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On Optimal Locally Repairable Codes with

Super-Linear Length
Han Cai, Ying Miao, Moshe Schwartz, and Xiaohu Tang

Abstract

Locally repairable codes which are optimal with respect to the bound presented by Prakash et al. are considered. New upper
bounds on the length of such optimal codes are derived. The new bounds both improve and generalize previously known bounds.
Optimal codes are constructed, whose length is order-optimal when compared with the new upper bounds. The length of the codes
is super-linear in the alphabet size.

Index Terms

Distributed storage, locally repairable code, packing, Steiner system.

I. INTRODUCTION

Large-scale cloud storage and distributed file systems, such as Amazon Elastic Block Store (EBS) and Google File System

(GoogleFS), have reached such a massive scale that disk failures are the norm and not the exception. In those systems, to

protect the data from disk failures, the simplest solution is a straightforward replication of data packets across different disks.

However, this solution suffers from a large storage overhead. As an alternative solution, [n, k] MDS codes are used as storage

codes, which encode k information symbols to n symbols and store them across n disks. Using MDS codes leads to a dramatic

improvement in redundancy compared with replication. However, for MDS codes, when one node fails, the system recovers it

at the cost of contacting k surviving symbols, thus complicating the repair process.

To improve the repair efficiently, in [14], locally repairable codes were introduced to reduce the number of symbols contacted

during the repair process of a failed node. More precisely, locally repairable codes ensure that a failed symbol can be recovered

by accessing only r ≪ k other symbols [14].

The original concept of locality only works when exactly one erasure occurs (that is, one node fails). Over the past few years,

several generalizations have been suggested for the definition of locality. As examples we mention locality with a single repair

set tolerating multiple erasures [25], locality with disjoint multiple repairable sets [33], [27], [29], [7], hierarchical locality

[28], and unequal locality [19]. For constructions of locally repairable codes with multiple or uniform repair sets, refer to [24],

[13], [4], [6] as examples.

In this paper, we focus on locally repairable codes with a single repair set that can repair multiple erasures locally [25]. By

ensuring δ − 1 > 2 redundancies in each repair set, this kind of locally repairable codes guarantees the system can recover

from δ − 1 erasures by accessing r surviving code symbols for each erasure. This is denoted as (r, δ)-locality.

Research on codes with (r, δ)-locality has proceeded along two main tracks. In the first track, upper bounds on the minimum

Hamming distance and the code length have been studied. Singleton-type bounds were introduced for codes with (r, δ)-locality

in [25], [30], [34]. In [5], a bound depending on the size of the alphabet was derived for the Hamming distance of codes

with (r, δ)-locality. Via linear programming, another bound related with the size of the alphabet was introduced in [1]. Very

recently, in [12], an interesting connection between the length of optimal linear codes with (r, 2)-locality and the size of the

alphabet was derived.

In the second research track, constructions for optimal locally repairable codes have been studied. In [26], a construction

of optimal locally repairable codes was introduced based on Gabidulin codes over a finite filed with size q = Θ((r + δ −
1)(rn)/(r+δ−1)). By analyzing the structure of repair sets, optimal locally repairable codes were also constructed in [30] with

q = Θ(
(

n
k

)

). In [32], a construction of optimal locally repairable codes with q = Θ(n) was proposed. In [31] and [35], optimal

locally repairable codes were constructed using matroid theory. The construction of [32] was generalized in [20] to include

more flexible parameters when n 6 q. Recently, in [22], cyclic optimal locally repairable codes with unbounded length were

constructed for δ = 2 and Hamming distance d = 3, 4. Finally, for the case of δ = 2 and Hamming distance d = 5, [12], [16],

[3] presented constructions of locally repairable codes that have optimal distance as well as order-optimal length n = Θ(q2).
The main contribution of this paper is the study of optimal linear codes with (r, δ)-locality and length that is super-linear

in the field size. We analyze the structure of optimal locally repairable codes. As a result, we derive a new upper bound on
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the length of optimal locally repairable codes for the case of δ > 2. Secondly, as a byproduct, we prove that the bound for

δ = 2 in [12] not only holds for some other cases (see Corollary 1 in this paper) besides the one mentioned in [12] but also

can be improved for the case d > r+ δ. Finally, we give a general construction of locally repairable codes with length that is

super-linear in the field size. Based on some special structures such as packings and Steiner systems, locally repairable codes

with optimal Hamming distances and order-optimal length Ω(qδ) with respect to the new bound (δ > 2) are obtained. This is

to say, the bound for δ > 2 is also asymptotically tight for some special cases.

The remainder of this paper is organized as follows. Section II introduces some preliminaries about locally repairable codes.

Section III establishes an upper bound for the length of optimal locally repairable codes for the case δ > 2. Section IV presents

a construction of optimal locally repairable codes with length n > q. Section V concludes this paper with some remarks.

II. PRELIMINARIES

We present the notation and basic definitions used throughout the paper. For a positive integer n ∈ N, we define [n] =
{1, 2, . . . , n}. For any prime power q, let Fq denote the finite field with q elements. An [n, k]q linear code C over Fq is a

k-dimensional subspace of Fn
q with a k×n generator matrix G = (g1,g2, . . . ,gn), where gi is a column vector of dimension

k for all i ∈ [n]. Specifically, it is called an [n, k, d]q linear code if the minimum Hamming distance is d. For a subset S ⊆ [n],
let |S| denote the cardinality of S, let 2S denote the set of all subsets of S, and define

Rank(S) = Rank(Span {gi|i ∈ S}).

In [10], Gopalan et al. introduce the following definition for the locality of code symbols. The ith (1 6 i 6 n) code symbol

ci of an [n, k, d]q linear code C is said to have locality r (1 6 r 6 k), if it can be recovered by accessing at most r other

symbols in C. More precisely, symbol locality can also be rigorously defined as follows.

Definition 1 ([10]): For any column gi of G with i ∈ [n], define Loc(gi) as the smallest integer r such that there exists

an (r + 1)-subset Ri = {i, i1, i2, . . . , ir} ⊆ [n] satisfying

gi ∈ Span(Ri \ {i}), i.e., gi =

r
∑

t=1

λtgit , λt ∈ Fq. (1)

Equivalently, for any codeword C = (c1, c2, . . . , cn) ∈ C, the ith component

ci =
r
∑

t=1

λtcit , λt ∈ Fq.

Define Loc(S) = maxi∈S Loc(gi) for any set S ⊆ [n]. Then, an [n, k, d]q linear code C is said to have information locality r
if there exists S ⊆ [n] with Rank(S) = k satisfying Loc(S) = r. Furthermore, an [n, k, d]q linear code C is said to have all

symbol locality r if Loc([n]) = r.

To guarantee that the system can locally recover from multiple erasures, say, δ − 1 erasures, the definition of locality was

generalized in [25] as follows.

Definition 2 ([25]): The jth column gj , j ∈ [n], of a generator matrix G of an [n, k]q linear code C is said to have

(r, δ)-locality if there exists a subset Sj ⊆ [n] such that:

• j ∈ Sj and |Sj | 6 r + δ − 1; and

• the minimum Hamming distance of the punctured code C|Sj obtained by deleting the code symbols ct (t ∈ [n] \ Sj) is at

least δ,

where the set Sj is also called a (r, δ)-repair set of gj . The code C is said to have information (r, δ)-locality if there exists

S ⊆ [n] with Rank(S) = k such that for each j ∈ S, gj has (r, δ)-locality. Furthermore, the code C is said to have all symbol

(r, δ)-locality if all the code symbols have (r, δ)-locality.

In [25] (for the case δ = 2 [10]), the following upper bound on the minimum Hamming distance of linear codes with

information (r, δ)-locality was derived.

Lemma 1 ([25]): For an [n, k, d]q linear code with information (r, δ)-locality,

d 6 n− k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1). (2)

Additionally, a locally repairable code is said to be optimal if its minimum Hamming distance attains this bound with equality.

The following lemma is very useful to determine the minimum Hamming distance.

Lemma 2: ([23]) An [n, k]q linear code C has minimum Hamming distance d if and only if d is the largest integer such

that

|S| 6 n− d

for every S ⊆ [n] with Rank(S) 6 k − 1.
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III. BOUNDS ON THE LENGTH OF LOCALLY REPAIRABLE CODES

The goal of this section is to derive upper bounds on the length of optimal locally repairable codes. Throughout this section,

let

n = (r + δ − 1)w +m, k = ru + v,

where δ > 2, 0 6 m 6 r + δ − 2, and 0 6 v 6 r − 1 are all integers.

For the bounds and the construction we shall require a simple combinatorial covering design which we now define.

Definition 3: Let n, T, s ∈ N. Also, let X be a set of cardinality n, whose elements are called points. Finally, let

B = {B1, B2, . . . , BT } ⊆ 2X be a set of blocks such that
⋃

i∈[T ] Bi = X , and for all i ∈ [T ], |Bi| 6 s and
⋃

j∈T\{i} Bj 6= X .

We then say (X ,B) is an (n, T, s)-essential covering family (ECF). If all blocks are the same size we say (X ,B) is a uniform

(n, T, s)-ECF.

An important quantity associated with any family of subsets, B ⊆ 2X , is its overlap, denoted D(B), and defined as

D(B) =
∑

B∈B

|B| −

∣

∣

∣

∣

∣

⋃

B∈B

B

∣

∣

∣

∣

∣

.

Obviously D(B) > 0 and D(B) is monotonically increasing. Additionally, D(B) = 0 if and only if its sets are pairwise

disjoint.

Particularly, we need to investigate the structures of repair sets in three lemmas, whose proofs are given in Appendix.

Lemma 3: Let (X ,B) be an (n, T, r + δ − 1)-ECF, and assume it is non-uniform or that D(B) 6= 0. Then for every

0 6 t 6 T , there exists a subset B′ ⊆ B, |B′| = t, such that

t(r + δ − 1)−

∣

∣

∣

∣

∣

⋃

B∈B′

B

∣

∣

∣

∣

∣

> min {r + δ − 1−m, ⌊t/2⌋} .

Lemma 4: For any [n, k]q linear code C with all symbol (r, δ)-locality, let Γ ⊆ 2[n] be the set of all possible (r, δ)-repair

sets. Then we can find a subset R ⊆ Γ such that ([n],R) is an (n, |R| , r + δ − 1)-ECF with |R| > ⌈k
r ⌉.

