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Abstract—Suppose there is a large file which should be
transmitted (or stored) and there are several (say, m) admissible
data-compressors. It seems natural to try all the compressors
and then choose the best, i.e. the one that gives the shortest
compressed file. Then transfer (or store) the index number of
the best compressor (it requires dlogme bits) and the compressed
file. The only problem is the time, which essentially increases due
to the need to compress the file m times (in order to find the best
compressor). We propose a method that encodes the file with the
optimal compressor, but uses a relatively small additional time:
the ratio of this extra time and the total time of calculation can
be limited by an arbitrary positive constant.

Generally speaking, in many situations it may be necessary
find the best data compressor out of a given set, which is often
done by comparing them empirically. One of the goals of this
work is to turn such a selection process into a part of the data
compression method, automating and optimizing it.

A similar result is obtained for the related problem of time-
series forecasting.

I. INTRODUCTION AND PRELIMINARIES

A. General description of the problems and results

Nowadays there are many efficient lossless data-
compressors (or archivers) which are widely used in
information technologies. These compressors are based on
different ideas and approaches, among which we note the
PPM universal code [1] (which is used along with the
arithmetic code [2]), the Lempel-Ziv (LZ) compression
methods [3], the Burrows-Wheeler transform [4] (which is
used along with the book-stack (or MTF) code [5]–[7]) and
the class of grammar-based codes [8], [9]. All these codes
are universal. This means that, asymptotically, the length of
the compressed file goes to the smallest possible value (i.e.
the Shannon entropy per letter), if the compressed sequence
is generated by a stationary source.

Currently, several dozens of archivers are known, each of
which has certain merits and it is impossible to single out one
of the best or even remove the worst ones. The main part of
them are universal codes (as far as a computer program can
meet asymptotic properties). Thus, the one faces the problem
of choosing the best method to compress a given file.

Suppose someone wants to compress a certain file in order
to store it (or transfer it). It seems natural to use for com-
pression the best compressor: the one which gives the shortest
compressed file. In such a case one can try to compress the
file in turn by all the compressors and then store the name of
the best compressor (as a prefix) and the file, compressed by
the best method. An obvious drawback of this approach is the

need to spend a lot of time in order to first compress the file
by all the compressors.

In this paper we show that there exists a method that
encodes the file with the optimal compressor, but uses a
relatively small additional time. Very briefly, the main idea of
the suggested approach is as follows: in order to find the best,
try all the archivers, but, when doing it, use for compression
only a small part of the file. Then apply the best archiver
for the compression of the whole file. It turns out, that under
certain conditions on the source of the files, the total time can
be made as close to the minimal as required. Thus, we call
such methods ”time-universal”. This scheme can be extended
to the problem of time-series forecasting, which is considered
in a framework of the Laplace approach (This approach is
shortly described in Appendix 2.)

In this paper we suggest time-universal methods for data
compression and forecasting. To the best of our knowledge, the
suggested approach to prediction and compression is new, but
close ideas have been considered in algorithmic information
theory and artificial intelligence, where they were developed
for solving other problems [10], [11].

B. The over-fitting problem

If someone wants to find the best method of prediction or
data compression, she/he should take into account the so-
called over-fitting problem. The over-fitting problem is the
phenomenon in which the accuracy of the model on unseen
data is poor whereas the training accuracy is nearly perfect.

In our case, there is a set of either data compressors F =
{ϕ1, ϕ2, ...} or predictors Π = {π1, π2, ...}. Besides, there is
a sequence x1x2...xn, n > 1, and one should choose a good
method from the set of predictors (or data compressors) based
on investigating of a short initial part x1x2...xl, l < n. In the
case of data compression, it is natural to choose such a method
ϕ̂ ∈ F , for which |ϕ̂(x1x2...xl)| is minimal. In the case of
forecasting, it is natural to choose such a predictor π̂ ∈ Π for
which the probability π̂(x1x2...xl) is maximal (the maximum
likelihood principle.)

In this situation the problem of over-fitting is as follows: if
x1...xl is a relatively short sequence and the set of methods F
is large or even infinite, it is possible that a performance of the
chosen method ϕ on x1...xl is good, but on the whole sequence
x1...xn it is bad. The over-fitting problem for prediction is
similar: the error of the chosen predictor on unseen data is
large whereas the training error is nearly zero.
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We consider a solution to this problem based on the ap-
proach developed in the theory of universal coding [12], [13],
but note that a similar solution can be obtained in the frame-
work of MDL (minimal description length) method suggested
by J. Rissanen [14], [15] and developed in numerous papers
[16]–[18]. For this we need such a probability distribution ω
on the set 1, 2, 3, ... for which all ωi > 0. For example, the
following:

ωk =
1

k(k + 1)
, k = 1, 2, 3, ... . (1)

(Clearly, this is a probability distribution, because ωk =
1/k−1/(k+1).) The described approach to problem of over-
fitting is to find a data-compressor ϕs for which − logωs +
|ϕs(x1x2...xl)| is minimal: − logωs + |ϕs(x1x2...xl)| =
mini=1,2,... (− logωi + |ϕi(x1x2...xl)|). Note that, if the set
of data-compressors is finite, it is possible to use an uniform
distribution ωi = 1/|F |, i = 1, ..., |F |. It is worth noting
that there is a natural interpretation of the considered solution.
The value d− logωie + |ϕi(x1x2...xn)| can be considered as
a codeword length, where the first part d− logωie encodes
the number i, whereas the second part ϕi(x1x2...xn) encodes
x1x2...xn by the data compressor ϕi.

In the case of prediction the solution of the over-fitting prob-
lem is similar: find a predictor πs for which ωsπs(x1x2...xl)
is maximal.

II. DESCRIPTION OF PROBLEMS AND THE MAIN
NOTATIONS

In this section we first consider the following problem:
There is a set of data compressors F = {ϕ1, ϕ2, ...} and let
x1x2... be a sequence of letters from a finite alphabet A whose
initial part x1...xn should be compressed by some ϕ ∈ F . Let,
as before, vi be the time spent on encoding one letter by the
data compressor ϕi and suppose that all vi are upper-bounded
by a certain constant v, i.e. supi=1,2,..., vi ≤ v . (Note, that
vi can be unknown beforehand, but v should be known.)

The goal is to find a good data compressor from F in order
to compress x1...xn in such a way that the total time spent
for all calculations and compressions does not exceed T (1 +
δ), δ > 0, where T = v n is the minimum time that must be
reserved for compression and δT is an additional time that
can be used to find the good compressor (among ϕ1, ϕ2, ...).
In order to accurately describe the problem, we suppose also
that there is a probability distribution ω = ω1, ω2, ... such that
all ωi > 0. The goal is to fined such ϕi that the value

d− logωie + |ϕi(x1x2...xn)|

is close to minimal. (Here the first part d− logωie is used
for encoding number i.) The decoder first finds i and then
x1x2...xn using the decoder corresponding ϕi.

Definition 1: We call any method that encodes a sequence
x1x2...xn, n ≥ 1, xi ∈ A, by the binary word of the length
d− logωje + |ϕj(x1x2...xn)| for some ϕj ∈ F , a time-

adaptive code and denote it by Φ̂δcompr. The output of Φ̂δcompr
is the following word:

Φ̂δcompr(x1x2...xn) =< ωi > ϕi(x1x2...xn) , (2)

where < ωi > is d− logωie-bit word that encodes i, whereas
the time of encoding is not grater than T (1 + δ).

If for a time-adaptive code Φ̂δcompr the following equation
is valid

lim
t→∞

Φ̂δcompr(x1...xt)/t = inf
1=1,2,...

lim
t→∞

ϕi(x1...xt)/t ,

this code is called time-universal.
The definition for the forecast is as follows: Let there be a

set of predictors Π = {π1, π2, ...}. By definition, the goal of
the time-adaptive predictor Φ̂δpred is to spend the extra time
δ T in order to find such πi that the value

ωi πi(x1x2...xn)

is close to maximal. By definition, the output of the time-
adaptive predictor Φ̂δpred is the following set of forecasts
(conditional probabilities):

{πj(a|x1...xn), a ∈ A},

for a certain πj ∈ Π. It will be convenient to define

Φ̂δpred(x1x2...xn) = ωi πj(x1...xn) . (3)

If for a predictor Φ̂δpred the following equation is valid

lim
t→∞

(− log Φ̂δpred(x1...xt))/t =

inf
1=1,2,...

lim
t→∞

(− log πi(x1...xt))/t ,

and, for any t, time of calculation is not grater than T (1 + δ)
this predictor is called time-universal.

Comment 1. Here and below we did not take into account
the time required for the calculation of logωi and some other
auxiliary calculations. If in a certain situation this time is not
negligible, it is possible to reduce T̂ in advance by the required
value.

