
ar
X

iv
:1

71
1.

04
04

9v
2

 [
cs

.I
T

]
 1

3
Ja

n
20

19

One-Bit ExpanderSketch for One-Bit Compressed Sensing

Vasileios Nakos∗

January 15, 2019

Abstract

Is it possible to obliviously construct a set of hyperplanes H such that you can approximate
a unit vector x when you are given the side on which the vector lies with respect to every h ∈ H?
In the sparse recovery literature, where x is approximately k-sparse, this problem is called one-
bit compressed sensing and has received a fair amount of attention the last decade. In this paper
we obtain the first scheme that achieves almost optimal measurements and sublinear decoding
time for one-bit compressed sensing in the non-uniform case. For a large range of parameters,
we improve the state of the art in both the number of measurements and the decoding time.

1 Introduction

Compressed sensing is a signal processing technique for reconstructing an approximatelly sparse
signal, given access to fewer samples than what the Shannon-Nyquist Theorem requires. This
technique was initiated the last decade [CT05, Don06] and has received an enormous amount
of attention, because of its many applications in fields like machine learning, signal processing,
computer vision, genetics etc. In this setting, one obtains m linear measurements of a signal
x ∈ R

n:

y = Ax,

where A ∈ R
m×n, and wants to approximatelly reconstruct x, exploiting prior information

about its sparsity. This setting has been examined very carefully under different guarantees and
many algorithms have been suggested.

However, in modern acquisition systems measurements need to be quantized: that it means that
we have access only to y = Q(Ax) for some Q : Rm → Am [BB08]. In other words, Q maps every
element of the encoded vector to an element to a finite alphabet A. The most common paradigm
is when A = {−1, 1} and

y = sign(Ax),

where the sign function is applied to any element of the vector. In hardware systems such as the
analog-to-digital converter (ADC), quantization is the primary bottleneck limiting sample rates
[Wal99, LRRB05]. Moreover, as indicated in [LRRB05], the sampling rate has to decrease expo-
nentially in order for the number of bits to be increased linearly. Furthmore, power consumption is

∗Harvard University. vasileiosnakos@g.harvard.edu. Supported in part by NSF grant IIS-1447471.

1

http://arxiv.org/abs/1711.04049v2

dominated by the quantizer, leading to increased ADC costs. Thus, the one-bit compressed sensing
framework provides a way to disburden the quantization bottleneck by reducing the sampling rate,
i.e. the total number of measurements [BB08].

Apart from having important applications, the problem of one-bit compressed sensing is also
interesting from a theoretical perspective, as it is a natural and fundamental question on high-
dimensional geometry. One can think of it in the following way: can we construct a set of hyper-
planes H such that we can approximate the direction a k-sparse vector x ∈ R

n given sign(〈x, h〉),
for all h ∈ H? If we want a uniform guarantee, i.e. being able to approximate the direction of x for
every x, this means that every region defined by the hyperplanes and the sphere must have “small’
diameter. Othewise, if we want to reconstruct the direction of x with some target probability, then
we demand that most regions defined by the sphere and the hyperplane to have small diameter.
The latter formulation is very closely related to the problem of random hyperplane tesselations
[PV14].

In this work, we focus on designing a scheme for one-bit compressed sensing that enables sub-
linear decoding time in the universe size n. Sub-linear decoding time has been extensively in the
sparse recovery literature [GSTV07, GLPS12, PS12, GNP+13, GLPS17], but overlooked in the
literature of one-bit compressed sensing; the only paper that explored sub-linear decoding time is
[Nak17].

1.1 Previous Work

The problem of one-bit compressed sensing was introduced in [BB08], and has received a fair
amount of attention till then; one can see [LXZL18] for details. Efficient algorithms, which proceed
by by solving linear or convex programs when the sensing matrix consists of gaussians, appear in
[PV13a, PV13b, GNJN13]. Algorithms that are based on iterative hard-thresholding have been
suggested in [JDDV13, JLBB13]. Moreover, the paper of Plan and Vershyin [PV14] studies the
very relevant problem of random hyperplane tesselations. The authors in [GNJN13, ABK17] give
also combinatorial algorithms for support-recovery from one-bit measurements using combinatorial
structures called union-free families. Moreover, [Nak17] gives combinatorial algorithms for one-bit
compressed sensing that run in sub-linear time, using ideas from the data streams literature and
combinatorial group testing.