Lemma 5: Let C be an [n, k]q linear code with all symbol (r, δ)-locality. Let R be the ECF given by Lemma 4. Assume

V ⊆ R such that |V| 6 ⌈k
r ⌉ − 1. If ∆ is an integer such that

|V|(r + δ − 1)−

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

> ∆ > 0 (3)

and ⌈k+∆
r ⌉ > ⌈k

r ⌉, then there exists a set S ⊆ [n] with Rank(S) = k − 1 and

|S| > k +

(⌈

k

r

⌉

− 1

)

(δ − 1). (4)

We are now at a position to state and prove the first main tool in proving our bounds.

Theorem 1: Let C be an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where optimality is with respect to

the bound in Lemma 1. Let Γ ⊆ 2[n] be the set of all possible (r, δ)-repair sets. Write k = ru + v, for integers u and v, and

0 6 v 6 r − 1. If (r + δ − 1)|n, k > r, and additionally, u > 2(r − v + 1) or v = 0, then there exists a set of (r, δ)-repair

sets S ⊆ Γ, such that all R ∈ S are of cardinality |R| = r + δ − 1, and S is a partition of [n].

Proof. Let R ⊆ Γ be the ECF obtained in Lemma 4. If D(R) = 0 and |R| = r + δ − 1 for all R ∈ R, then set S = R the

theorem follows.

Otherwise, we have D(R) 6= 0 or |R| < r + δ − 1 for some R ∈ R. We distinguish between two cases. First, assume

k > 2r. By Lemma 4, we know that |R| > ⌈k/r⌉. According to Lemma 3 we can find a (⌈k
r ⌉ − 1)-subset V ⊆ R satisfying

|V|(r + δ − 1)−

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

> ∆ = min

{

r + δ − 1,

⌊

⌈k
r ⌉ − 1

2

⌋}

> 0.

Since u > 2(r−v+1) or v = 0, we have ⌈k+∆
r ⌉ > ⌈k

r ⌉. Therefore, by Lemma 5, there is a set S ⊆ [n] with Rank(S) = k−1
and

|S| > k +

(⌈

k

r

⌉

− 1

)

(δ − 1).

Thus, by Lemma 2

d 6 n− |S| 6 n− k −

(⌈

k

r

⌉

− 1

)

(δ − 1).
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This is a contradiction to the optimality of C with respect to the bound in Lemma 1.

In the second case, r < k 6 2r. We note that we only need to consider the case v = 0, namely, k = 2r, since if v 6= 0 then

the condition u > 2(r−v+1) > 2 implies that k = ur+v > 2r. We therefore assume k = 2r. If D(R) 6= 0 or |R| < r+δ−1
for some R ∈ R then we can find two distinct repair sets R,R′ ∈ R such that R ∩R′ 6= ∅ or min(|R|, |R′|) < r + δ − 1. In

either case, we have Rank(R ∪R′) < 2r = k.

We again distinguish between two cases depending on |R∩R′|. For the first case, if |R∩R′| 6 min(|R|, |R′|)− δ+1 then

we have Rank(R∪R′) 6 |R∪R′|− 2(δ− 1) < |R∪R′|− δ+1. In the second case, when |R∩R′| > min(|R|, |R′|)− δ+1,

assume without loss of generality, that |R∩R′| > |R′|−δ+1, then Rank(R∪R′) = Rank(R) 6 |R|−δ+1 < |R∪R′|−δ+1.
We now construct a set S ⊆ [n] by arbitrarily adding coordinates to R ∪ R′ ⊆ S such that Rank(S) = k − 1. Therefore,

|S| − (k − 1) > |R ∪R′| − Rank(R ∪R′) > δ − 1, or equivalently, |S| > k + δ − 1. Again by Lemma 2, we get

d 6 n− |S| 6 n− k − (δ − 1),

which is again a contradiction with the optimality of C with respect to the bound in Lemma 1. �

We take a short break to consider the special case of δ = 2. This special case was studied in [12] and an upper bound on

the length of optimal codes was obtained.

Theorem 2 ([12]): Let C be an optimal [n, k, d]q code with all symbol (r, 2)-locality. If d > 5, (r + 1)|n, and

n

r + 1
>

(

d− 2−

⌊

d− 2

r + 1

⌋)

(3r + 2) +

⌊

d− 2

r + 1

⌋

+ 1,

then

n 6







(d−a)(r+1)
4(q−1)r q

4(d−2)
d−a , if a = 1, 2,

r+1
r

(

d−a
4(q−1)q

4(d−3)
d−a + 1

)

, if a = 3, 4,

=







O
(

dq
4(d−2)
d−a −1

)

, if a = 1, 2,

O
(

dq
4(d−3)
d−a −1

)

, if a = 3, 4,

where a ≡ d (mod 4).

While we obtain the exact same bound as [12], our bound is an improvement since it has more relaxed conditions. In

particular, the bound of Theorem 2 requires n
r+1 > (d− 2−

⌊

d−2
r+1

⌋

)(3r+2)+ ⌊d−2
r+1 ⌋+1, i.e., k = Ω(dr2) whereas we require

k = Ω(r2). We now provide the exact claim:

Corollary 1: Let C be an optimal [n, k, d]q code with all symbol (r, 2)-locality. If d > 5, k > r, (r+1)|n, and additionally,

r|k or u > 2(r + 1− v) (equivalently, k > 2r2 + 2r − (2r − 1)〈k〉r), then

n 6







(d−a)(r+1)
4(q−1)r q

4(d−2)
d−a , if a = 1, 2,

r+1
r

(

d−a
4(q−1)q

4(d−3)
d−a + 1

)

, if a = 3, 4,

=







O
(

dq
4(d−2)
d−a −1

)

, if a = 1, 2,

O
(

dq
4(d−3)
d−a −1

)

, if a = 3, 4,

where a ≡ d (mod 4) and 〈k〉r denotes the least nonnegative integer congruent to k modulo r.

Proof. The desired result directly follows by replacing [12, Theorem 3.1] with Theorem 1, and continuing with the same proof

as [12, Theorem 3.2]. �

We bring another corollary that stems from Theorem 1. It slightly extends [30, Theorem 9], originally proved only for r|k,

and has a very similar proof which we give for completeness.

Corollary 2: Let C be an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where optimality is with respect to

the bound in Lemma 1. If k > r, n = w(r+δ−1), and additionally r|k or u > 2(r+1−v), then there are w pairwise-disjoint

(r, δ)-repair sets, R1, . . . , Rw ⊆ [n], such that for all 1 6 i 6 w, |Ri| = r + δ − 1, and the punctured code C|Ri is a linear

[r + δ − 1, r, δ]q MDS code.

Proof. We contend that the repair sets, S, from Theorem 1, satisfy the requirements. Thus, it remains to prove that for each

C|R, R ∈ S, the Hamming distance is exactly δ. Assume to the contrary, and without loss of generality, that d(C|R1) > δ.
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Note that
⋃

16i6w Ri = [n] means Rank(
⋃

16i6w Ri) = k and then w = n
r+δ−1 > ⌈k

r ⌉ since Rank(Ri) 6 r for 1 6 i 6 w.

Also recall our notation that v ≡ k mod r and 0 6 v < r. Fix some arbitrary set R′ ⊆ R⌈ k
r ⌉

, with |R′| = v if v 6= 0, and

|R′| = r if v = 0. Consider now the set

S = R′ ∪





⋃

16i6⌈ k
r ⌉−1

Ri



 .

By the Singleton bound we have,

Rank(S) 6 Rank(R′) +
∑

16i6⌈ k
r ⌉−1

Rank(Ri)

6

{

v +
∑

16i6⌈ k
r ⌉−1(r + δ − 1− d(C|Ri) + 1) < v + r(⌈k

r ⌉ − 1) = k, if v 6= 0,

r +
∑

16i6⌈ k
r ⌉−1(r + δ − 1− d(C|Ri) + 1) < r + r(⌈k

r ⌉ − 1) = k, if v = 0.

We also have

|S| =

{

v + (r + δ − 1)
(⌈

k
r

⌉

− 1
)

, if v 6= 0,

r + (r + δ − 1)
(⌈

k
r

⌉

− 1
)

, if v = 0,

= k +

(⌈

k

r

⌉

− 1

)

(δ − 1).

But now this contradicts the optimality of C by Lemma 2. �

We now extend our scope and consider locally repairable codes for the case of δ > 2. In the sequel, the discussion is based

on the structure of the repair sets given in Corollary 2.

Lemma 6: Let n = w(r+ δ− 1), δ > 2, k = ur+ v > r, and additionally, r|k or u > 2(r+1− v), where all parameters

are integers. If there exists an optimal [n, k, d]q linear code C with all symbol (r, δ)-locality, then there exists a [w(r+1), k, d′]q
linear code C′ with all symbol (r, 2)-locality (i.e., locality r), and d′ > 2 ⌊(d− 1)/δ⌋+ 1.

Proof. By Corollary 2, and up to a rearrangement of the code coordinates, the code C has parity-check matrix P of the

following form,

P =



















L(1) 0 0 . . . 0
0 L(2) 0 . . . 0

0 0 L(3) . . . 0
...

...
...

. . .
...

0 0 0 0 L(w)

H1 H2 H3 . . . Hw



















,

where L(i) = (Iδ−1, Pi) is a (δ − 1) × (r + δ − 1) matrix for all 1 6 i 6 w. Herein, without loss of generality, we assume

L(i) with canonical form for 1 6 i 6 w. For all 1 6 i 6 w, rewrite the (δ − 1)× (r + δ − 1) matrix L(i) = (Iδ−1Pi) as

L(i) =

(

L
(i)
1,1 L

(i)
1,2

L
(i)
2,1 L

(i)
2,2

)

,

where L
(i)
2,2 is a (δ− 2)× (δ− 2) matrix. It is easy to check that det(L

(i)
2,2) 6= 0 for all 1 6 i 6 w, since L(i) is a parity-check

matrix of an [r+δ−1, r, δ]q MDS code according to Corollary 2. By column linear transformations, the matrix P is equivalent

to


















Q1 0 0 . . . 0
0 Q2 0 . . . 0
0 0 Q3 . . . 0
...

...
...

. . .
...

