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Abstract—Many big data algorithms executed on MapReduce-
like systems have a shuffle phase that often dominates the overall
job execution time. Recent work has demonstrated schemes where
the communication load in the shuffle phase can be traded
off for the computation load in the map phase. In this work,
we focus on a class of distributed algorithms, broadly used in
deep learning, where intermediate computations of the same
task can be combined. Even though prior techniques reduce the
communication load significantly, they require a number of jobs
that grows exponentially in the system parameters. This limitation
is crucial and may diminish the load gains as the algorithm scales.
We propose a new scheme which achieves the same load as the
state-of-the-art while ensuring that the number of jobs as well
as the number of subfiles that the data set needs to be split into
remain small.

I. INTRODUCTION

The recent growth of big data analytics whereby a large
amount of data on the orders of petabytes or more needs to
be processed in a fast manner has fueled the development of
several distributed programming models running on clusters of
commodity servers. Some characteristic examples are MapRe-
duce [1], Hadoop [2] and Spark [3].

In these frameworks, the data set is split into disjoint
subfiles stored across the worker nodes. The computation
takes place in three steps. Initially, the processing servers map
the input subfiles to intermediate values having the form of
(key, value) pairs. In the next shuffle step, the intermediate
pairs are exchanged between the servers. In the final reduce
step, each server computes a set of output functions defined
based on the keys. By virtue of their simplicity, scalability
and fault-tolerance, these frameworks are becoming ubiquitous
and have gained significant momentum within both industry
and academia. They are well suited for several applications
including machine learning [4], [5], graph processing [6], data
sorting [7] and web logging [1].

Compelling evidence obtained on large scale clusters sug-
gests that the time spent merely on communication often
dominates the execution time. For example, by analyzing a
week-long trace from Facebook’s Hadoop cluster, the authors
of [8] demonstrated that “on average, 33% of the overall
job execution time is spent on data shuffling.” Similar effects
have been reported in the work of [9] on other shuffle-heavy
operations such as SelfJoin, TeraSort and RankedInvertedIndex
which underlie many deep learning algorithms. Distributed
graph analytics also suffer from long communication phases
as observed in [6], accounting for up to 50% of the overall
execution time in representative cases [10].

This work was supported in part by the National Science Foundation
(NSF) under grant CCF-1718470.

In this paper, we focus on distributed algorithms for which
the intermediate values of a particular job computed during
the Map phase can be combined locally by the servers before
the transmission. This kind of computation is predominant
in machine learning (e.g., ImageNet classification [5] and
stochastic gradient descent [11]). Another use case would be
the matrix-vector multiplications performed during the forward
and backward propagation in neural networks (cf. [?]). In our
context, computing each of these products constitutes a job. We
could also consider training multiple models simultaneously,
as long as they have the same dimensionality. This so-called
compression technique was initially investigated in [1] by
the means of a “combiner function” which merges multiple
intermediate values with the same key computed from different
Map functions.

The work of [12] proposed an approach (inspired by coded
caching) for trading off communication load with computation
load in MapReduce-like systems. This was extended in [4]
to Compressed Coded Distributed Computing (CCDC), where
compressible functions were considered. In prior work, we
addressed one limitation of [12], namely the requirement that
jobs need to fit very finely to obtain the promised commu-
nication load. Our approach demonstrated a deep relationship
between this problem and a class of combinatorial structures
called resolvable designs while achieving significant speedup
compared to the state-of-the-art.

A. Main contributions of our work
It turns out that [4] has a limitation of a similar flavor. In

this case the number of jobs needs to scale exponentially in
the problem parameters to obtain the promised reduction in
communication load.

In this work, we extend our algorithm to applications where
intermediate values can be compressed and we substantially
reduce the requirement on the number of jobs compared to
prior literature. The immediate benefit that stems from this fact
is that as the size of the cluster increases, the required number
of MapReduce jobs (and hence the total number of subfiles)
does not scale exponentially. The implicit benefit is that a low
requirement on the number of jobs decreases the encoding
complexity. This is important since, as we have shown in
[7], increasing the number of tasks scales the overhead of
the encoding complexity and can diminish any gains in the
communication load. We expect a similar type of phenomenon
in the current setting.