The work of [BFN+16] introduces schemes for one-bit compressed sensing for the scenario where
the underlying singal is sparse with respect to an overcomplete dictionary rather than a basis; this
scenario is common in practice. Researchers have also tried to reduce the reconstruction error by
employing different techniques and under different models. One approach suggested is Sigma-Delta
quantization [KSW16, GLP+10]. If adaptivity is allowed and, moreover, the measurements take
the form of threshold signs, the authors in [BFN+17] show that the reconstruction error can be
made exponentially small.

1.2 Our Contribution

In this paper, we study the non-uniform case under adversarial noise and give the first result that
achieves sublinear decoding time and nearly optimal O(δ−2k + k log n) measurements, where δ is
the reconstruction error, k is the sparsity and n is the universe size. For clearness, this scheme
allows reconstruction of a fixed x ∈ R

n and not of all x ∈ R
n; we refer to this a non-uniform

guarantee.

2

We compare with two previous schemes, which are the state of the art. The first scheme
appears in [PV13b], which achieves δ−2k log(n/k) measurements and poly(n) decoding time, while
the other appears in [Nak17] and achieves O(δ−2k+k log(n/k)(log k+log log n)) measurements and
poly(k, log n) decoding time. We mention that the aforementioned two works are incomparable,
since they exchange measurements and decoding time. However, generalizing [Nak17] and using
the linking/clustering idea of [LNNT16] (which is closely related to list-recoverable codes), we are
able to almost get the best of both worlds. Our scheme is strictly better the scheme of [PV13b]
when k ≤ n1−γ , for any constant γ; we note that the exponent of k in our running time is the same
as the exponent of n in the running time of the relevant scheme of [PV13b].

We note that [PV13b] discusses also uniform guarantees for the one-bit compressed sensing
problem. Our result is non-uniform and thus incomparable with some of the results in that paper;
the relevant parts from [PV13b] are Theorem 1.1 and subsection 3.1. It is important to note
that the guarantee of our algorithm cannot be achieved in the uniform setting, even when linear
measurement are allowed [CDD09] (i.e. we do not have access only to the sign of the measurement),
thus a comparison is meaningful (and fair) only with a non-uniform algorithm.

1.3 Preliminaries and Notation

For a vector x ∈ R
n we define H(x, k) = {i ∈ [n] : |xi|2 ≥ 1

k‖x−k‖22}. If i ∈ H(x, k), we will say
that i is a 1/k-heavy hitter of x. For a set S we define xS to be the vector that occurs after zeroing
out every i ∈ [n]\S. We define head(k) to be the largest k in magnitude coordinates of x, breaking
ties arbitrarily, and we define x−k = x[n]\head(k), which we will also refer to as the tail of x. Let
Sn−1 = {x ∈ R

n : ‖x‖2 = 1}. For a number θ we set sign(θ) = 1 if θ ≥ 0, and −1 otherwise. For a
vector v = (v1, v2, . . . , vn) we set sign(v) = (sign(v1), sign(v2), . . . , sign(vn)). We also denote P([n])
to be the powerset of [n].

Definition 1 (Vertex Expander). Let Γ : [N]× [D] → [M] be a bipartite graph with N left vertices,
M right vertices and left degree D. Then, the graph G will be called a (k, ζ) vertex expander if for
all sets S ⊆ [N], |S| ≤ k it holds that Γ(S) ≥ (1− ζ)|S|D.

1.4 Main Result

The main result of our paper is the following.

Theorem 1. There exists a distribution D ∈ R
m×n, a procedure Dec : {−1,+1}m → R

n and
absolute constants C1, C2 > 1 such that

∀x ∈ Sn−1 : PΦ∼D[x̂ = Dec(sign(Φx)) : ‖x− x̂‖22 > 2‖x−k‖22 + δ] ≤ e−C1δ−1k + n−C2 ,

and ‖x̂‖0 = O(k).
The number of rows of Φ is m = O(k log n+δ−2k), and the running time of Dec is poly(k, log n).