0 0 0 0 Qw

H ′
1 H ′

2 H ′
3 . . . H ′

w



















, (5)

where

Qi =

(

Qi,1 = L
(i)
1,1 − L

(i)
1,2(L

(i)
2,2)

−1L
(i)
2,1 L

(i)
1,2

0 L
(i)
2,2

)

, (6)

H ′
i = (H ′

i,1 = Hi,1 −Hi,2(L
(i)
2,2)

−1L
(i)
2,1, H

′
i,2 = Hi,2) with Hi = (Hi,1, Hi,2). (7)
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Now consider the code C′ with parity-check matrix

P ′ =



















Q1,1 0 0 . . . 0
0 Q2,1 0 . . . 0
0 0 Q3,1 . . . 0
...

...
...

. . .
...

0 0 0 0 Qw,1

H ′
1,1 H ′

2,1 H ′
3,1 . . . H ′

w,1



















, (8)

where Qi,1 and H ′
i,1, for 1 6 i 6 w, are defined by (6) and (7), respectively.

Given a set of coordinates T = {t1, . . . , tℓ} ⊆ [r+ δ− 1], and given A = (A1, . . . , Ar+δ−1), we define the projection of A
onto T by ∆T (A) = (At1 , At2 , . . . , Atl) (where the order of coordinates in the projection will not matter to us). We emphasize

that Qi,1, for all 1 6 i 6 w, does not have a zero coordinate, since according to Corollary 2, ∆Sτ (Qi) has full rank, where

we define Sτ = {τ} ∪ {r + 2, r + 3, . . . , r + δ − 1}, τ ∈ [r + 1]. Thus, by (8), C′ is a code with all symbol (r, 2)-locality.

To complete the proof we only need to show d′ > 2t+1, where we define t = ⌊(d− 1)/δ⌋. Namely, we need to show that

any 2t columns of P ′ are linearly independent. A selection of 2t columns from P ′, denoted by T ′, has the following general

form,

∆T ′(P ′) ,



















∆T ′
1
(Q1,1) 0 0 . . . 0
0 ∆T ′

2
(Q2,1) 0 . . . 0

0 0 ∆T ′
3
(Q3,1) . . . 0

...
...

...
. . .

...

0 0 0 0 ∆T ′
w
(Qw,1)

∆T ′
1
(H ′

1,1) ∆T ′
2
(H ′

2,1) ∆T ′
3
(H ′

3,1) . . . ∆T ′
w
(H ′

w,1)



















,

where
∑

16i6w |T ′
i | = 2t. Since the locality of C′ guarantees recovery from any one erasure independently, the non-trivial

cases to consider are those where T ′
τi > 2 for 1 6 τi 6 w and 1 6 i 6 s, where s denotes the number of sets T ′

i with |T ′
i | > 2

and s 6 min(t, w).
With a coordinate selection T ′ from P ′ we naturally associate a coordinate selection T from P , defined by

Tτi = T ′
τi ∪ {r + 2, r + 2, . . . , r + δ − 1},

for 1 6 i 6 s, and with
∑

16i6s |Tτi | = 2t+s(δ−2) 6 tδ 6 d−1. Recall that if {r+2, r+3, . . . , r+δ−1} ⊂ T ⊆ [r+δ−1]
then (5), (6) and (7) imply that

(

∆T (L
(i))

∆T (Hi)

)

and

(

∆T (Qi)
∆T (H

′
i)

)

are rank equivalent, based on only invertible column linear transformations for 1 6 i 6 w. Note that the distance of C satisfies

d > δt + 1 > 2t + s(δ − 2) + 1, which implies that any
∑

16i6s |Tτi| 6 2t + s(δ − 2) columns of P have full rank of
∑

16i6s |Tτi |, i.e.,

∑

16i6s

|Tτi | =Rank



















∆Tτ1
(L(τ1)) 0 0 . . . 0

0 ∆Tτ2
(L(τ2)) 0 . . . 0

0 0 ∆Tτ3
(L(τ3)) . . . 0

...
...

...
. . .

...

0 0 0 0 ∆Tτs
(L(τs))

∆Tτ1
(Hτ1) ∆Tτ2

(Hτ2) ∆Tτ3
(Hτ3) . . . ∆Tτs

(Hτs)



















=Rank



















∆Tτ1
(Qτ1) 0 0 . . . 0
0 ∆Tτ2

(Qτ2) 0 . . . 0
0 0 ∆Tτ3

(Qτ3) . . . 0
...

...
...

. . .
...

0 0 0 0 ∆Tτs
(Qτs)

∆Tτ1
(H ′

τ1) ∆Tτ2
(H ′

τ2) ∆Tτ3
(H ′

τ3) . . . ∆Tτs
(H ′

τs)



















,

(9)
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where the second equality holds by (5), (6), (7) and the fact that {r+2, r+3, . . . , r+ δ− 1} ⊆ Tτi for 1 6 i 6 s. Therefore,

by (6), (7), and (9), we have

Rank (∆T ′(P ′)) = Rank





















∆T ′
τi
(Qτ1,1) 0 0 . . . 0

0 ∆T ′
τ2
(Qτ2,1) 0 . . . 0

0 0 ∆T ′
τ3
(Q′

τ3,1) . . . 0
...

...
... . . .

...

0 0 0 0 ∆T ′
τs
(Qτs,1)

∆T ′
τ1
(H ′

τ1,1) ∆T ′
τ2
(H ′

τ2,1) ∆T ′
τ3
(H ′

τ3,1) . . . ∆T ′
τs
(H ′

τs,1)





















=
∑

16i6s

|T ′
τi |,

where T ′
τi = Tτi \ {r + 2, r + 3, . . . , r + δ − 1} for 1 6 i 6 s. This is to say, the code C′ can recover from any 2t erasures,

hence, d′ > 2t+ 1. �

The following bound is derived from Lemma 6. The proof follows the same path as the proof of [12, Theorem 3.2]. We

bring it here for completeness.

Theorem 3: Let n = w(r+ δ− 1), δ > 2, k = ur+ v, and additionally, r|k or u > 2(r+1− v), where all parameters are

integers. Assume there exists an optimal [n, k, d]q linear code C with all symbol (r, δ)-locality, and define t = ⌊(d− 1)/δ⌋. If

2t+ 1 > 4, then

n 6

{

(t−1)(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t−1 , if t is odd,

t(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t , if t is even,

= O

(

t(r + δ)

r
q

(w−u)r−v
⌊t/2⌋

−1

)

,

where w − u can also be rewritten as w − u = ⌊(d− 1 + v)/(r + δ − 1)⌋.

Proof. By Lemma 6, we have a [w(r+1), k, d1 > 2t+1]q linear code with all symbol (r, 2)-locality and parity-check matrix

given by (8). Equivalently, there is a [w(r+1), k, d1 > 2t+1]q linear code C1 with all symbol (r, 2)-locality and parity-check

matrix given by

M1 =



















J 0 0 . . . 0
0 J 0 . . . 0
0 0 J . . . 0
...

...
...

. . .
...

0 0 0 0 J

H
(1)
1 H

(1)
2 H

(1)
3 . . . H

(1)
w



















, (10)

where J is the 1× (r + 1) all-ones matrix.

Let us denote the columns of H
(1)
i by H

(1)
i = (h

(1)
i,1 , h

(1)
i,2 , . . . , h

(1)
i,r+1). Based on M1 we can generate a matrix M2 defined

by

M2 =
(

H
(1)
1,2 H

(1)
2,2 H

(1)
3,2 . . . H

(1)
w,2

)

, (11)

where H
(1)
i,2 = (h

(1)
i,2 −h

(1)
i,1 , h

(1)
i,3 −h

(1)
i,1 , . . . , h

(1)
i,r+1−h

(1)
i,1 ). Since M1 is the parity-check matrix of a [w(r+1), k, d1 > 2t+1]q

linear code with all symbol (r, 2)-locality, by (10) and (11), we have that M2 is the parity-check matrix of a linear code C2,

with parameters [wr, k = ur + v, d2 > t+ 1]q.

Now we apply the Hamming bound [23] to C2. We distinguish between two cases, depending on the parity of t.
Case 1: t is odd. In this case, by the Hamming bound,

qur+v 6
qwr

∑

06i6 t−1
2

(

wr
i

)

(q − 1)i
6

qwr

(

wr
t−1
2

)

(q − 1)
t−1
2

6
qwr

(

wr
t−1
2

)
t−1
2

(q − 1)
t−1
2

,

i.e.,

wr 6
t− 1

2(q − 1)
q

2(w−u)r−2v
t−1 .

This is to say,

n 6
(r + δ − 1)(t− 1)

2r(q − 1)
q

2(w−u)r−2v
t−1 .
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Case 2: t is even. Similarly, by the Hamming bound, we have

qur 6
qwr

∑

16i6 t
2

(

wr
i

)

(q − 1)i
6

qwr

(

wr
t
2

)

(q − 1)
t
2

6
qwr

(

wr
t
2

)
t
2

(q − 1)
t
2

,

which means

n 6
t(r + δ − 1)

2r(q − 1)
q

2(w−u)r−2v
t .

By Lemma 1, C is optimal means that

d− 1 =

{

w(r + δ − 1)− ur − v − u(δ − 1), if v 6= 0,

w(r + δ − 1)− ur − (u− 1)(δ − 1), if v = 0,

i.e., w − u = ⌊(d− 1 + v)/(r + δ − 1)⌋. This completes the proof. �

Recalling Corollary 2 again, we can improve the performance of the bounds on the length of optimal locally repairable

codes with all symbol (r, δ)-locality for the case d > r + δ by the following corollary.

Corollary 3: Let n = w(r+δ−1), δ > 2, k = ur+v > r, and additionally, r|k or u > 2(r+1−v), where all parameters

are integers. If there exists an optimal [n, k, d]q linear code C with d > r + δ and all symbol (r, δ)-locality, then there exists

an optimal linear code C′ with all symbol (r, δ)-locality and parameters [n− ǫ(r + δ − 1), k, d′ = d − ǫ(r + δ − 1)]q, where

ǫ = ⌈(d− 1)/(r + δ − 1)⌉ − 1.

Proof. By Corollary 2, there are R1, R2, · · · , Rw such that C|Ri , 1 6 i 6 w, is an [r + δ − 1, r, δ]q MDS code. Note that

ǫ = ⌈(d− 1)/(r + δ − 1)⌉ − 1. The fact C is optimal means that

d = n− k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1), (12)

by Lemma 1. Recall that k > r, n = w(r+ δ− 1), and d > r+ δ. Thus, we have 1 6 ǫ 6 w− 1. Now let C′ be the punctured

code of C over the set W =
⋃

ǫ+16i6w−1 Ri, i.e., C′ = C|W . The fact C′|Ri = C|Ri for ǫ+ 1 6 i 6 w is an [r + δ − 1, r, δ]q
MDS code means that C′ has all symbol (r, δ)-locality. The fact C′ = C|W implies n′ = n−

∑

16i6ǫ |Ri| = n− ǫ(r+ δ − 1)
and

d′ > d−
∑

16i6ǫ

|Ri| = d− ǫ(r + δ − 1).