Our new scheme is named coded aggregated MapReduce
(abbreviated, CAMR). We characterize the achievable com-
munication load of CAMR and show that it matches the
state-of-the-art. The next section gives the general problem
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formulation, while in the remaining sections, we describe our
scheme, analyze the achievable load and compare it with other
combining methods.

II. PROBLEM FORMULATION

Our goal is to process J distributed computing jobs (denoted
J1, . . . ,JJ ) in parallel on a cluster of K homogeneous servers
U1, . . . , UK , i.e., machines that have similar computational
power. The data set of each job is partitioned into N disjoint
and equal-sized subfiles. The subfiles of the j-th job are
denoted by n(j), n = 1, . . . , N . A total of Q output functions,
denoted φ(j)q , q = 1, ..., Q, need to be computed for each job.
Note that these Q functions may be different across different
jobs. We examine a special class of functions that possess the
aggregation property.

Definition 1. In database systems, an aggregate function φ is
one that is both associative and commutative.

For example, in jobs with linear aggregation the evaluation
of each output function can be decomposed as the sum of N
intermediate values, one for each subfile, i.e., for q = 1, . . . , Q,

φ(j)q (1(j), . . . , N (j)) = ν
(j)
q,1 + ν

(j)
q,2 + · · ·+ ν

(j)
q,N ,

where ν(j)q,n = φ
(j)
q (n(j)) and each such value is assumed to be

of size B bits. In what follows we use α(ν
(j)
q,1, . . . , ν

(j)
q,m) to de-

note the aggregation of m intermediate values ν(j)q,1, . . . , ν
(j)
q,m of

the same function φ(j)q and job Jj into a single “compressed”
value.

A master node judiciously places each subfile on at least
one server before initiating the algorithm.

Definition 2. The storage fraction µ ∈ [1/K, 1] of a distributed
computation scheme is the fraction of the data sets across all
jobs that each machine locally caches.

Our formulation assumes that K divides Q so that each
server is assigned to Q/K functions per job. However, our
proposed algorithm and the main results can be obtained as a
simple extension of the case when each server is computing
one function. For example, one can repeat the Shuffle phase
Q/K times. Owing to this fact, we will only present the case
of Q = K.

The framework starts with the Map phase during which
the servers (in parallel) “map” every subfile n(j) to the
values {ν(j)1,n, . . . , ν

(j)
Q,n}. Following this, the servers multicast

the computed intermediate values amongst one another via a
shared link in the Shuffle phase. In the final Reduce phase,
server k computes (or reduces) φ(j)k (ν

(j)
k,1, . . . , ν

(j)
k,N ) for j =

1, . . . , J as it has all the relevant intermediate values required
for performing this operation.

Definition 3. The communication load L of a scheme is the
total amount of data (in bits) transmitted by the servers during
the Shuffle phase normalized by JQB.

Example 1. Suppose that our task consists of J = 4 jobs.
For the j-th job we need to count Q = 6 words given by
the set A(j) = {χ(j)

1 , . . . , χ
(j)
6 } in a book consisting of N = 6

chapters using a cluster of K = 6 servers. Jj is associated with
the j-th book and its subfiles with the chapters 1(j), . . . , 6(j).

Function φ(j)k , k = 1, . . . , Q (assigned to server Uk since Q =

K as discussed) counts the word χ
(j)
k of A(j) in the book

indexed with j. This formulation fits the linear aggregation
case precisely. Indeed, each reducer only needs the sum of the
word counts for the subfiles that it does not locally store and
hence there is scope for “compressing” multiple values at the
end of the Map phase.

III. DESCRIPTION OF THE CAMR SCHEME

In this section, we describe our proposed algorithm. We
begin by introducing a few design theory definitions.

Definition 4. A design is a pair (X ,A) consisting of
1) a set of elements (points), X , and
2) a family A (i.e. multiset) of nonempty subsets of X called

blocks, where each block has the same cardinality.

In this paper, we use a special class of designs, called
resolvable designs.

Definition 5. A subset P ⊂ A in a design (X ,A) is said to
be a parallel class if for Xi ∈ P and Xj ∈ P with i 6= j
we have Xi ∩ Xj = ∅ and ∪{j:Xj∈P}Xj = X . A partition
of A into several parallel classes is called a resolution, and
(X ,A) is said to be a resolvable design if A has at least one
resolution.

It turns out that there is a systematic procedure for con-
structing resolvable designs from error correcting codes.

Let Zq denote the additive group of integers modulo q. The
generator matrix of an (k, k − 1) single parity-check (SPC)
code over Zq1 is defined by

GSPC =

 1

Ik−1
...
1

 .
This code has qk−1 codewords. The codewords are c =
u · GSPC for each possible message vector u. The qk−1

codewords ci computed in this manner are stacked into the
columns of a matrix T of size k × qk−1, i.e.,

T = [cT1 , c
T
2 , · · · , cTqk−1 ].

The corresponding resolvable design is constructed as follows.
Let XSPC = [qk−1] (for a positive integer n, we use [n] to
denote the set {1, 2, . . . , n} throughout) represent the point set
of the design. We define the blocks as follows. For 0 ≤ l ≤
q − 1, let Bi,l be a block defined as

Bi,l = {j : Ti,j = l}. (1)

The set of blocks ASPC is given by the collection of all Bi,l
for 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1 so that |ASPC | = kq. The
following lemma (see [13] for a proof in a different context)
shows that this construction yields a resolvable design.

Lemma 1. The above scheme always yields a resolvable
design (XSPC ,ASPC) with XSPC = [qk−1], |Bi,l| = qk−2

for all 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1. The parallel classes are
analytically described by Pi = {Bi,l : 0 ≤ l ≤ q − 1}, for
1 ≤ i ≤ k.

1We emphasize that this construction works even if q is not a prime, i.e.,
Zq is not a field.



Algorithm 1: File placement

Input: J jobs, owner sets {X(j), j = 1, . . . , J}, k used
in SPC code construction, batch size γ.

Set N = kγ.
for each job Jj do

Split the data set of Jj into N disjoint subfiles
{1(j), . . . , N (j)}

and partition them into k batches of γ subfiles each.
Let X(j) = {Ui1 , . . . , Uik}. Label each batch with
a distinct index of an owner so that the batches are

B = {B(j)[i1]
, . . . ,B(j)[ik]

}
for each owner Uk′ ∈ X(j) do

Store all batches in B except B(j)[ik′ ]
in server Uk′ .

end
end

A. Job assignment and file placement

Our cluster consists of K servers and we choose appropriate
integers q, k that factorize it as K = k × q; we further need
N to be divisible by k. Next, we form a (k, k− 1) SPC code
and the corresponding resolvable design, as described above.
The jobs to be executed are associated with the point set X =
[qk−1]. Hence J = qk−1 and the block set A will be such that
|A| = k × q. The servers are associated with the blocks and
are indexed as Bi,j , i = 1, . . . , k, and j = 0, 1, . . . , q − 1.

The assignment of jobs to servers follows the natural inci-
dence between points and blocks. Thus, job Jj is processed
by (or “owned” by) the server indexed by Bi,l if j ∈ Bi,l.
For the sake of convenience we will also interchangeably
work with servers indexed as U1, . . . , UK with the implicit
understanding that each Ui, i ∈ [K] corresponds to a block
from A. By convention, server Ui will be associated with the
block Bdi/qe, (i−1) mod q .

Let us denote the owners of Jj by X(j) ⊂ {U1, . . . , UK}.
For each job, the data set is split into k batches and each batch
is made up of γ subfiles, for some integer γ > 1 (recall that
k|N ). The file placement policy is illustrated in Algorithm 1.

Each server is owner of qk−2 jobs (block size). For each
such job it participates in k−1 batches of size γ, as explained
in Algorithm 1. Our requirement for the storage fraction is

µ =
qk−2 · (k − 1) · γ

Jkγ
=
k − 1

K
.

Example 2. In Example 1, we have a cluster of K = 6 nodes.
We chose our parameters q = 2 and k = 3, then we need
to execute J = qk−1 = 4 MapReduce jobs. The codewords
for this choice of parameters are {000, 011, 101, 110}. Hence,
based on Eq. (1), the owners are

X(1) = {U1, U3, U5}, X(2) = {U1, U4, U6},
X(3) = {U2, U3, U6}, X(4) = {U2, U4, U5}.