It should clear that since x̂ is O(k)-sparse, we do not need to output an n-dimensional vector,
but only the positions where the vector is non-zero.

3

1.5 Overview of our Approach

The one-bit compressed sensing framework has a neat geometrical representation: one can think
of every measurement sign(〈Φj, x〉) indicating on which side of the hyperplane Φj the vector x lies.
One of the results of [PV13b] shows that this is possible with O(δ−2k log(n/k)) random hyperplanes
when random post-measurement noise v is added, i.e. y = sign(Φx+ v); the paper gives also other,
very intersesting results, but we will not focus on them in this work. To achieve sublinear decoding
time we do not pick the hyperplanes (measurements) at random, but we construct a structured
matrix that allows us to find all 1/k-heavy hitters of x. This approach also has been followed in one
of the schemes of [Nak17]. There the author implemented the dyadic trick [CH08] in the one-bit
model, showing that it is possible to recover the heavy hitters of x from one-bit measurements,
using O(k log(n/k)(log k+log log n)) measurements. Our results is an extension and generalization
of that paper, along with the linking and clustering technique of [LNNT16].

In the core of our scheme, lies the design of a randomized scheme which is analogous to the “par-
tition heavy hitters” data structure of [LNNT16]; we call this schemeOne-Bit PartitionPointQuery.
More concretely, the question is the following: given a partition P of the universe [n], is it possible
to decide if a given set S ∈ P is heavy, when we are given access only to one-bit measurements?
We answer this question in the affirmative and then combine this routine with the graph clustering
technique of [LNNT16]. We thus show that, similarly to that paper, it is possible to reduce the
problem of finding the heavy coordinates in the one-bit framework to the same clustering problem.

1.6 Toolkit

Lemma 1 (Chernoff Bound). Let X1, . . . ,Xr be Bernoulli random variables with E[Xi] = p. There
exists an absolute constant cch such that

P

[

|
∑

i

Xi − pr| > ǫpr

]

≤ e−cchǫ
−2pr

Lemma 2 (Bernstein’s Inequality). There exists an absolute constant cB such that for independent
random variables X1, . . . ,Xr, with |Xi| ≤ K we have that

∀λ > 0,P

[

|
∑

i

Xi − E

∑

i

Xi| > λ

]

≤ e−CBλ/σ2
+ e−CBλ/K ,

where σ2 =
∑

i E(Xi − EXi)
2.

Theorem 2 (Fixed Signal, Random Noise Before Quantization [PV13b]). Let x ∈ R
N and G ∈

R
m×N , each entry of which is a standard gaussian. If y = sign(Gx+ v), where v ∼ N (0, σ2I), then

the following program

x̂ = argmax 〈y,Gx〉 , s.t. ‖z‖1 ≤
√
k

returns a vector x̂ such that ‖x− x̂‖22 ≤ δ, as long as

m = Ω(δ−2(σ2 + 1)k log(N/k)).

4

2 Main Algorithm

Our algorithm proceeds by finding a set S of size O(k) containing all coordinates i ∈ H(x, k) and
then runs the algorithm of [PV13b], by restrictring on columns indexed by S. The scheme that is
used to find the desired set S is guaranteed by the following Theorem.

Theorem 3. There exists a randomized construction of a matrix Φ ∈ R
m′×n, a decoding pro-

cedure OneBitHeavyHitters : {−1, 1}m′ → P([n]) and an absolute constant c, such that S =
OneBitHeavyHitters(sign(Φx)) satisfies the following, with probability 1− 1

nC1
. a) |S| ≤ ck, and b)

∀i ∈ H(x, k), i ∈ S. Moreover, the number of rows of Φ equals m′ = O(k log n) and the running
time of OneBitHeavyHitters is O(k · poly(log n)).

Given the above theorem we show how to prove the Theorem 1.
Proof.

We vertically concatenate the matrix Φ from Theorem 3 and the matrix G guaranteed by
Theorem 2. Then, we run the algorithm OneBitHeavyHitters(sign(Φx)) to obtain a set S. Then
we run the following algorithm:

x̂ = argmax 〈y,GSz〉 , s.t. ‖z‖1 ≤
√
k.