However, by Lemma 1, we have

d′ 6 n′ − k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1) = n− ǫ(r + δ − 1)− k + 1−

(⌈

k

r

⌉

− 1

)

(δ − 1) = d− ǫ(r + δ − 1),

where the last equality follows by (12). Thus, we have d′ = d− ǫ(r+ δ−1). Again by Lemma 1 the code C′ is also an optimal

linear code with all symbol (r, δ)-locality and parameters [n− ǫ(r + δ − 1), k, d′ = d− ǫ(r + δ − 1)]q, which completes the

proof. �

By Corollary 3, we can firstly reduce the optimal locally repairable code C into an optimal locally repairable code C′ with

d′ 6 r + δ and then apply Theorem 3 (δ > 2) and Corollary 1 (δ = 2) to get an upper bound for the length of C.

Corollary 4: Let n = w(r+δ−1), δ > 2, k = ur+v > r, and additionally, r|k or u > 2(r+1−v), where all parameters

are integers. If there exists an optimal [n, k, d]q linear code C with d > r + δ and all symbol (r, δ)-locality, then for δ = 2

n 6 ǫ(r + δ − 1) +











(d′−a)(r+1)
4(q−1)r q

4(d′−2)

d′−a , if a = 1, 2,

r+1
r

(

d′−a
4(q−1)q

4(d′−3)

d′−a + 1

)

, if a = 3, 4,

and for δ > 2

n 6 ǫ(r + δ − 1) +







(t−1)(r+δ−1)
2r(q−1) q

2(w′−u)r−2v
t−1 , if t is odd,

t(r+δ−1)
2r(q−1) q

2(w′−u)r−2v
t , if t is even,

where ǫ = ⌈(d − 1)/(r + δ − 1)⌉ − 1, d′ = d − ǫ(r + δ − 1), w′ = w − ǫ, a ≡ d′ (mod 4), and t = ⌊(d′ − 1)/(δ)⌋ so that

2t+ 1 > 4 holds.

In the next section, we will prove that the bound in Theorem 3 is asymptotically tight for some special cases, i.e., there

indeed exist some optimal linear codes with all symbol (r, δ)-locality and asymptotically optimal length. In addition, we will

also prove the condition 2t+ 1 > 4 is necessary, by constructing linear codes with length independent of the field size q for

the case 2t+ 1 6 4.
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IV. OPTIMAL LOCALLY REPAIRABLE CODES WITH SUPER-LINEAR LENGTH

In this section, we introduce a generic construction of locally repairable codes. Next, we demonstrate applications by this

construction by employing some combinatorial structures to generate optimal locally repairable codes with length n that is

super-linear in the field size q.

A. A general construction

In the subsection, to streamline the presentation we adopt a slightly different notation than the previous one: we use

n = w(r + δ − 1) and k = (w − 1)r + v for 0 < v 6 r, where all parameters are integers.

Construction A: Let the k information symbols be partitioned into w sets, say,

I(i) = {Ii,1, Ii,2, . . . , Ii,r}, for i ∈ [w − 1],

I(w) = {Iw,1, Iw,2, . . . , Iw,v}.

A linear code with length n is constructed by describing a linear map from the information I = (I1,1, . . . , Iw,v) ∈ F
k
q to

a codeword C(I) = (c1,1, . . . , cw,r+δ−1) ∈ F
n
q , thus the [n, k]q linear code is C = {C(I) : I ∈ F

k
q}. This mapping is

performed by the following three steps:

a) Step 1 – Partial parity check symbols: For 1 6 i 6 w − 1, let Si = {θi,t : 1 6 t 6 r + δ − 1} ⊆ Fq and let fi(x)
be the unique polynomial over Fq with deg(fi) 6 r − 1 that satisfies fi(θi,t) = Ii,t for 1 6 t 6 r. For 1 6 i 6 w − 1 and

1 6 t 6 r + δ − 1, set ci,t = fi(θi,t).
b) Step 2 – Auxiliary symbols: Let {αt : 1 6 t 6 r− v} ⊆ Fq \ (

⋃

16i6w−1 Si). For 1 6 i 6 w− 1, and 1 6 t 6 r− v,

define

ai,t =
fi(αt)

∏

θ∈Si
(αt − θ)

. (13)

c) Step 3 – Global parity check symbols: Let Sw = {θw,t : 1 6 t 6 r + δ − 1} ⊆ Fq \ {αt : 1 6 t 6 r − v} and let

fw(x) be the unique polynomial over Fq with deg(fw) 6 r − 1 that satisfies fw(θw,t) = Iw,t for 1 6 t 6 v, as well as
∑

16i6w

ai,t = 0 for 1 6 t 6 r − v, (14)

where aw,t =
fw(αt)∏

θ∈Sw
(αt−θ) for 1 6 t 6 r− v. Here, the polynomial fw(x) can be viewed as a polynomial over Fq determined

by Iw,j , 1 6 j 6 v and aw,t for 1 6 t 6 r − v. Thus, fw(x) is unique and well defined. Set cw,j = fw(θw,j), for

1 6 j 6 r + δ − 1.

Remark 1: At first glance there appears to be a distinction between code symbols ci,j with 1 6 i 6 w− 1 and those with

i = w. However, careful thought reveals that the code symbols that correspond to the sets Si for 1 6 i 6 w are essentially

symmetric, i.e., any w − 1 sets of code symbols can determine v code symbols of the remaining set according to (14).

Theorem 4: Let µ be a positive integer, and let Si ⊆ Fq , i ∈ [w] be the sets defined in Construction A. If every subset

R ⊆ {Si : 1 6 i 6 w}, |R| = µ, satisfies that for all S′ ∈ R,
∣

∣

∣

∣

∣

∣

S′ ∩





⋃

S∈R\{S′}

S





∣

∣

∣

∣

∣

∣

< δ, (15)

then the code C generated by Construction A is an [n, k, d]q linear code, with d > min{r − v + δ, (µ + 1)δ} and with all

symbol (r, δ)-locality, where n = w(r + δ − 1), k = (w − 1)r + v, 1 6 v 6 r, and all parameters are integers.

Proof. By Steps 1 and 3, it is easy to check that the code C generated by Construction A has all symbol (r, δ)-locality. By

Definition 2, the repair sets are the coordinates of the code symbols {fi(θ) : θ ∈ Si} for 1 6 i 6 w. To simplify the notation,

instead of define those coordinates, we directly use Si, 1 6 i 6 w to denote the repair sets in this proof. The code C is an

[n, k]q linear code with n = w(r+ δ− 1) and k = (w− 1)r+ v according to Construction A. To complete the proof, we only

need to show that d > d1 = min{r − v + δ, (µ+ 1)δ}, i.e., the code C can recover from any d1 − 1 erasures.

According to the all symbol (r, δ)-locality, it is sufficient to consider those repair sets containing strictly more than δ − 1
erasures, where for the code C the repair sets correspond to Si for 1 6 i 6 w. Since the maximum number of erasures we

should consider is d1 − 1, there are at most d1−1
δ repair sets which can have size larger than or equal to δ. Without loss of

generality, we assume that there are ℓ sets, S1, . . . , Sℓ, that contain at least δ erasures each, and those erasures are located in

coordinates Ei ⊆ Si for 1 6 i 6 ℓ 6 d1−1
δ . Denote |Ei| = τi > δ for 1 6 i 6 ℓ and

∑

16i6ℓ τi 6 d1 − 1 6 r − v + δ − 1. In

what follows, we prove the claim by induction on both ℓ and the total number of erasures
∑

16i6ℓ τi.
For the induction base consider the case of ℓ = 1 and δ 6 |E1| 6 d1 − 1. By Steps 1 and 3, we know fi(x) for

2 6 i 6 w, i.e., ai,t is available for 2 6 i 6 w and 1 6 t 6 r − v. By (14), a1,t for 1 6 t 6 r − v can be calculated.

Recall that |E1| 6 d1 − 1 6 r − v + δ − 1. We know at least v values f1(θ) for θ ∈ S1 \ E1, which together with
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f1(αt) = a1,t
∏

16j6r+δ−1(αt − θ1,j) for 1 6 t 6 r − v show that f1(x) can be recovered. Here we use the fact that

{αt : 1 6 t 6 r− v} ∩ S1 = φ, i.e.,
∏

16j6r+δ−1(αt − θ1,j) 6= 0. This is to say, we can recover all the code symbols f1(θ)
for θ ∈ E1. We emphasize that in this case, the Si’s are not required to satisfy (15), so the restriction on the size of the finite

field in this case is q > 2r + δ − v − 1.

For the induction hypothesis assume that for the case 1 6 ℓ = s < d1−1
δ and

∑

16i6s τi = T < d1 − 1, the code symbols

fi(θ) for θ ∈ Ei and 1 6 i 6 s are recoverable.

The induction step is divided into two cases. For the first case, assume an erasure pattern with
∑

16i6s τi = T +1 6 d1−1.