(2)

We have subdivided the original data set of each job into
N = 6 subfiles. The subfiles of the j-th job are partitioned into
three batches, namely {1(j), 2(j)}, {3(j), 4(j)} and {5(j), 6(j)}.
Exactly four such batches are stored on each machine (cf. Fig.
1). For γ = 2, each job’s data set is split into N = kγ = 6
subfiles placed on a unique subset of k = 3 nodes. For
example, the subfiles of job J1, {1(1), 2(1), . . . , 6(1)}, are

U1

1(1),2(1),3(1),4(1)

1(2),2(2),3(2),4(2)

U3

3(1),4(1),5(1),6(1)

3(3),4(3),5(3),6(3)

U5

1(1),2(1),5(1),6(1)

1(4),2(4),5(4),6(4)

U2

1(3),2(3),3(3),4(3)

1(4),2(4),3(4),4(4)

U4

3(2),4(2),5(2),6(2)

3(4),4(4),5(4),6(4)

U6

1(2),2(2),5(2),6(2)

1(3),2(3),5(3),6(3)

Fig. 1. Proposed placement scheme for K = 6 servers and N = 6 subfiles
per computing job for J = 4 jobs. The dotted lines show the partition of the
servers into parallel classes.

stored exclusively on U1, U3 and U5. Specifically, the three
batches of the first job are

B(1)[i3]
= {1(1), 2(1)}, B(1)[i5]

= {3(1), 4(1)}, B(1)[i1]
= {5(1), 6(1)}.

Then, batch B(1)[i3]
is stored on machines U1 and U5, B(1)[i5]

on U1 and U3 and, finally, B(1)[i1]
on U3 and U5. Each machine

locally stores µ = k−1
K = 1

3 of all the data sets.

B. Map phase

During this phase, each server maps all the subfiles of each
job it has partially stored, for all output functions. The resulting
intermediate values have the form

ν(j)q,n = φ(j)q (n(j)), q ∈ [Q], n ∈ [N ], j ∈ [J ].

At the end of the Map phase, for each job Jj , each mapper
combines all those values ν(j)q,n that are indexed with the same
q and j (in other words, associated with the same function
and job) and belong to the same batch of subfiles; we have
already referred to this operation as aggregation. Our shuffle
algorithm operates on the batch-level, as it will become clear
in the following section.

C. Shuffle phase

The CAMR scheme carries out the data shuffling phase in
three stages. The first two stages utilize a common shuffling
algorithm (cf. Algorithm 2), summarized in the following
lemma and proved in [14, Appendix].

Lemma 2. Consider a group of k machines G = {U1, . . . , Uk}
with the property that every subset of G of the form G \
{Uk′}, stores a chunk of data of size B bits, denoted D[k′],
that Uk′ does not store. Then, there exists a protocol where
each machine in G can multicast a coded packet useful to all
other k − 1 machines and after k such transmissions each of
them can recover its missing chunk. The total number of bits
transmitted in this protocol is Bk/(k − 1).

1) Stage 1: In this stage, the owners of each job communicate
among themselves. Let us fix a job Jj and consider the servers
in X(j) \ {Uk′} of cardinality k− 1 (cf. Algorithm 1). During
the Map phase, each machine in that subset has computed an
aggregate needed by the remaining owner Uk′ which is

α
(j)
[k′] = α({ν(j)k′,n : n ∈ B(j)[ik′ ]

}).

Repeating this process for every value of j and k′, we can
identify all aggregates α(j)

[k′]. We shall now see an one-to-one
correspondence between this setup and Lemma 2 which is the
following

G = X(j) and D[k′] = α
(j)
[k′]



Algorithm 2: Shuffling algorithm of Lemma 2
Input: Group of machines G = {U1, . . . , Uk},
data chunks {D[k′] : Uk′ ∈ G}.
for each chunk D[k′] do

Split the chunk into k − 1 disjoint packets
{D[k′][i] : i = 1, . . . , k − 1}

Let subset G \ {Uk′} = {U [k′]
1 , . . . , U

[k′]
k−1}.

for each i = 1, . . . , k − 1 do
Associate packet D[k′][i] with machine U [k′]

i .
end

end
for each machine Um ∈ G do

Um broadcasts2

∆m = ⊕
k′:Um∈G\{Uk′}

{D[k′][i] : Um = U
[k′]
i } (3)

end

for j = 1, . . . , J and the owners {Uk′ ∈ X(j)}.
Each owner of a particular job, after receiving k − 1 such

values (one from every other owner of a particular job), can
decode all of its missing aggregates for that job.
Example 3. In Example 1, let us consider the group
of servers {U1, U3, U5} which are the owners of J1,
storing {1(1), 2(1), 3(1), 4(1)}, {3(1), 4(1), 5(1), 6(1)} and
{1(1), 2(1), 5(1), 6(1)}, respectively. Based on this allocation
policy, server U1 needs φ

(1)
1 evaluations of the batch

{5(1), 6(1)}, i.e., ν(1)1,5 and ν(1)1,6 for J1 or simply the aggregate

α(ν
(1)
1,5 , ν

(1)
1,6) = ν

(1)
1,5 + ν

(1)
1,6 .