Last, we output x̂. Since Gx = GSxS + G[n]\Sx[n]\S, and G[n]\Sx[n]\S ∼ N (0, ‖x[n]\S‖22I) and
‖x[n]\S‖2 ≤ 1, by combining the guarantees of theorems 2 and 3 we have that

‖x− x̂‖22 = ‖xS − x̂S‖22 + ‖x[n]\S‖22 ≤ δ + 2‖x−k‖22,
because ‖x[n]\S‖22 ≤ ‖x−k‖22 +

∑

i∈head(k)\H(x,k) x
2
i ≤ ‖x−k‖22 + k 1

k‖x−k‖22 = 2‖x−k‖22. �

Remark: From the discussion in this subsection, it should be clear than any algorithm that
runs in linear time in n and has the same guarantees as as Theorem 2 immediatelly implies, by our
reduction, an algorithm that achieves O(kpoly(log n)) time. Thus, any subsequent improvement of
that type over [PV13b] gives an improvement of our main result in a black-box way.

2.1 Reduction to small Sparsity

The following trick is also used in [LNNT16]. If k = Ω(log n), we can hash every coordinate
to Θ(k/ log n) buckets and show that it suffices to find the 1

logn -heavy hitters in every bucket
separately. Here, we give a proof for completeness. First, we state the following lemma, which is
proven in section 2.4.

Theorem 4. Let C ′, C0 be absolute constants and suppose that k ≤ C ′ log n. Then there exists
a randomized construction of a matrix Φ ∈ R

m′′×n with m′′ = O(k log n) rows, such that given
y = sign(Φx), we can find, with probability 1 − n−C0 and in time O(poly(log n)), a set S of size
O(k) containing every i ∈ H(x, k).

Given this lemma, we show how to prove Theorem 2. This lemma is also present in [LNNT16],
but, for completeness, we prove it again here.
Proof. If k < C ′ log n, we run the algorithm guaranteed by the previous lemma. Otherwise, we
pick a hash function g : [n] → [C ′′k/ log n] and for j ∈ [C ′′k/ log n] we obtain set Sj using lemma.
We then output the union of all these sets. Define z = C ′′k/ log n. We argue correctness.

5

For j ∈ [C ′′k/ log n] we use the Chernoff Bound to obtain that

P
[

|g−1(j) ∩H(x, k)| ≥ log n
]

≤ e−C′′′ logn.

We will now invoke Bernstein’s inequality for the random variables
{

Xi = 1g(i)=j

}

i∈[n]\H(x,k)
;

for these variables we have K < 1
k‖x−k‖22 and

σ2 <
∑

i∈[n]\H(x,k)

x4i (z
−1 − z−2) ≤ k

z
‖x−k‖42

∑

i∈[n]\H(x,k)

x2i =
k

z
‖x−k‖42

P

|
∑

i∈g−1(j)\H(x,k)

x2i ≥
log k

k
‖x−k‖22

 ≤ e−C′′′ logn.

By a union-bound over all 2z = 2C ′′k/ log n events, 2 for every buckets j ∈ [z], we get the proof
of the lemma.

�

Our paper now is devoted to proving Theorem 4.

2.2 One-BitPartitionPointQuery

In this section we prove the following Theorem, which is the main building block of our algorithm.

Theorem 5. Let x ∈ R
n and a partition P = {P1, P2, . . . , PT } of [n]. There exists an oblivious ran-

domized construction of a matrix Z ∈ R
m×n along with a procedure One-BitPartitionPointQuery :

[T] → {0, 1}, where m = O(k log(1/δ)), such that given y = sign(Zx) the following holds for
j∗ ∈ [T].

1. If Pj∗ contains a coordinate i ∈ H(x, k), then One-BitPartitionPointQuery(j∗) = 1 with
probability 1− δ.

2. If there exist at least ck indices such that ‖xPj
‖2 ≥ ‖xPj∗

‖2, then One-BitPartitionPointQuery(j∗) =
0 with probability 1− δ.

Moreover, The running time of is O(log(1/δ)).

We describe the construction of the the matrix Z. We are going to describe the matrix as a set
of linear measurements on the vector x. For i ∈ [n], j ