. The idea is that in the earlier
steps the sieving is cheap, and we can therefore use small
values of γi. Gradually the sieving procedure gets more and
more expensive, forcing us to increase the value of γi.

Assume that we take t2 steps of coded-BKW with sieving
in total and let γ1 = γs andγt2 = γf . We ended up choosing
an arithmetic progression, that is we let



ni

Ni−1 Ni

1. Coded Step

L1

...

Lj
...

LK

Lj
2. Sieving Step

Sj

1.
∥∥(a1 − a2)[Ni−1+1:Ni]

∥∥ < B
√
ni

2.
∥∥a[1:Ni]

∥∥ < B
√
Ni

Fig. 1. A micro picture of how one step of coded-BKW with sieving works. Slightly changed version of Figure 1 from [14]. Each sample gets mapped to
one list Lj out of K lists. Sieving is then applied to each list to form new lists Sj .

Plain BKW Coded-BKW With Sieving (γ = 1) With Sieving (γ < 1)

Fig. 2. A high-level illustration of how the different versions of the BKW algorithm work. The x-axis represents positions in the a vector, and the y-axis
depicts the average absolute value of the corresponding position. The blue color corresponds to positions that have not been reduced yet and the red color
corresponds to reduced positions. The last few positions are used for guessing. The figure is a modified version of Figures 3 and 8 from [14].

γi = γs +
γf − γs
t2 − 1

(i− 1).

We also tried a geometric and logarithmic progression of the
γi values, both leading to a slightly worse complexity. A power
progression lead to an expression that had to be estimated
numerically and resulted in almost exactly the same results as
the arithmetic progression.

V. ASYMPTOTIC COMPLEXITY

Asymptotically we let q = ncq and σ = ncs , where cq
and cs are constants. For most algorithms and settings the
asymptotic complexity of solving LWE is 2cn+o(n), where the
exponent c depends on cq and cs. We leave settings such as a
binary secret or a superpolynomial q for future research.

We will now quickly cover the asymptotic complexities
of the Arora-Ge algorithm, lattice-based algorithms and all
the previous versions of BKW, as a function of cq and cs.
Initially, the assumed setting is one with a classical computer
and an exponential amount of samples. Other settings will be
discussed later.

1) Complexity Exponent for Lattice Sieving: The value
λ(γ) for lattice sieving using a reduction factor γ is the best
available complexity exponent for doing lattice sieving. It
is (currently) calculated by doing the optimization from the
section about the total cost of sieving in [16], replacing the
angle π/3 by θ = 2 arcsin(γ/2) and replacing N = (4/3)n/2

by (1/ sin(θ))n. For γ = 1 we get λ ≈ 0.292.

2) Quantum Setting: If having access to a quantum com-
puter, Grover’s algorithm can be used to speed up the lattice



sieving, see [17], resulting in slightly improved complexity
exponents. For γ = 1 we get λ ≈ 0.265.

A. Arora-Ge and Lattice-based Methods

The Arora-Ge algorithm is polynomial when cs < 0.5
and superexponential when cs > 0.5, making it viable if
and only if cs is too small for Regev’s reduction proof to
apply [2]. Lattice-based algorithms can solve LWE with a
time complexity exponent of 2λcq/(cq − cs + 1/2)2, using
an exponential amount of memory [5].

B. Plain and Coded BKW

The time and space complexity for solving LWE using plain
BKW is cq/(2(cq − cs) + 1) [9], and using Coded-BKW is
(1/cq + 2 ln(cq/cs))

−1 [12].

C. Coded-BKW with sieving

The time (and space) complexity of solving the LWE
problem using coded-BKW with sieving gets calculated by
solving increasingly difficult optimization problems. In both
Theorem 1 and 2, the parameter α decides how large part of
the samples should be pre-processed with plain BKW steps.

Theorem 1: The time and space complexity of coded-BKW
with sieving and a constant value of the reduction factor γ, is
2cn+o(n), where c is the solution to the following optimization
problem.

minimize
α,γ

c(α, γ) =

(
2(cq − cs) + 1− α

cq
+

1

λ(γ)

(
1− cs

α log2 γ + cs
· exp(I(α, γ))

))−1

subject to 0 ≤ α ≤ 2(cq − cs) + 1,

0 < γ ≤
√

2.

Here, we have

I(α, γ) =

∫ α

0

log2 γ − λ(γ)

t log2 γ + cs
dt.

By setting γ = 1 we get (a restatement of) the complexity
of the original coded-BKW with sieving algorithm [13].