Note that if s = 1 the claim holds by the induction base. Therefore, we only consider s > 2. Since s < d1−1
δ 6 (µ+1)δ−1

δ , we

have s 6 µ. Thus, by (15),
∣

∣

∣

∣

∣

∣

∣

∣

Ei ∩









⋃

16j6s
j 6=i

Ej









∣

∣

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∣

∣

Si ∩









⋃

16j6s
j 6=i

Sj









∣

∣

∣

∣

∣

∣

∣

∣

6 δ − 1,

which means that the elements of each Ei may be indexed Ei = {ei,t : 1 6 t 6 τi} such that

{ei,t : 1 6 t 6 τi − δ + 1} ∩ Ej = φ for 1 6 i 6= j 6 s. (16)

By polynomial interpolation, fi(x) for 1 6 i 6 s with deg(fi(x)) 6 r − 1 is represented as

fi(x) =
∑

θ∈Si\{ei,j : τi−δ+26j6τi}

fi(θ)
∏

τi−δ+26j6τi

(θ − ei,j)

∏

θ1∈Si\{θ}

(θ − θ1)
·

∏

θ1∈Si

(x− θ1)

(x− θ)
∏

τi−δ+26j6τi

(x− ei,j)

=
∑

θi,t∈Si\Ei

ci,t
∏

τi−δ+26j6τi
(θi,t − ei,j)

∏

θ1∈Si\{θi,t}
(θi,t − θ1)

·

∏

θ∈Si
(x− θ)

(x− θi,t)
∏

τi−δ+26j6τi

(x− ei,j)

+
∑

16t6τi−δ+1

̟i,t

∏

θ∈Si
(x− θ)

(x− ei,t)
∏

τi−δ+26j6τi

(x− ei,j)

= gi(x) +
∑

16t6τi−δ+1

̟i,t

∏

θ∈Si
(x− θ)

(x− ei,t)
∏

τi−δ+26j6τi

(x− ei,j)
,

(17)

where gi(x) is determined by the accessible code symbols corresponding to Si \ Ei and

̟i,t = fi(ei,t)

∏

τi−δ+26j6τi
(ei,t − ei,j)

∏

θ1∈Si\{ei,t}
(ei,t − θ1)

,

with
∏

τi−δ+26j6τi
(ei,t − ei,j)/

∏

θ1∈Si\{ei,t}
(ei,t − θ1) being a nonzero constant for 1 6 i 6 s and 1 6 t 6 τi − δ + 1.

Combining (17) with (14), we have

(̟1,1, . . . , ̟1,τ1−δ+1, . . . , ̟s,τs−δ+1)M

=(̟1,1, . . . , ̟1,τ1−δ+1, . . . , ̟s,τs−δ+1)





















mλ1,1,1 mλ1,1,2 . . . mλ1,1,r−v

mλ1,2,1 mλ1,2,2 . . . mλ1,2,r−v

...
... . . .

...

mλ1,τ1−δ+1,1 mλ1,τ1−δ+1,2 . . . mλ1,τ1−δ+1,r−v

...
... . . .

...

mλs,τs−δ+1,1 mλs,τs−δ+1,2 . . . mλts,τs−δ+1
,r−v





















v1×(r−v)

=(w1, w2, . . . , wr−v),

(18)

where (w1, w2, . . . , wr−v) is a constant vector determined by the accessible code symbols with

wi = −
∑

16j6s

gj(αi)
∏

θ∈Sj
(αi − θ)

−
∑

s+16j6w

fj(αi)
∏

θ∈Sj
(αi − θ)

for 1 6 i 6 r − v,

v1 =
∑

16j6s(τi − δ + 1) 6 r − v − (s− 1)(δ − 1) < r − v and

mλi,j ,z =
1

(αz − ei,j)
∏

τi−δ+26t6τi
(αz − ei,t)

for 1 6 i 6 s, 1 6 j 6 τi − δ + 1, and 1 6 z 6 r − v.
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Recall that
∏

τi−δ+26j6τi
(ei,t − ei,j)/

∏

θ1∈Si\{ei,t}
(ei,t − θ1) is a nonzero constant for 1 6 i 6 s and 1 6 t 6 τi −

δ + 1. Thus, recovering the vector (f1(e1,1), . . . , f1(e1,τ1−δ+1), . . . , fs(es,τs−δ+1)) is equivalent to recovering the vector

(̟1,1, . . . , ̟1,τ1−δ+1, . . . , ̟s,τs−δ+1). Note that the equation (18) has at least one solution, namely, the solution that corre-

sponds to the original codeword. Thus, by (18), (f1(e1,1), . . . , f1(e1,τ1−δ+1), . . . , fs(es,τs−δ+1)) is recoverable if and only if

the solution is unique, i.e., the rank of M is v1, or equivalently, there exist v1 columns of M forming a non-singular sub-matrix.

Recall that by the induction hypothesis, the erasure pattern E1, E2, . . . , Es \ {es,τs−δ+1} is recoverable, i.e., there exists a

(v1 − 1)× (v1 − 1) matrix with

det





















mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv1−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv1−1

...
... . . .

...

mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv1−1

...
... . . .

...

mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv1−1





















6= 0. (19)

If the erasure pattern E1, E2, . . . , Es is not recoverable, then each v1 × v1 sub-matrix of M is singular. Thus, αi for

1 6 i 6 r − v are roots of h(x) = 0 with

h(x) = det





















mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv1−1 mλ1,1(x)
mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv1−1 mλ1,2(x)

...
... . . .

...

mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv1−1 mλ1,τ1−δ+1
(x)

...
... . . .

...

mλs,τs−δ+1,t1 mλs,τs−δ+1,t2 . . . mλs,τs−δ+1,tv1−1 mλs,τs−δ+1
(x)





















, (20)

where

mλi,j (x) =
1

(x− ei,j)
∏

τi−δ+26t6τi
(x− ei,t)

for 1 6 i 6 s and 1 6 j 6 τi − δ + 1. (21)

Note that h(x)
∏

16u6s

∏

θ∈Eu
(x− θ) is a polynomial with degree less than

∑

16i6s τi − δ 6 r− v + δ− 1− δ = r − v− 1
and αi for 1 6 i 6 r− v are its roots, hence h(x)

∏

16u6s

∏

θ∈Eu
(x− θ) ≡ 0. However, for 1 6 i, i1 6 s, 1 6 j 6 τi− δ+1

and 1 6 j1 6 τi1 − δ + 1, (16) means that ei,j 6∈ {ei1,j1} ∪ {ei1,t : τi − δ + 2 6 t 6 τi} when (i, j) 6= (i1, j1). It follows

that for 1 6 i 6 s and 1 6 j 6 τi − δ+1, ei,j is a root of mλi1,j1
(x)
∏

16u6s

∏

θ∈Eu
(x− θ) = 0 for all (i1, j1) 6= (i, j) with

1 6 i1 6 s and 1 6 j1 6 τi1 − δ+ 1. Again by (16), ei,j for 1 6 i 6 s and 1 6 j 6 τi − δ+ 1 only appears in one of Et for

1 6 t 6 s, i.e.,

(x − ei,j)

∣

∣

∣

∣

∏

16u6s

∏

θ∈Eu

(x− θ),

however,

(x − ei,j)
2 6

∣

∣

∣

∣

(
∏

16u6s

∏

θ∈Eu

(x− θ)),

for 1 6 i 6 s and 1 6 j 6 τi − δ + 1. By (21), we have that ei,j is not a root of mλi,j (x)
∏

16u6s

∏

θ∈Eu
(x − θ) = 0

for 1 6 i 6 s and 1 6 j 6 τi − δ + 1. Thus, the polynomials mλi,j (x)
∏

16u6s

∏

θ∈Eu
(x − θ) for 1 6 i 6 s and

1 6 j 6 τi − δ+1 are linearly independent over Fq . Therefore, h(x)
∏

16u6s

∏

θ∈Eu
(x− θ) ≡ 0 implies that the coefficients

of mλi,j (x)
∏

16u6s

∏

θ∈Eu
(x − θ) for 1 6 i 6 s and 1 6 j 6 τi − δ + 1 in h(x)

∏

16u6s

∏

θ∈Eu
(x − θ) are 0. This is to

say, the coefficient of mλs,τs−δ+1
(x)
∏

16u6s

∏

θ∈Eu
(x− θ) in h(x)

∏

16u6s

∏

θ∈Eu
(x− θ) is zero, i.e.,

det





















mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv1−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv1−1

...
... . . .

...

mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv1−1

...
... . . .

...

mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv1−1





















= 0,

which is a contradiction with (19). Thus, the erasure pattern E1, E2, . . . , Es is also recoverable.

For the second case of the induction step, assume ℓ = s+1 6 d1−1
δ sets and |Es+1| = δ, when T < d1 − δ 6 r− v. In this

case, by a similar analysis, we have s+ 1 6 µ, and thus we also have

{ei,t : 1 6 t 6 τi − δ + 1} ∩ Ej = φ for 1 6 i 6= j 6 s+ 1,



12

with Ei = {ei,t : 1 6 t 6 τi} for 1 6 i 6 s+ 1, and

(̟1,1, . . . , ̟1,τ1−δ+1, . . . , ̟s,τs−δ+1, ̟s+1,1)Ms+1

=(̟1,1, . . . , ̟1,τ1−δ+1, . . . , ̟s,τs−δ+1, ̟s+1,1)





















mλ1,1,1 mλ1,1,2 . . . mλ1,1,r−v

mλ1,2,1 mλ1,2,2 . . . mλ1,2,r−v

...
... . . .

...

mλ1,τ1−δ+1,1 mλ1,τ1−δ+1,2 . . . mλ1,τ1−δ+1,r−v

...
... . . .

...

mλs+1,1,1 mλs+1,1,2 . . . mλts+1,1
,r−v





















v2×(r−v)

=(w1, w2, . . . , wr−v),

where (w1, w2, . . . , wr−v) is a constant vector determined by the accessible code symbols, v2 =
∑

16j6s+1(τi − δ + 1) 6
T + δ − (s+ 1)(δ − 1) < r − v + 1− s(δ − 1) 6 r − v, and

mλi,j ,z =
1

(αz − ei,j)
∏

τi−δ+26t6τi
(αz − ei,t)

for 1 6 i 6 s + 1, 1 6 j 6 τi + δ − 1, and 1 6 z 6 r − v. Again by the induction hypothesis, there should exists a

(v2 − 1)× (v2 − 1) matrix with

det





















mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv2−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv2−1

...
... . . .

...

mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv2−1

...
... . . .

...

mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv2−1





















6= 0, (22)

i.e., the erasure pattern E1, E2, . . . , Es, (Es+1 \ {es+1,1}) is recoverable. Here, fs+1(θ) for θ ∈ Es+1 \ {es+1,1} is recovered

by the (r, δ)-locality independently, since |Es+1 \{es+1,1}| = δ−1. If E1, E2, . . . , Es+1 is not recoverable, then all the v2×v2
sub-matrices of Ms+1 are singular. Therefore, by the same analysis, the polynomials mλi,j (x)

∏

16u6s+1

∏

θ∈Eu
(x − θ) for

1 6 i 6 s+1 and 1 6 j 6 τi−δ+1 are linearly independent over Fq . This is also a contradiction with (22) and all the v2×v2
sub-matrices of Ms+1 are singular, by the same analysis as the previous case. Thus, the erasure pattern E1, E2, . . . , Es+1 is

also recoverable.