Similarly, U3 needs α(ν
(1)
3,1 , ν

(1)
3,2) and U5 needs α(ν

(1)
5,3 , ν

(1)
5,4).

Next, we refer to Fig. 2. The compressed intermediate values
are represented by circle/green, star/blue and triangle/red. We
further suppose that each value can be split into two packets
(represented by the left and right parts of each shape). If U1

transmits left circle XOR left star, then U3 is able to cancel
out the star part (since U3 also maps {3(1), 4(1)}) and recover
the circle part. Similarly, U5 can recover the star part from
the same transmission. Each of these transmissions is useful
to two servers.

We can repeat this process for the remaining jobs. The total
number of bits transmitted in this case is therefore J × k ×
B/2 = 6B. The incurred communication load is Lstage 1 =
6B
JQB = 1

4 .
2) Stage 2: In this stage, we form communication groups of
both owners and non-owners of a job, so that the latter can
recover appropriate data to reduce their functions.

Towards this end, we form collections of user groups by
choosing one block from each parallel class based on a sim-
ple rule. We choose servers B1,j1 , B2,j2 , . . . , Bk,jk such that
∩k`=1B`,j` = ∅. It has been proved in [13] (but in a different
context) that if we remove a server Uk′ from such a group
G, the servers in the corresponding subset P = G \ {Uk′}
of cardinality |P | = k − 1 jointly own a job, say Jj , that
the remaining server k′ does not. In addition, based on the
file placement policy described before (cf. Algorithm 1), they
share the batch of subfiles B(j)[il]

for that common job and some
Ul ∈ X(j).

2The operation Eq. (3) is a bitwise XOR.
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Fig. 2. Coded multicast transmission among the owners of J1 during stage
1.

The following simple observation is important. By construc-
tion, Ul is precisely the remaining owner of Jj and it should
lie in the parallel class that none of the other owners belong
to; that is the same class as of Uk′ .

During the Map phase, each node in P has computed an
aggregate needed by Uk′ which is

β
(j)
[k′] = α({ν(j)k′,n : n ∈ B(j)[il]

}). (4)

As in stage 1, Lemma 2 fits in this description and Algorithm
2 defines the communication scheme; the shuffling group is G
and each server Uk′ ∈ G needs to recover the chunk D[k′] =

β
(j)
[k′] for the unique batch that all nodes in P share.
As a result, at the end of stage 2, each server Uk′ , k′ ∈ [K]

is able to decode all aggregates of the form in Eq. (4) for
all values of l, i.e., for all nodes Ul that belong to the same
parallel class as Uk′ . Note that each such value (for a fixed l)
corresponds to qk−2 (block size) jobs for which Uk′ does not
store any subfiles and Ul does not store the batch B(j)[il]

.
Example 4. In Example 1, in stage 2, the nodes recover
values of jobs for which they haven’t stored any subfile. Let
G = {U1, U3, U6}. Observe from Eq. (2) that there is no job
common to all three but each subset of two of them shares a
batch of a job they commonly own. The remaining server needs
an aggregate value of those subfiles. The values that each of
U1, U3, U6 needs as well as the corresponding transmissions
are illustrated in Table I. We denote the i-th packet of an
aggregate value by α(·)[i].

There are q(k−1)(q − 1) possible such groups we can pick.
The total load is Lstage 2 = 4×3×B/2

JQB = 6B
JQB = 1

4 .
3) Stage 3: Each worker is still missing values for jobs that
it is not owner of from Stage 2. Now, servers communicate
within parallel classes. In particular, we show in [14, Ap-
pendix] that all values that a server Um still needs can be
aggregated and transmitted by a single owner-server in the
same parallel class that Um belongs to. This server is unique
and transmits one aggregate value of its jobs to every other
server in the same parallel class.