Proof: The theorem is a slight restatement of Theorem
7 from [14], to make it more similar to Theorem 2 of this
paper. Theorem 7 from [14] includes both the proof and the
underlying heuristic assumptions the proof is based on.

D. Coded-BKW with Sieving with Increasing Reduction Fac-
tors

The complexity of the new algorithm is covered in the
following theorem.

Theorem 2: The time and space complexity of coded-BKW
with sieving and an arithmetic progression of the γi values, is
2cn+o(n), where c is the solution to the following optimization
problem.

minimize
α,γs,γf

c(α, γs, γf ) =

(
2(cq − cs) + 1− α

cq
+∫ α

0

cs

(t · `(t) + cs)
2 · exp(I(t;α, γs, γf ))dt

)−1

subject to 0 ≤ α ≤ 2(cq − cs) + 1,

0 < γs < γf ≤
√

2.

Here, we have

I(t;α, γs, γf ) =

∫ t

0

log2 γ(s)− λ(γ(s))

s · `(s) + cs
ds,

and

γ(s) = γs +
α− s
α

(γf − γs),

`(s) =

(
γf ln(γf )− γ(t) ln(γ(t))

γf − γs
α

s
− 1

)
/ ln(2).

It should be mentioned that the objetive function of the
optimization problem here would change slightly if another
method for the progression of the γi values was chosen.

Proof: A proof of Theorem 2 can be found in the
appendix.

E. Polynomial Number of Samples

With access to only a polynomial number of samples the
complexity exponent of lattice-based algorithms changes to
2λcq/(cq − cs)2 [5].

When using BKW with access to only a polynomial number
of samples, amplification is used to increase the number of
samples, at the cost of an increased noise. For plain and coded
BKW the complexity exponents change to cq/(2(cq−cs)) and
(1/cq + 2 ln(cq/cs))

−1 [5].
In the optimization problems in Theorem 1 and 2 the upper

limit of α changes to 2(cq − cs). For each theorem the
numerator in the first term of the objective function changes
to 2(cq − cs)− α.

VI. RESULTS

Let us use the Regev instances as a case study, in other
words, let cq = 2 and cs = 1.5 [2]. Table I shows
the complexity exponent for coded-BKW with sieving, with
γ = 1, an optimized constant γ and an arithmetic progression
of the γ values, for four different scenarios. Either we use
classical or quantum computers and either we have access to a
polynomial or an exponential number of samples. Notice how
using increasing reduction factors improves the complexity
exponent in all the scenarios.

In all the scenarios in the Regev setting BKW algorithms
beat lattice-based algorithms. For a picture comparing the
asymptotic complexity of the different BKW versions with
lattice-based algorithms in other settings, see Figure 5 and 7
in [14]. The new version constitutes an improvement compared
to the constant γ algorithm for all parameter pairs (cq, cs), as
can be seen in Figure 3.



Fig. 3. The improvement in the complexity exponent when going from a
constant γ to an arithmetic progression of the γ values

The source code used for calculating all the complexity
exponents in the different scenarios can be found on GitHub1.

TABLE I
THE ASYMPTOTIC COMPLEXITY EXPONENT FOR THE DIFFERENT

VERSIONS OF BKW IN THE REGEV SETTING.

Classical Quantum
Setting Setting

E
xp

on
en

tia
l

sa
m

pl
es 0.8951 (γ = 1)

0.8927 (γ constant)
0.8917 (γ arithmetic)

0.8856 (γ = 1)

0.8795 (γ constant)
0.8782 (γ arithmetic)

Po
ly

no
m

ia
l

sa
m

pl
es 1.6507 (γ = 1)

1.6417 (γ constant)
1.6399 (γ arithmetic)

1.6364 (γ = 1)

1.6211 (γ constant)
1.6168 (γ arithmetic)

VII. CONCLUSIONS

We have developed a new version of coded-BKW with
sieving, achieving a further improved asymptotic complexity.
We have also improved the complexity when having access to
a quantum computer or only having access to a polynomial
number of samples. All BKW algorithms solve a modified
version of the 2-list problem, where we also have a modular re-
duction and have a limited number of total steps. Generalizing
the optimization of the BKW algorithm from this perspective
is an interesting new research idea. Another possible further
research direction is looking at the complexity of different
versions of BKW when only having access to a limited amount
of memory, like was briefly started in [18]. Finally, it is

1https://github.com/ErikMaartensson/BKWIncreasingReductionFactors

interesting to investigate the concrete complexity of coded-
BKW with sieving and implement it to see when BKW starts
to beat lattice-type algorithms in practise.