Therefore, by mathematical induction, the distance of C satisfies d > d1, which completes the proof. �

B. Explicit locally repairable codes with n > q

According to the bound of Lemma 1, the minimal Hamming distance of the code C generated by Construction A, i.e,

n = w(r + δ − 1) and k = (w − 1)r + v for 0 < v 6 r, is at most r − v + δ. In fact, the key point in applying Theorem 4

is to find sets S1, . . . , Sw of evaluation points, that both allow optimal code construction with the minimal Hamming distance

d = r − v + δ as well a long code. In this subsection, based on Construction A, we analyze special structures of S1, . . . , Sw

that can yield optimal locally repairable codes with n > q.

Two trivial optimal locally repairable codes with n > q

Corollary 5: Let n = w(r+ δ− 1), k = (w− 1)r+ v, 1 6 v 6 r, be integers. If r− v 6 δ and q > 2r+ δ− v− 1, then

there exists an optimal [n, k, d = r − v + δ]q linear code with all symbol (r, δ)-locality, where optimality is with respect to

the bound in Lemma 1.

Proof. By Lemma 1, a code with the given n and k is optimal if d = r − v + δ. Since r − v 6 δ, in the proof of Theorem 4

we only need to consider the case that there is only one repair set containing strictly more than δ − 1 erasures, which easily

holds. �

Remark 2: We remark that in the case described in Corollary 5, we can let Si = Sj for 1 6 i 6= j 6 w. In this case,

r − v 6 δ and q > 2r + δ − v − 1 are sufficient for the code generated by Construction A to be optimal. This is to say, the

value w is independent of q. Thus, the length n = w(r + δ − 1) of the code C can be as long as we wish. This result is

already known for the case δ = 2 and d 6 4 (see [22]), and is, to the best of our knowledge, new for the case of δ > 2. This

result also shows that the condition 2t+ 1 > 4 is necessary for Theorem 3, since the code length is unbounded for the case

2t+ 1 6 4, i.e., t 6 1 corresponding to the case r − v 6 δ, where t = ⌊(d− 1)/δ⌋ = ⌊ r+v+δ−1
δ ⌋.
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Corollary 6: Let n = w(r + δ − 1), k = (w − 1)r + v, 1 6 v 6 r, be integers. Let S ⊆ Fq \ {αi : 1 6 i 6 r − v},

|S| = δ − 1, be a fixed subset. Take Si ⊆ Fq \ {αi : 1 6 i 6 r − v} for 1 6 i 6 w. If Si ∩ Sj ⊆ S for 1 6 i 6= j 6 w, then

the code C generated by Construction A is an optimal [n, k, d = r − v + δ]q linear code with all symbol (r, δ)-locality, where

optimality is with respect to the bound in Lemma 1.

Corollary 7: Let n = w(r + δ − 1), k = (w − 1)r + v, 1 6 v 6 r, be integers. If q > (w + 1)r + δ − v − 1, then there

exists an optimal [n, k, d = r−v+δ]q linear code with all symbol (r, δ)-locality, where optimality is with respect to the bound

in Lemma 1.

Proof. When q > (w + 1)r + δ − v − 1, those Si’s in Corollary 6 can be easily constructed by letting |S| = δ − 1 and

Si ∩ Sj = S for all 1 6 i 6= j 6 w, which form a sunflower with center S. �

Remark 3: When w > 1+ r−v
δ−1 , the optimal linear codes with all symbol (r, δ)-locality in Corollary 7 are all with n > q.

In [20], optimal locally repairable codes are also constructed with flexible parameters. However, in [20] the construction is

based on the so-called good polynomials [32], [21] and n 6 q.

Optimal locally repairable codes with n > q based on union-intersection-bounded family

A combinatorial structure that captures the interaction between the evaluation-point sets, S1, . . . , Sw, in Construction A is

a union-intersection-bounded family [11]. Its definition is now given:

Definition 4 ([11]): Let n1, τ, δ, t, s be positive integers such that n1 > τ > 2, τ > δ and t > s. The (s, t; δ)-union-

intersection-bounded family (denoted by (s, t; δ)-UIBF(τ, n1)) is a pair (X ,S), where X is a set of n1 elements (called points)

and S ⊆ 2X is a collection of τ -subsets of X (called blocks), such that any s+t distinct blocks A1, A2, . . . , As, B1, B2, . . . , Bt ∈
S satisfy

∣

∣

∣

∣

∣

∣





⋃

16i6s

Ai





⋂





⋃

16i6t

Bi





∣

∣

∣

∣

∣

∣

< δ.

The following corollary follows from Theorem 4 and Lemma 1.

Corollary 8: Let n = w(r + δ − 1), k = (w − 1)r + v, 1 6 v 6 r, be integers, and let µ be a positive integer with

µδ > r − v. If (Fq \ {αt : 1 6 t 6 r − v},S = {Si : 1 6 i 6 w}) is a (1, µ − 1; δ)-UIBF(r + δ − 1, q − r + v) then

the code C generated by Construction A is an optimal [n, k, d = r − v + δ]q linear code with all symbol (r, δ)-locality, where

optimality is with respect to the bound in Lemma 1.

Proof. By Definition 4, each µ-subset R ⊆ S satisfies that for any S′ ∈ R,
∣

∣

∣

∣

∣

∣

S′
⋂





⋃

S∈R\{S′}

S





∣

∣

∣

∣

∣

∣

< δ.

By Lemma 1 we have d 6 r − v + δ. Thus, the desired conclusion follows from Theorem 4 and Lemma 1. �

In [11], a lower bound on the size of (1, µ− 1; δ)-UIBF(r + δ − 1, q) is given, which immediately implies a lower bound

on the length of the codes generated by Construction A according to Corollary 8.

Lemma 7 ([11]): Let µ, δ, r, n1 be positive integers. Then there exists a (1, µ − 1; δ)-UIBF(r + δ − 1, n1) (X ,S) with

|S| = Ω(n1
δ

µ−1 ), where r, δ, µ are regarded as constants.

Based on Corollary 8 and Lemma 7, we have the following:

Corollary 9: Let n = w(r + δ − 1), k = (w − 1)r + v, 1 6 v 6 r, be integers, and let µ be a positive integer with

µδ > r− v. Then Construction A can generate an optimal (with respect to the bound in Lemma 1) [n, k, d = r− v+ δ]q linear

code C with all symbol (r, δ)-locality and length n = Ω(q
δ

µ−1 ) where we regard r, δ, and µ as constants.

Optimal locally repairable codes with n > q based on packings or Steiner systems

In the following, we consider some special sufficient conditions for (15) to construct optimal linear codes with all symbol

(r, δ)-locality.

Theorem 5: Let n = w(r+δ−1), k = (w−1)r+v, 1 6 v 6 r, be integers, and let a be a positive integer. If |Si∩Sj| 6 a

for 1 6 i 6= j 6 w and r − v 6 δ2

a , then the code C generated by Construction A is an optimal [n, k, d = r − v + δ]q linear

code with all symbol (r, δ)-locality, where optimality is with respect to the bound in Lemma 1.

Proof. Denote S = {S1, . . . , Sw}, and let µ = ⌈ δ
a⌉. Then the fact that |Si ∩Sj | 6 a means that for any µ-subset, R ⊆ S, and

for any S′ ∈ R, we have
∣

∣

∣

∣

∣

∣

S′ ∩





⋃

S∈R\{S′}

S





∣

∣

∣

∣

∣

∣

6 (µ− 1)a =

(⌈

δ

a

⌉

− 1

)

a 6 δ − 1.
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Since µδ > δ2

a > r − v, the conclusion follows by Theorem 4. �

Definition 5: ([8, VI. 40]) Let n1 > 2 be an integer and u a positive integer. A τ -(n1, t, 1)-packing is a pair (X ,S),
where X is a set of n1 elements (called points) and S ⊆ 2X is a collection of t-subsets of X (called blocks), such that each

τ -subset of X is contained in at most one block of S. Furthermore, if each τ -subset of X is contained in exactly one block

of S, then (X ,S) is also called a (τ, t, n1)-Steiner system.

The following corollary follows directly from Theorem 5.

Corollary 10: Let n1 = q− r+ v. If there exists a (τ +1)-(n1, r+ δ− 1, 1)-packing with blocks S and 0 6 r− v 6 δ2

τ ,

then there exists an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where n = |S|(r+ δ− 1), k = (|S|− 1)r+ v,

and d = r − v + δ.

The number of blocks of a packing is upper bounded by the following Johnson bound [17]:

Lemma 8 ([17]): The maximum possible number of blocks of a (τ + 1)-(n1, r + δ − 1, 1)-packing S is bounded by

|S| 6

⌊

n1

r + δ − 1

⌊

n1 − 1

r + δ − 2

⌊

n1 − 2

r + δ − 3
. . .

⌊

n1 − τ

r + δ − 1− λ

⌋

. . .

⌋⌋⌋

.

Thus, the number of blocks for a (τ + 1)-(n1, r + δ − 1, 1)-packing can be as large as O(nτ+1
1 ), when τ , r, and δ are

regarded as constants.

Corollary 11: Let n1 = q− r+ v. If there exists a (τ +1)-(n1, r+ δ− 1, 1)-packing with blocks S, |S| = O(nτ+1
1 ), and

0 6 r− v 6 δ2

τ , then there exists an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where n = |S|(r + δ− 1) =
O(qτ+1), k = (|S|− 1)r+ v and d = r− v+ δ. In particular, for the case w− 1 > 2(r− v+1), r− v = δ+1, i.e., d = 2δ+1
and τ = δ− 1, the code based on the (τ + 1)-(n1, r+ δ− 1, 1)-packing has asymptotically optimal length, where r and δ are

regarded as constants.

Proof. By Corollary 10, we have n = |S|(r + δ − 1) = O(qτ+1) for the code generated by Construction A. For the case

r − v = δ + 1, w − 1 > 2(r − v + 1), d = 2δ + 1, and t = ⌊(d− 1)/δ⌋ = 2, by Theorem 3 we have

n 6
t(r + δ − 1)

2r(q − 1)
q

2(w−w+1)r−2v
t 6

t(r + δ − 1)

2r(q − 1)
qr−v = O(qr−v−1).

Thus, for the case r− v = δ+1 and τ = δ− 1, the code C has length n = O(qτ+1) = O(qδ), which is asymptotically optimal

with respect to the bound in Theorem 3, when r and δ are regarded as constants. �

As an example, we also analyze the length of the codes based on Steiner systems.