Recall that the i-th class is Pi = {Bi,j , j = 0, . . . , q − 1},
then, server Uk ∈ Pi transmits

∆stage 3
k = α

( ⋃
l:Ul∈X(j)\{Uk}

{ν(j)m,n : n ∈ B(j)[il]
}

)
. (5)

to another Um ∈ Pi; obviously, Um /∈ X(j).
We repeat this process for every pair (Um, Uk) of servers

in the same class.



TABLE I
TRANSMISSIONS WITHIN GROUP OF {U1, U3, U6} DURING STAGE 2

Server Transmits Recovers
U1 α(ν

(1)
6,3 , ν

(1)
6,4)[1]⊕α(ν

(2)
3,1 , ν

(2)
3,2)[1] α(ν

(3)
1,5 , ν

(3)
1,6)

U3 α(ν
(1)
6,3 , ν

(1)
6,4)[2]⊕α(ν

(3)
1,5 , ν

(3)
1,6)[1] α(ν

(2)
3,1 , ν

(2)
3,2)

U6 α(ν
(2)
3,1 , ν

(2)
3,2)[2]⊕α(ν

(3)
1,5 , ν

(3)
1,6)[2] α(ν

(1)
6,3 , ν

(1)
6,4)

Example 5. In Example 1, if we consider the same group as in
Stage 2, i.e., G = {U1, U3, U6} then we can see that U1 still
misses values ν(3)1,1 , ν

(3)
1,2 , ν

(3)
1,3 and ν

(3)
1,4 of J3 or simply their

aggregate α(ν
(3)
1,1 , ν

(3)
1,2 , ν

(3)
1,3 , ν

(3)
1,4). Observe that all required

subfiles locally reside in the cache of U2 which can transmit the
value to U1. For the complete set of unicast transmissions see
[14, Table II]. The load turns out to be Lstage 3 = 6×2×B

JQB = 1
2 .

The communication load of all phases is then LCAMR = 1.
Similarly, the load achieved by the CCDC scheme of [4] for
the same storage fraction µ = 1/3 is LCCDC = 1. Nonetheless,
their approach would require a minimum of J =

(
6
3

)
= 20

distributed jobs to be executed.

D. Reduce phase

Using the values it has computed and received, Uk reduces

φ
(j)
k (1(j), . . . , N (j)) = α(ν

(j)
k,1, ν

(j)
k,2, . . . , ν

(j)
k,N )

for all k = 1, . . . ,K and j = 1, . . . , J .

IV. COMMUNICATION LOAD ANALYSIS

In the first stage, for each of the J jobs, each of the
k owners computes one aggregate and is associated with a
unique corresponding packet of it, of size B

k−1 . As a result,
the communication load exerted in this stage is

Lstage 1 =
Jk B

k−1
JQB

=
k

K(k − 1)
.

The second stage involves the communication within all
possible qk−1(q − 1) groups that satisfy the desired property.
In each case, k workers transmit one value each, and the
transmission is of length B

k−1 . Then,

Lstage 2 =
qk−1(q − 1)k B

k−1
JQB

=
(q − 1)k

K(k − 1)
.

Each server does not own J − qk−2 jobs. For each of them,
during stage 3, one transmission (of length B) from a server
in the same parallel class is sufficient. Thus,

Lstage 3 =
K
(
J − qk−2

)
B

JQB
=
q − 1

q
.

The total load is

LCAMR =

3∑
i=1

Lstage i =
k(q − 1) + 1

q(k − 1)
.

V. COMPARISON WITH OTHER SCHEMES

The technique proposed in [4] demonstrates a load of

LCCDC =
(1− µ)(µK + 1)

µK
. (6)

for a suitable storage fraction such that µK ∈ {1, . . . ,K−1}.
Our storage requirement is equal to µ = k−1

K . For the same
storage requirement, Eq. (6) yields

LCCDC =
(1− k−1

K )(k−1K K + 1)
k−1
K K

=
k(q − 1) + 1

q(k − 1)
.

We conclude that the loads induced by the two schemes
are identical. However, their approach fundamentally relies
on the requirement that the minimum number of jobs to be
executed is JCCDC, min =

(
K

µK+1

)
. Comparing this value with

our requirement for JCAMR = qk−1 and using a known bound
for the binomial coefficients, we deduce that [?]