III. FINITE NUMBER OF DATA-COMPRESSORS OR
PREDICTORS

Suppose that there is a file x1x2...xn and data compressors
ϕ1, ..., ϕm, n ≥ 1,m ≥ 1. Let, as before, vi be the time spent
on encoding one letter by the data compressor ϕi,

v = max
i=1,...,n

vi, T = n v , (4)

and let
T̂ = T (1 + δ) , δ > 0. (5)

The goal is to find the data compressor ϕj , j = 1, ...,m,
that compresses the file x1x2...xn in the best way in time T̂ .
Seemingly, the simplest method is as follows:

Step 1 Calculate r = bδT/vc.
Step 2 Compress the file x1x2...xr by ϕ1 and find the

length of compressed file |ϕ1(x1...xr)|, then , likewise, find
|ϕ2(x1...xr)|, |ϕ3(x1...xr)|, etc.



Step 3 Calculate s = arg mini=1,...,m |ϕi(x1...xr)|
Step 4 Compress the whole file x1x2...xn by ϕs and

compose the codeword 〈s〉 ϕs(x1...xn), where 〈s〉 is dlogme-
bit word with the presentation of s.

The decoding is obvious. Denote this method by Φδ1.
Comment 2. We considered the case of data compression.

It is possible to apply the described method for time-universal
prediction. In this case one should calculate πi(x1...xr) instead
of |ϕi(x1...xr)| and the third step should be changed as
follows:

Calculate s = arg maxi=1,...,m πi(x1...xr).
The asymptotic properties of the method Φδ1 are as follows:
Claim 1. Let there be an infinite sequence x1, x2, ... and

data compressors ϕ1, ..., ϕm such that there exist the following
limits

lim
n→∞

|ϕi(x1x2...xn)|/n , (6)

for all i = 1, ...,m. Then, for any δ > 0

lim
n→∞

|Φδ1(x1x2...xn)|/n = min
1,...,m

lim
n→∞

|ϕi(x1x2...xn)|/n ,

i.e. Φδ1 is time-universal.
Next we describe a more general method, for which Claim

1 is a special case.

IV. GENERAL METHOD

Generally speaking, it is possible to offer many reasonable
strategies for finding the optimal data compressor (or predic-
tor) for a given time. For the finite set of data-compressors
such a strategy can be as follows: try all the compressors on
a (very) short sequence x1x2...xk and choose a few of the
best ones. Then try those chosen data-compressors on a larger
sequence x1x2...xl, k < l, and choose the best which will
be used for compression of the whole sequence x1x2...xn.
Another reasonable strategy can be based on maximization of
the probability to determine the optimal data compressor as a
function of the extra time δ T and other parameters.

So, we can see that there are a lot of reasonable strategies
and each of them has a lot of parameters. That is why, it could
be useful to use multidimensional optimization methods, such
as machine learning, so-called deep learning, etc. Since this is
the first paper devoted to time-adaptive and time-universal data
compression and prediction, we consider only some general
conditions needed for time-universality.

For a time-adaptive data-compressor Φ̂ and x1...xt we
define for any ϕi

τϕi
(t) = max{r : ϕi(x1...xr) is caculated,

when Φ̂(x1...xn) is applied.

Theorem 1: If the following properties are valid:
i) for all i = 1, 2, ...

lim
t→∞

τi(t) =∞, (7)

ii) for any t the method Φ̂ uses such a compressor ϕs(t) for
which, for any i and r = min{τi, τs(t)}

− logωs(t) + |ϕs(t)(x1...xr)| ≤ − logωi+ |ϕi(x1...xr)| , (8)

iii) the limits limt→∞ ϕi(x1...xt)/t exist for all ϕi.
Then Φ̂(x1...xn) is time universal, i.e., in a case of data

compression,

lim
t→∞

Φ̂(x1...xt)/t = inf
i=1,2,...

lim
t→∞

|ϕi(x1...xt)|/t (9)

A proof is given in Appendix 1, but here we note that Claim
1 is a particular case of this theorem.

Comment 3. If the sequence x1x2... is generated by a
stationary source and all ϕi are universal codes, the property
iii) is valid with probability 1 (See, for example, [19]). Hence,
this theorem (and the claim 1) are valid for this case.

In general, the property iii) shows that the sequence under
consideration has some stability. In turn, it gives a possibility
to estimate characteristics of the whole sequence x1x2... based
on its initial part.

V. THE TIME-UNIVERSAL CODE FOR STATIONARY
ERGODIC SOURCES

In this subsection we describe a time-universal code (and
the corresponding predictor) for stationary sources. It is based
on optimal universal codes for Markov chains, developed
by Krichevsky [20], [21] and the twice-universal code [12].
Denote by Mi, i = 1, 2, ... the set of Markov chains with
memory (connectivity) i, and let M0 be the set of Bernoulli
sources. For stationary ergodic µ and an integer r we denote
by hr(µ) the r-order entropy (per letter) and let h∞(µ) be the
limit entropy; see for definitions [19].