Corollary 12: Let n1 = q − r + v. If there exists a (τ + 1, r + δ − 1, n1)-Steiner system and 0 6 r − v 6 δ2

τ , then there

exists an optimal [n, k, d]q linear code with all symbol (r, δ)-locality, where

n =

(

n1

τ+1

)

(r + δ − 1)
(

r+δ−1
τ+1

) ,

k =

(
(

n1

τ+1

)

(

r+δ−1
τ+1

) − 1

)

r + v,

and d = r − v + δ. In particular, for the case w − 1 > 2(r − v + 1), r − v = δ + 1, i.e., d = 2δ + 1 and τ = δ − 1, the

code based on the (δ, r + δ − 1, q − δ − 1)-Steiner system has asymptotically optimal length, where r and δ are regarded as

constants.

Proof. The first part of the corollary follows directly from Corollary 10 and Definition 5. For the second part, the fact τ = δ−1
means that r−v = δ+1 < δ2

δ−1 is possible, which also means the code C has length (r+δ−1)
(

q−δ+1
δ

)

/
(

r+δ−1
δ

)

and d = 2δ+1.

Since w − 1 > 2(r − v + 1), u = w − 1, r − v = δ − 1, and d = 2δ + 1, i.e., t = 2, by Theorem 3, we have

n 6
t(r + δ − 1)

2r(q − 1)
q

2(w−u)r−2v
t 6

t(r + δ − 1)

2r(q − 1)
qr−v = O(qδ).

Now the conclusion comes from the fact that the upper bound is O(qδ) and the constructed code has length n = Ω(qδ), where

we assume r and δ are constants. �

Remark 4: For the case δ = 2 and d = 5, optimal linear codes with all symbol (r, 2)-locality and asymptotically optimal

length Θ(q2) have been introduced in [12], [16], [3].

Remark 5: Given positive integers τ , r and δ > 2, the natural necessary conditions for the existence of a (τ +1, r+ δ−
1, q−r+v)-Steiner system are that

(

q−r+v−i
τ+1−i

)

|
(

r+δ−1−i
τ+1−i

)

for all 0 6 i 6 τ . It was shown in [18] that these conditions are also

sufficient except perhaps for finitely many cases. While q might not be a prime power, any prime power q > q will suffice for



15

our needs. It is known, for example, that there is always a prime in the interval [q, q + q21/40] (see [2]). Thus, Construction

A provides infinitely many optimal linear [n, k, d]q locally repairable codes, with all symbol (r, δ)-locality, and

n = (r + δ − 1) ·

(

q−r+v
τ+1

)

(

r+δ−1
τ+1

) = Ω(qτ+1) = Ω(qτ+1),

k =

(
(

q−r+v
τ+1

)

(

r+δ−1
τ+1

) − 1

)

r + v,

d = r − v + δ,

i.e., with length super-linear in the field size.

V. CONCLUDING REMARKS

In this paper, we first derived an upper bound for the length of optimal locally repairable codes when δ > 2. As a byproduct,

we also extended the range of parameters for the known bound (the case δ = 2) and improve its performance for the case

d > r+δ. A general construction of locally repairable codes was introduced. By the construction, locally repairable codes with

length super-linear in the field size can be generated. In particular, for some cases those codes have asymptotically optimal

length with respect to the new bound.

Several combinatorial structures, e.g., union-intersection-bounded families, packings, and Steiner systems, satisfy (15) and

play a key role in determining the length of the codes generated by Construction A. If more of those structures with a large

number of blocks can be constructed, more good codes with length n > q can be generated. Finding more such combinatorial

structures and explicit constructions for them, is left for future research.

APPENDIX

Proof of Lemma 3

We first construct a uniform B from B, by arbitrarily adding elements to sets in B that contain less than r+ δ− 1 elements.

Note that B is not necessarily an ECF. Obviously D(B) > D(B). We contend now that D(B) > 0. If D(B) 6= 0 this is

immediate, since we have D(B) > D(B) > 0. If B is not uniform, at least one set B ∈ B has |B| < r + δ − 1, and adding

elements to it in the process of creating B necessarily increases the overlap, i.e., D(B) > D(B) > 0. We also observe that,

D(B) =
∑

B∈B

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈B

B

∣

∣

∣

∣

∣

∣

= |B|(r + δ − 1)− n ≡ −m (mod r + δ − 1).

Next, we partition B into two subsets, B1 and B2, where

B1 = {B ∈ B : ∃B
′
∈ B, B

′
6= B,B ∩B

′
6= ∅},

and

B2 = B \ B1.

For convenience, denote B1 = {B1, . . . , BK} and B2 = {BK+1, . . . , BT } where 0 6 K 6 T .

Let 1 6 t 6 T be a positive integer. Obviously, if t > K , then B
′
= {B1, . . . , BK , . . . , Bt} is a t-subset satisfying

D(B
′
) =

t
∑

i=1

|Bi| −

∣

∣

∣

∣

∣

t
⋃

i=1

Bi

∣

∣

∣

∣

∣

= D(B). (23)

For the case 0 6 t 6 1, the fact ⌊t/2⌋ = 0 means that the lemma follows trivially. For the case 2 6 t < K , we claim that we

can select a t-subset B
′
⊆ B1 containing ⌊t/2⌋ different pairs of sets {Bτ2i−1 , Bτ2i} for 1 6 i 6 ⌊t/2⌋ with

∑

B∈Bj

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈Bj

B

∣

∣

∣

∣

∣

∣

> 1 +
∑

B∈Bj−1

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈Bj−1

B

∣

∣

∣

∣

∣

∣

> j,

for B0 = ∅ and Bj = {Bτi : 1 6 i 6 2j}, 1 6 j 6
⌊

t
2

⌋

, especially B
′
⊇ B⌊ t

2⌋
satisfying

∑

B∈B
′

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈B
′

B

∣

∣

∣

∣

∣

∣

>
∑

B∈B⌊ t
2⌋

|B| −

∣

∣

∣

∣

∣

∣

∣

∣

⋃

B∈B⌊ t
2⌋

B

∣

∣

∣

∣

∣

∣

∣

∣

>

⌊

t

2

⌋

. (24)
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Otherwise, there exists a subset B
∗

1 ⊆ B1 with size at most 2(⌊ t
2⌋ − 1) such that for any B

′
∈ B1 \ B

∗

1, B
′′
∈ B1,

∑

B∈B
∗
1∪{B

′
,B

′′
}

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈B
∗
1∪{B

′
,B

′′
}

B

∣

∣

∣

∣

∣

∣

6
∑

B∈B
∗
1

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈B
∗
1

B

∣

∣

∣

∣

∣

∣

,

which implies






|B
′
|+ |B

′′
| 6

∣

∣

∣(B
′
∪B

′′
) \
⋃

B∈B
∗
1
B
∣

∣

∣ , if B
′′
∈ B1 \ B

∗

1,

|B
′
| 6

∣

∣

∣B
′
\
⋃

B∈B
∗
1
B
∣

∣

∣ , if B
′′
∈ B

∗

1.

However, this means that every B
′
∈ B1 \ B

∗

1 has an empty intersection with any other set in B1, which contradicts the

definition of B1.

By combining (23) and (24), for any given 0 6 t 6 |B|, there exists a t-subset, say B
′
=
{

B1, B2, . . . , Bt

}

⊆ B, such that

D(B
′
) =

∑

B∈B
′

|B| −

∣

∣

∣

∣

∣

∣

⋃

B∈B
′

B

∣

∣

∣

∣

∣

∣

> min
{

D(B), ⌊t/2⌋
}

> min {r + δ − 1−m, ⌊t/2⌋} , (25)

where the last inequality holds since D(B) > 0 and D(B) ≡ −m (mod r + δ − 1).

If Bi ∈ B
′

was created from Bi ∈ B, i.e., Bi ⊆ Bi, then by (25) we have,

t(r + δ − 1)−

∣

∣

∣

∣

∣

t
⋃

i=1

Bi

∣

∣

∣

∣

∣

=

t
∑

i=1

|Bi| −

∣

∣

∣

∣

∣

t
⋃

i=1

Bi

∣

∣

∣

∣

∣

>

t
∑

i=1

|Bi| −

∣

∣

∣

∣

∣

t
⋃

i=1

Bi

∣

∣

∣

∣

∣

> min {r + δ − 1−m, ⌊t/2⌋} .

Now set B′ = {B1, . . . , Bt} to complete the proof. �

Proof of Lemma 4

By Definition 2, Γ contains at least one repair set for each code symbol, hence
⋃

R∈Γ

R = [n]. (26)

If for each R ∈ Γ, R 6⊆
⋃

R′∈Γ\{R} R
′, then set R = Γ and the lemma follows. Otherwise, set Γ1 = Γ \ {R}, where R ∈ Γ

satisfies that R ⊆
⋃

R′∈Γ\{R} R
′. Thus, by (26), we conclude that

⋃

R′∈Γ\{R}

R′ = [n].

Since |Γ1| < |Γ|, and Γ1 also satisfies (26), we can repeat the elimination procedure to obtain the desired set R. The facts

Rank(
⋃

R∈R R) = k and Rank(R) 6 r imply that |R| > ⌈k
r ⌉, which completes the proof. �

Proof of Lemma 5

Before proving Lemma 5, we need to discuss the structures of the repair sets in more details in three lemmas.

Lemma 9: Let C be an [n, k]q linear code with all symbol (r, δ)-locality. Let R be the ECF given by Lemma 4. If for a

subset V ⊆ R, and for all R′ ∈ V ,
∣

∣

∣

∣

∣

∣

R′
⋂





⋃

R∈V\{R′}

R





∣

∣

∣

∣

∣

∣

6 |R′| − δ + 1, (27)

then we have

Rank

(

⋃

R∈V

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

− |V|(δ − 1).

Proof. Denote |V| = ℓ and V = {R1, . . . , Rℓ} ⊆ R. For each Ri ∈ V , (27) means that there exists a (δ − 1)-subset R′
i ⊆ Ri

such that R′
i ∩ (

⋃

j∈[ℓ]\{i} Rj) = ∅. Thus, we can get ℓ pairwise disjoint subsets R′
1, R

′
2, . . . , R

′
ℓ.

By Definition 2, Rank(Ri) = Rank(Ri \R′
i) for 1 6 i 6 ℓ. Therefore, we have

Rank

(

⋃

R∈V

R

)

= Rank





⋃

i∈[ℓ]

(Ri \R
′
i)



 6

∣

∣

∣

∣

∣

∣

⋃

i∈[ℓ]

(Ri \R
′
i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

−
∑

i∈[ℓ]

|R′
i|

=

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

− |V|(δ − 1).
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�

We note that when δ = 2, (27) is always satisfied by the ECF R. We now continue with our exploration of the properties

of R.