JCCDC, min =

(
K

µK + 1

)
=

(
kq

k

)
(a)
≥
(
kq

k

)k (b)
> JCAMR, min,

where the bound of (a) is maximum when q = 2 and becomes
stricter for q > 2; however, as q increases the bound of (b)
loosens and it turns out that our requirement for the number
of jobs becomes exponentially smaller than that of CCDC (cf.
[14, Table III] for a numerical comparison).
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TABLE II
NEEDED AGGREGATE VALUES AT THE END OF STAGE 2

Server Needs
U1 α(ν

(3)
1,1 , ν

(3)
1,2 , ν

(3)
1,3 , ν

(3)
1,4) and α(ν(4)1,1 , ν

(4)
1,2 , ν

(4)
1,3 , ν

(4)
1,4)

U2 α(ν
(1)
2,1 , ν

(1)
2,2 , ν

(1)
2,3 , ν

(1)
2,4) and α(ν(2)2,1 , ν

(2)
2,2 , ν

(2)
2,3 , ν

(2)
2,4)

U3 α(ν
(2)
3,3 , ν

(2)
3,4 , ν

(2)
3,5 , ν

(2)
3,6) and α(ν(4)3,3 , ν

(4)
3,4 , ν

(4)
3,5 , ν

(4)
3,6)

U4 α(ν
(1)
4,3 , ν

(1)
4,4 , ν

(1)
4,5 , ν

(1)
4,6) and α(ν(3)4,3 , ν

(3)
4,4 , ν

(3)
4,5 , ν

(3)
4,6)

U5 α(ν
(2)
5,1 , ν

(2)
5,2 , ν

(2)
5,5 , ν

(2)
5,6) and α(ν(3)5,1 , ν

(3)
5,2 , ν

(3)
5,5 , ν

(3)
5,6)

U6 α(ν
(1)
6,1 , ν

(1)
6,2 , ν

(1)
6,5 , ν

(1)
6,6) and α(ν(4)6,1 , ν

(4)
6,2 , ν

(4)
6,5 , ν

(4)
6,6)

TABLE III
COMPARISON OF THE MINIMUM REQUIREMENT ON THE NUMBER OF JOBS
FOR CAMR AND CCDC SCHEMES USING THE SAME STORAGE FRACTION.

CLUSTER CONSISTS OF K = 100 SERVERS.

k Minimum J
CAMR CCDC

2 50 4950
4 15625 3921225
5 160000 75287520

APPENDIX

Proof of Lemma 2

We shall refer to Algorithm 2 in order to show that each
machine in G can recover its missing data chunk. Fix a pair
of machines {Um, Uk} ⊂ G and the packet ∆m transmitted
from Um to Uk. By canceling out all terms of ∆m with Uk ∈
G \ {Uk′} in Eq. (3), which Uk locally stores, it can recover
the remaining term, i.e., {D[k][i] : Um = U

[k]
i }. Keeping Uk

fixed, we repeat this process for every possible machine Um ∈
G \ {Uk}. Since each of them is associated with a distinct
packet of D[k] it follows that by receiving the k − 1 packets

{∆m : Um ∈ G \ {Uk}},

Uk can recover the following packets

{D[k][i] : Ui ∈ G \ {Uk}}.

Subsequently, Uk concatenates them in order to recover D[k].
Since this proof holds independently of the choice of Um, we
have shown that all machines can recover their missing chunks
at the end of the transmissions.

Since each chunk is assumed to be of size B bits and it was
split into k− 1 packets of size B/(k− 1), the total amount of
transmitted data is Bk/(k − 1).

Proof of Shuffling Correctness of Stage 3

The proof follows from stage 2 and by the resolvability
property of our design. Let us fix a shuffling group of stage
2, say G, a subset P = G \ {Um} and focus on the excluded
server Um. The servers in P share a batch of a job Jj whose
values have transmitted to Um. The remaining batches of
Jj that Um still needs are locally stored at a single server
(precisely the owner of the job) in the remaining parallel class,
i.e., the parallel class of Um (cf. [Section III.A]). The fact
that the design is resolvable makes that server unique, since
no blocks within a parallel class can have common points
(recall that points have one-to-one correspondence with the
jobs). That node will transmit the uncoded aggregate to Um.
Such transmissions benefit a single machine.
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