Krichevsky [20], [21] described the codes ψ0, ψ1, ... which
are asymptotically optimal for M0,M1, ..., correspondingly. If
the sequence x1x2...xn , xi ∈ A, is generated by a source µ
∈Mi, the following inequalities are valid almost surely (a.s.):

hi(µ) ≤ |ψi(x1...xt)|/t ≤ hi(µ) + ((|A| − 1)|A|i + C)/t,
(10)

where t grows. (Here C is a constant.) The length of a
codeword of the twice-universal code ρ is defined as the
following ”mixture”:

|ρ(x1...xt)| = − log

∞∑
i=0

ωi+1 2−|ψi(x1...xt)| (11)

(It is well-known in Information Theory [19] that there exists
a code with such codeword lengths, because

∑
x1...xt∈At

2−|ρ(x1...xt)| = 1.) This code is called twice-universal because
for any Mi, i = 0, 1, ..., and µ ∈Mi the equality (10) is valid
(with different C). Besides, for any stationary ergodic source
µ a.s.

lim
t→∞

|ρi(x1...xt)|/t = h∞(µ). (12)

Let us estimate the time of calculations necessary when
using ρ. First, note that it suffices to sum a finite number of
terms in (11), because all the terms 2−|ψi(x1...xt)| are equal
for i ≥ t. On the other hand, the number of different terms



grows, where t→∞ and, hence, the encoder should calculate
2−|ψi(x1...xt)| for growing number i’s. It is known [12] that
the time spent for encoding one letter is close for different
codes ψi. Hence, the time spent for encoding one letter by the
code ρ grows to infinity, when t grows. The described below
time-universal code Ψδ has the same asymptotic performance,
but the time spent for encoding one letter is a constant.

In order to describe the time-universal code Ψδ we give
some definitions. Let, as before, v be an upper-bound of the
time spent for encoding one letter by any ψi, x1...xt be the
generated word,

T = t v, N(t) = δT/v = δ t,

m(t) = blog logN(t)c, s(t) = bN(t)/m(t)c . (13)

Denote by Ψδ the following method:
Step 1 Calculate m(t), s(t) and

|ψ0(x1...xs(t))|, |ψ1(x1...xs(t))|, ..., |ψm(t)(x1...xs(t))| .

Step 2 Find such a j that

− log |ψj(x1...xs(t))| = min
i=0,...,m(t)

|ψi(x1...xs(t))|.

Step 3 Calculate the codeword ψj(x1...xt) and output

Ψδ(x1...xt) =< j > ψj(x1...xt) ,

where < j > is the d− logωj+1e-bit codeword of j.
The decoding is obvious.
Theorem 2: Let x1x2... be a sequence generated by a

stationary source and the code Ψδ be applied. Then this code
is time-universal, i.e. a.s.

lim
t→∞

|Ψδ(x1...xt)|/t = inf
i=0,1,...

lim
t→∞

|ψi(x1...xt)|/t . (14)

In the case of prediction

lim
t→∞

(log Ψδ(x1...xt))/t = sup
i=0,1,...

lim
t→∞

(logψi(x1...xt))/t .

A proof is given in Appendix 1.

VI. CONCLUSION

Here we note some possible generalisations. We consider
mainly the case of off-line prediction and data compression,
where the whole sequence x1...xn can be investigated in order
to find a suitable data-compressor or predictor. There are
situations where the forecast should be made step-by-step,
i.e. xi+1 should be predicted based on x1...xt, xi+2 should
be predicted based on x1...xi+1 and so on. The suggested
approach and methods can be naturally extended to this case,
too, if we take into account the possibility to store results of
calculations done on previous steps.

Another generalization is connected with the need to know
in advance the speed of computing the forecast (or data
compression). In such a case the goal of time-universal method
can be the same: it should limit the time of calculation by
T (1 + δ), where T is (unknown beforehand) the time of the
optimal method (from a given set). In such a case the speeds
can be evaluated during the calculation.

VII. APPENDIX 1

Proof of Theorem 1. Define λi = limt→∞ |ϕi(x1...xt)|/t,
and let

λo = min
i
λi, lim

t→∞
|ϕo(x1...xt)|/t = λo . (15)

Let ε be any positive number. Having taken into account that
the set F is finite, from these definitions we can see that there
exists such t1 that

| |ϕi(x1...xt)|/t− λi| < ε for ϕi ∈ F, t > t1 . (16)

Taking into account the property i), we can see that there
exists such a number t2 for which τi(t) is defined for all ϕi
and t > t2, and denote t3 = max{t1, t2}. Take any n > t3
and suppose that a data-compressor ϕs was chosen, when Φ̂
was applied to x1x2...xn. Hence, from the property ii) we can
see that there exists t4 > t3, such that

(− logωs+|ϕs(x1...xt4)|)/t4 ≤ (− logωo+|ϕo(x1...xt4)|)/t4 .
(17)

From (15) we obtain the following two inequalities

(− logωs + |ϕs(x1...xt4)|)/t4 ≥ λs − ε ,

(− logωo + |ϕo(x1...xt4)|)/t4 ≤ λ0 + ε .