ACKNOWLEDGMENT

The author would like to acknowledge Qian Guo, whose
idea of using a reduction factor γ 6= 1 this paper generalizes.
The author would also like to thank Thomas Johansson and
Paul Stankovski Wagner for fruitful discussions during the
writing of this paper.

REFERENCES

[1] National Institute of Standards and Technology, “The post-quantum
cryptography standardization process,” 2019, https://csrc.nist.gov/
projects/post-quantum-cryptography.

[2] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography,” in STOC. ACM Press, 2005, pp. 84–93.

[3] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
STOC. ACM Press, 2009, pp. 169–178.

[4] M. R. Albrecht, R. Player, and S. Scott, “On The Concrete Hardness Of
Learning With Errors,” J. Mathematical Cryptology, vol. 9, no. 3, pp.
169–203, 2015.

[5] G. Herold, E. Kirshanova, and A. May, “On the asymptotic complexity
of solving LWE,” Designs, Codes and Cryptography, vol. 86, no. 1, pp.
55–83, 2018.

[6] S. Arora and R. Ge, “New Algorithms for Learning in Presence of
Errors,” in Automata, Languages and Programming. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 403–415.

[7] M. R. Albrecht, C. Cid, J.-C. Faugère, and L. Perret, “Algebraic
algorithms for LWE,” Cryptology ePrint Archive, Report 2014/1018,
2014, http://eprint.iacr.org/2014/1018.

[8] A. Blum, A. Kalai, and H. Wasserman, “Noise-Tolerant Learning, the
Parity Problem, and the Statistical Query Model,” in STOC. ACM
Press, 2000, pp. 435–440.

[9] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “On
the complexity of the BKW algorithm on LWE,” Designs, Codes and
Cryptography, vol. 74, no. 2, pp. 325–354, 2015.

[10] M. R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “Lazy
Modulus Switching for the BKW Algorithm on LWE,” in PKC, ser.
LNCS, vol. 8383. Springer, Heidelberg, Germany, 2014, pp. 429–445.

[11] Q. Guo, T. Johansson, and P. Stankovski, “Coded-BKW: Solving LWE
Using Lattice Codes,” in CRYPTO, ser. LNCS, vol. 9215. Springer,
Heidelberg, Germany, 2015, pp. 23–42.

[12] P. Kirchner and P.-A. Fouque, “An Improved BKW Algorithm for
LWE with Applications to Cryptography and Lattices,” in CRYPTO, ser.
LNCS, vol. 9215. Springer, Heidelberg, Germany, 2015, pp. 43–62.

[13] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski, “Coded-BKW
with Sieving,” in ASIACRYPT, ser. LNCS, vol. 10624. Springer,
Heidelberg, Germany, 2017, pp. 323–346.

[14] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski Wagner, “On
the Asymptotics of Solving the LWE Problem Using Coded-BKW with
Sieving,” IEEE Transactions on Information Theory, 2019.

[15] A. Duc, F. Tramèr, and S. Vaudenay, “Better Algorithms for LWE and
LWR,” in EUROCRYPT, ser. LNCS, vol. 9056. Springer, Heidelberg,
Germany, 2015, pp. 173–202.

[16] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New Directions in
Nearest Neighbor Searching with Applications to Lattice Sieving,” in
SODA. ACM-SIAM, 2016, pp. 10–24.

[17] T. Laarhoven, M. Mosca, and J. van de Pol, “Finding shortest lattice
vectors faster using quantum search,” Designs, Codes and Cryptography,
vol. 77, no. 2, pp. 375–400, 2015.

[18] A. Esser, F. Heuer, R. Kübler, A. May, and C. Sohler, “Dissection-
BKW,” in CRYPTO, ser. LNCS, vol. 10992. Springer, Heidelberg,
Germany, 2018, pp. 638–666.

https://github.com/ErikMaartensson/BKWIncreasingReductionFactors
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
http://eprint.iacr.org/2014/1018


APPENDIX

Let us prove Theorem 2.
Proof: This proof is generalization of the proof of The-

orem 1, as proven in [14]. The proof structure is similar, but
the proof is also much longer. To avoid making it longer than
necessary, some notation is borrowed from the proof in [14].

Instead of using a constant reduction factor γ, we use a low
reduction factor in the first steps when the sieving is cheap,
and then gradually increase the reduction factor. Let γi denote
the reduction factor in step i. We have the constraints

0 < γ1 < γ2 < . . . < γt2 ≤
√

2.