Lemma 10: Let C be an [n, k]q linear code with all symbol (r, δ)-locality. Let R be the ECF given by Lemma 4. If there

are subsets V ⊆ R′ ⊆ R with |V| 6 ⌈k
r ⌉ − 1, Rank(

⋃

R∈R′ R) = k, and

Rank

(

⋃

R∈V

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

− |V|(δ − 1) (28)

then we can obtain a (⌈k
r ⌉ − 1)-set V ′ with V ⊆ V ′ ⊆ R′ such that

Rank

(

⋃

R∈V′

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V′

R

∣

∣

∣

∣

∣

− |V ′|(δ − 1).

Proof. If |V| = ⌈k
r ⌉− 1, then the lemma follows by setting V ′ = V . Otherwise, we have |V| < ⌈k

r ⌉− 1. Since every R ∈ R is

an (r, δ)-repair set, Rank(R) 6 r. This means that Rank
(
⋃

R∈V R
)

< (⌈k
r ⌉− 1)r < k. Note that by the lemma requirements,

Rank
(
⋃

R∈R′ R
)

= k, which implies that there exists a R′ ∈ R′ \V such that Rank(R′∪ (
⋃

R∈V R)) > Rank(
⋃

R∈V R). We

recall, however, that since R′ is an (r, δ)-repair set, if R∗ ⊆ R′, |R∗| > |R′| − δ + 1, then Span(R∗) = Span(R′). It follows

that R′ cannot have a large intersection with
⋃

R∈V R, namely,
∣

∣

∣

∣

∣

R′ ∩

(

⋃

R∈V

R

)∣

∣

∣

∣

∣

< |R′| − δ + 1.

Hence, there exists a R′′ ⊆ R′ \
(⋃

R∈V R
)

with |R′′| = δ − 1. Again, using the fact that R′ is an (r, δ)-repair set and

|R′ \R′′| = |R′| − δ + 1, we have Rank(R′) = Rank(R′ \R′′), and therefore,

Rank





⋃

R∈V∪{R′}

R



 = Rank









⋃

R∈V∪{R′}

R



 \R′′





6

∣

∣

∣

∣

∣

R′ \

((

⋃

R∈V

R

)

∪R′′

)∣

∣

∣

∣

∣

+Rank

(

⋃

R∈V

R

)

6

∣

∣

∣

∣

∣

R′ \

(

⋃

R∈V

R

)∣

∣

∣

∣

∣

− δ + 1 +

∣

∣

∣

∣

∣

⋃

R∈V

R

∣

∣

∣

∣

∣

− |V|(δ − 1)

=

∣

∣

∣

∣

∣

∣

⋃

R∈V∪{R′}

R

∣

∣

∣

∣

∣

∣

− |V ∪ {R′}|(δ − 1),

where the last inequality holds by the fact R′′ ⊆ R′ \
(
⋃

R∈V R
)

and (28). Therefore, repeating the above operations, we can

extend V to a (⌈k
r ⌉ − 1)-subset V ′ ⊆ R′ such that

Rank

(

⋃

R∈V′

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V′

R

∣

∣

∣

∣

∣

− |V ′|(δ − 1).

�

Lemma 11: Let C be an [n, k]q linear code with all symbol (r, δ)-locality. Let R be the ECF given by Lemma 4. Assume

V ⊆ R such that |V| 6 ⌈k
r ⌉ − 1. If there exists a R′ ∈ V such that

∣

∣

∣

∣

∣

∣

R′
⋂





⋃

R∈V\{R′}

R





∣

∣

∣

∣

∣

∣

> |R′| − δ + 1, (29)

then there exists S ⊆ [n] with Rank(S) = k − 1 and

|S| > k +

(⌈

k

r

⌉

− 1

)

(δ − 1).
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Proof. Assume V satisfies (29). Let V ′ ⊆ V be a minimal subset for which (29) holds, i.e., there exists a set R′ ∈ V ′ with

|R′ ∩ (
⋃

R∈V′\{R′} R)| > |R′| − δ + 1, which in turn implies that Span(R′) ⊆ Span(
⋃

R∈V′\{R′} R). By the minimality of

V ′, the set V ′ \ {R′} satisfies the requirements of Lemma 9, which implies

Rank





⋃

R∈V′\{R′}

R



 6

∣

∣

∣

∣

∣

∣

⋃

R∈V′\{R′}

R

∣

∣

∣

∣

∣

∣

− |V ′ \ {R′}|(δ − 1).

As noted before, Span(R′) ⊆ Span(
⋃

R∈V′\{R′} R), and since trivially Rank(
⋃

R∈R R) = k, we also necessarily have

Rank(
⋃

R∈R\{R′}} R) = k. Therefore, by Lemma 10, we can extend V ′ \ {R′} to a (⌈k
r ⌉ − 1)-subset V ′′ ⊆ R \ {R′} such

that

Rank

(

⋃

R∈V′′

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V′′

R

∣

∣

∣

∣

∣

− |V ′′|(δ − 1) =

∣

∣

∣

∣

∣

⋃

R∈V′′

R

∣

∣

∣

∣

∣

−

(⌈

k

r

⌉

− 1

)

(δ − 1).

Considering the set V ′′ ∪ {R′}, we have

Rank





⋃

R∈V′′∪{R′}

R



 = Rank

(

⋃

R∈V′′

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V′′

R

∣

∣

∣

∣

∣

−

(⌈

k

r

⌉

− 1

)

(δ − 1)

6

∣

∣

∣

∣

∣

∣

⋃

R∈V′′∪{R′}

R

∣

∣

∣

∣

∣

∣

− 1−

(⌈

k

r

⌉

− 1

)

(δ − 1),

(30)

where the last inequality holds due to the fact that R′ 6⊆
⋃

R∈V′′ R by the properties of the ECF R.

Since

Rank





⋃

R∈V′′∪{R′}

R



 = Rank

(

⋃

R∈V′′

R

)

6

(⌈

k

r

⌉

− 1

)

r 6 k − 1,

we can find a set S with Rank(S) = k − 1 by taking
⋃

R∈V′′∪{R′} R and adding arbitrary coordinates until reaching the

desired rank. This set S has size

|S| > k − 1− Rank





⋃

R∈V′′∪{R′}

R



+

∣

∣

∣

∣

∣

∣

⋃

R∈V′′∪{R′}

R

∣

∣

∣

∣

∣

∣

> k +

(⌈

k

r

⌉

− 1

)

(δ − 1),

which follows from (30). �

Proof of Lemma 5: If the requirements of Lemma 11 hold for V , then the desired S may be obtained by Lemma 11,

and we are done. Otherwise, V does not satisfies the requirements of Lemma 11, and then using Lemmas 9 and 10 (setting

R′ = R in the latter), V may be extended to a set V ′ ⊆ R with ⌈k
r ⌉ − 1 elements satisfying

Rank

(

⋃

R∈V′

R

)

6

∣

∣

∣

∣

∣

⋃

R∈V′

R

∣

∣

∣

∣

∣

− |V ′|(δ − 1) =

∣

∣

∣

∣

∣

⋃

R∈V′

R

∣

∣

∣

∣

∣

−

(⌈

k

r

⌉

− 1

)

(δ − 1).

Recall that k = ru + v, with 0 6 v 6 r − 1. It now follows that

k − 1− Rank

(

⋃

R∈V′

R

)

> ru + v − 1−

∣

∣

∣

∣

∣

⋃

R∈V′

R

∣

∣

∣

∣

∣

+ |V ′|(δ − 1)

=

{

u(r + δ − 1)−
∣

∣

⋃

R∈V′ R
∣

∣+ v − 1, if v 6= 0,

r + (u− 1)(r + δ − 1)−
∣

∣

⋃

R∈V′ R
∣

∣+ v − 1, if v = 0,

=

{

|V ′|(r + δ − 1)−
∣

∣

⋃

R∈V′ R
∣

∣+ v − 1, if v 6= 0,

r + |V ′|(r + δ − 1)−
∣

∣

⋃

R∈V′ R
∣

∣− 1, if v = 0,

(a)

>

{

|V|(r + δ − 1)−
∣

∣

⋃

R∈V R
∣

∣+ v − 1, if v 6= 0,

r + |V|(r + δ − 1)−
∣

∣

⋃

R∈V R
∣

∣− 1, if v = 0,

(b)

>

{

∆+ v − 1, if v 6= 0,

r +∆− 1, if v = 0,

(31)

where (a) follows from the fact that |R| 6 r + δ − 1 for all R ∈ V ′, and (b) follows from (3).
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For the case v 6= 0, ⌈k+∆
r ⌉ = u + ⌈ v+∆

r ⌉ > ⌈k
r ⌉ = u + 1 means that ∆+ v > r, i.e., ∆+ v − 1 > r. Thus, by (31) and

∆ > 0,

Rank

(

⋃

R∈V′

R

)

6 k − 1− r, (32)

for both v = 0 and v 6= 0.

Again, by the same analysis as in Lemma 10, we can obtain yet another set R′ ∈ R \ V ′ with Rank(R′ ∪ (
⋃

R∈V′)R) >
Rank(

⋃

R∈V′ R) and then

Rank





⋃

R∈V′∪{R′}

R



 6

∣

∣

∣

∣

∣

∣

⋃

R∈V′∪{R′}

R

∣

∣

∣

∣

∣

∣

− |V ′ ∪ {R′}| (δ − 1) =

∣

∣

∣

∣

∣

∣

⋃

R∈V′∪{R′}

R

∣

∣

∣

∣

∣

∣

−

⌈

k

r

⌉

(δ − 1). (33)

Note that Rank(
⋃

R∈V′∪{R′} R) 6 Rank(
⋃

R∈V′ R) + r 6 k − 1 by (32). Therefore, construct S by adding coordinates to
⋃

R∈V′∪{R′} R until reaching sufficient rank, Rank(S) = k − 1, and then by (33) we have

|S| > k − 1− Rank





⋃

R∈V′∪{R′}

R



+

∣

∣

∣

∣

∣

∣

⋃

R∈V′∪{R′}

R

∣

∣

∣

∣

∣

∣

> k − 1 +

⌈

k

r

⌉

(δ − 1) > k +

(⌈

k

r

⌉

− 1

)

(δ − 1),

which completes the proof. �
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