Having taken into account (17) we can see from the two latest
inequalities that λs − ε < λo + ε and, hence, λs < λo + 2ε.
Taking into account, that, by definition (15), λo < λs, we
obtain

λo ≤ λs < λo + 2ε . (18)

Since n > t1, we can see from (16) that

λs − ε < (− logωs + |ϕs(x1...xn)|)/n < λs + ε .

Taking into account that (− logωs + |ϕs(x1...xn)|)/n =
Φ̂(x1...xn)/n we obtain from (18) that

λo − ε < Φ̂(x1...xn)/n < λo + 3ε ,

and, hence,

λo − ε < lim
n→∞

Φ̂(x1...xn)/n < λo + 3ε .

It is true for any ε > 0, hence, limn→∞ Φ̂(x1...xn)/n = λo.
The theorem is proven.

Proof of Theorem 2. It is known in Information Theory [19]
that hr(µ) ≥ hr+1(µ) ≥ h∞(µ) for any r and (by definition)
limr→∞ hr(µ) = h∞(µ). Let ε > 0 and r be such an integer
that hr−h∞ < ε. From (V) we can see that there exists such
t1 that m(t) ≥ r if t ≥ t1. Taking into account (10) and (V),
we can see that there exists t2 for which a.s. ||ψr(x1...xt)|/t−
hr(µ)| < ε if t > t2. From the description of Ψδ (the step 3)
we can see that there exists such t3 > max{t1, t2} for which
a.s.

||ψr(x1...xt)|/t− h∞(µ)| ≤ ||ψr(x1...xt)|/t− hr(µ)|

+(hr(µ)− h∞(µ)) < 2ε ,



if t > t3. By definition,

|Ψδ(x1...xt)|/t ≤ (|ψr(x1...xt)| − logωr+1)/t.

Having taken into account that ε is an arbitrary number
and two latest inequalities as well as the fact that a.s.
infi=0,1,... limt→∞ |ψr(x1...xt)|/t = h∞(µ), we obtain (14).
The theorem is proven.

VIII. APPENDIX 2: THE LAPLACE APPROACH TO
PREDICTION

Let there be a source with unknown statistics which gener-
ates sequences x1x2 · · · of letters from some finite alphabet A.
Let the source generate a message x1 . . . xt−1xt, xi ∈ A, and
the following letter xt+1 needs to be predicted. This problem
can be traced back to Laplace who considered the problem of
estimation of the probability that the sun will rise tomorrow,
given that it has risen every day since Creation [22]. In our
notation the alphabet A contains two letters, 0 (“the sun
rises”) and 1 (“the sun does not rise” ); t is the number of
days since Creation, x1 . . . xt−1xt = 00 . . . 0.

Laplace suggested the following predictor:

L0(a|x1 · · ·xt) = (νx1···xt
(a) + 1)/(t+ |A|), (19)

where νx1···xt(a) denotes the count of letter a occurring
in the word x1 . . . xt−1xt. For example, if A = {0, 1},
x1...x5 = 01010, then the Laplace prediction is as fol-
lows: L0(x6 = 0|x1...x5 = 01010) = (3 + 1)/(5 + 2)
= 4/7, L0(x6 = 1|x1...x5 = (2 + 1)/(5 + 2) = 3/7. In
other words, 3/7 and 4/7 are estimations of the unknown
probabilities P (xt+1 = 0|x1 . . . xt = 01010) and P (xt+1

= 1|x1 . . . xt = 01010). (In what follows we will use the
shorter notation: P (0|01010) and P (1|01010)). We can see
that Laplace considered prediction as a set of estimations
of unknown (conditional) probabilities, because they contain
all information about the future behaviour of any stochastic
process. In general, we call as a predictor π any conditional
probabilities π(xi+1 = a| x1 = a1, ..., xn = an) defined for
all integers n, a ∈ A, a1, ..., an ∈ An.

Proximity of the theory of universal coding and prediction,
as well as asymptotically optimal methods of prediction in
a framework of the Laplace approach were found for the
cases of a finite alphabet and continues one in [13] and [23],
correspondingly.
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