Let λi = λ(γi) denote the corresponding complexity expo-
nent for nearest neighbor searching using the LSF algorithm.
By log we denote log2.

Later we will let γi increase arithmetically. Other progres-
sions also work, and as long as possible we will use a general
progression of the γi values.

We start by performing t1 plain BKW steps and then t2
coded-BKW with sieving steps with parameters (λi, γi) in the
ith of the latter steps. Let t2 = α log n + O(1) and t1 =
β log n = (2(cq − cs) + 1 − α) log n + O(1). We have the
constraint that 0 ≤ α ≤ 2(cq − cs) + 1. Like previously the
step size of the plain BKW steps is

b =
cn

cq log n
.

Let n1 be the length of the first coded-BKW with sieving
step. Let Bi denote the magnitude of the values at step i and
B denote the final magnitude of the values. Then we get

B1 =
B

Πt2
i=1γi

.

Therefore,

(
log(Πt2

i=1γi) + cs log(n)
)
· n1 = cn− λ1 · n1.

Thus,

n1 =
cn

cs log n+ log(Πt2
i=1γi) + λ1

=
cn

cs log n+ log(Πt2
i=1γi)

· (1 + Θ(log−1 n)).
(1)

Analogously with step 1, for step i we get

(
log(Πt2

j=iγj) + cs log(n)
)
· ni = cn− λi

i∑
j=1

nj . (2)

Use ?i to denote the expression within the outer parantheses
in the left hand-side of (2), for step i. Multiply (2) for step i
by λi−1, for step i− 1 by λi and subtract the expressions to
get

λi−1 ?i ni − λi ?i−1 ni−1 = cn(λi−1 − λi)− λi−1λini. (3)

Solving (3) for ni gives

ni =
λi ?i−1 ni−1 + cn(λi−1 − λi)

λi−1 ?i +λi−1λi
. (4)

Calculating nt2 from (4) gives

nt2 = n1

t2∏
i=2

λi?i−1

λi−1(?i + λi)
(5)

+ cn

t2∑
i=2

λi−1 − λi
λi−1(?i + λi)

t2∏
j=i+1

(
λj?j−1

λj−1(?j + λj)

)
. (6)

Let us next look at the term (6). First we rewrite the product
as

t2∏
j=i+1

(
λj?j−1

λj−1(?j + λj)

)
=

t2∏
j=i+1

λj
λj−1

(
?j−1

?j + λj

)

=
λt2
λi

t2∏
j=i+1

(
?j + log(γj−1) + λj − λj

?j + λj

)

=
λt2
λi

t2∏
j=i+1

(
1 +

log(γj−1)− λj
?j + λj

)
.

Use Πi to denote the product and ai to denote ?i + λi. We
can then write the term (6) as

cn

t2∑
i=2

λi−1 − λi
λi−1ai

λt2
λi

Πi

= cn

t2∑
i=2

1

ai

λt2
λi

Πi − cn
t2∑
i=2

1

ai

λt2
λi−1

Πi

= cn

(
1

at2
− 1

a2

λt2
λ1

Π2 +

t2−1∑
i=2

λt2
λi

(
Πi

ai
− Πi+1

ai+1

))
.

(7)

Next, we write the expression within paranthesis in the sum
in (7) as

Πiai+1 −Πi+1ai
aiai+1

=

Πi+1

((
1 + log(γi)−λi+1

log(Π
t2
j=i+1γj)+cs log(n)+λi+1

)
ai+1 − ai

)
aiai+1

=
Πi+1 (ai+1 + log(γi)− λi+1 − ai)

aiai+1

=
Πi+1 (λi+1 + log(γi)− λi+1 − (log(γi) + λi))

aiai+1

= − λi
aiai+1

Πi+1.

The product (5) can be written as

cn

a1

λt2
λ1

Π1.



Thus, adding the two parts (5) and (6) gives

cn

(
1

at2
− λt2

t2−1∑
i=1

Πi+1

aiai+1

)
. (8)

Next, we want to evaluate Πi+1, which can be rewritten as

t2∏
j=i+2

1 +
log(γj−1)− λj

log(Πt2
k=jγk) + cs log(n) + λj

= exp

ln

 t2∏
j=i+2

1 +
log(γj−1)− λj

log(Πt2
k=jγk) + cs log(n) + λj


= exp

(∑t2
j=i+2

log(γj−1)−λj

log(Π
t2
k=jγk)+cs log(n)+λj

+ Θ
(
log−2 n

))
.

Now the progression of the γi values needs to be specified.
Use an arithmetic progression from γ1 = γs up to γt2 = γf ,
where 0 < γs < γf ≤

√
2. That is, let

γi = γs + d(i− 1) = γs +
γf − γs
t2 − 1

(i− 1).

The idea now is to let n go towards infinity and let the sum
in (8) approach an integral. If we let n go towards infinity and
make a change of variables we get



t = (t2 − j + 1)/ log(n)

j = t2 − t log(n) + 1

dt = − 1

log(n)
dj

j = 1⇒ t =
t2

log(n)
=
α log(n)

log(n)
= α

j = t2 ⇒ t = 1/ log(n)→ 0, as n→∞

γj = γt2−t log(n)+1 = γs +
γf − γs
t2 − 1

(t2 − t log(n))

→ γs +
α− t
α

(γf − γs), as n→∞

λj = λ(γj)→ λ

(
γs
α− t
α

(γf − γs)
)
, as n→∞



.

Let us denote γ(t) = γs + α−t
α (γf − γs). We also want to

evaluate log(
∏t2
k=j(γk)). First of all we have

t2∏
k=j

γk = d · γj
d
· d ·

(γj
d

+ 1
)
· · · d ·

(γj
d

+ t2 − j
)

= dt2−j+1 Γ
(γj
d + t2 − j + 1

)
Γ
(γj
d

) .

(9)

Let us denote t′ = t log(n). Since γj/d = (γs + (j −
1)d)/d = γs/d+ j − 1 we can rewrite (9) as

dt
′ Γ

(
γs
d + t2

)
Γ
(
γs
d + t2 − t′

) = dt
′ Γ

(γf
d

)
Γ
(
γ(t)
d

) . (10)

The natural logarithm of the gamma function is equal to

ln (Γ(z)) = z(ln(z)− 1) +O(log(z)).

Thus, the dominant part of (10) can be written as

log

dt′ Γ
(γf
d

)
Γ
(
γ(t)
d

)


=

(
t′ ln(d) +

γf
d

(
ln
(γf
d

)
− 1
)

− γ(t)

d

(
ln

(
γ(t)

d

)
− 1

))
/ ln(2)

=

(
γf ln(γf )− γ(t) ln(γ(t))

d
− t′

)
/ ln(2)

=

(
γf ln(γf )− γ(t) ln(γ(t))

γf − γs
α

t
− 1

)
t log(n)/ ln(2).

(11)

Now, the sum in (8) approaches the following double
integral as n approaches infinity.∫ α

0

1

(t · `(t) + cs)
2 exp(I(t;α, γs, γf ))dt,

where

I(t;α, γs, γf ) =

∫ t

0

log(γ(s))− λ(γ(s))

s`(s) + cs
ds,

and

`(s) =

(
γf ln(γf )− γ(t) ln(γ(t))

γf − γs
α

s
− 1

)
/ ln(2).

Now, let i = t2 in (2) to get

N =

t2∑
j=1

nj =
cn− (log(γf ) + cs log(n))nt2

λf
. (12)

The dominant part of this expression can be written as

cn

∫ α

0

cs

(t · `(t) + cs)
2 exp(I(t;α, γs, γf ))dt.

Like in previous derivations t1 steps of plain-BKW with
step-size b is in total equal to

t1 · b = (2(cq − cs) + 1− α)
cn

cq
.

We have n = N + t1 · b. Using the expression for N from
(12) and solving for c finally gives us

(
2(cq−cs)+1−α

cq
+
∫ α

0
cs

(t·`(t)+cs)2
exp(I(t;α, γs, γf ))dt

)−1

.


	I Introduction
	II Preliminaries
	III BKW
	III-A Plain BKW
	III-A1 Reduction
	III-A2 Guessing

	III-B Lazy Modulus Switching
	III-C Coded-BKW
	III-D Coded-BKW with Sieving
	III-D1 Using Different Reduction Factors


	IV Coded-BKW with Sieving with Increasing Reduction Factors
	V Asymptotic Complexity
	V-1 Complexity Exponent for Lattice Sieving
	V-2 Quantum Setting

	V-A Arora-Ge and Lattice-based Methods
	V-B Plain and Coded BKW
	V-C Coded-BKW with sieving
	V-D Coded-BKW with Sieving with Increasing Reduction Factors
	V-E Polynomial Number of Samples

	VI Results
	VII Conclusions
	References
	Appendix

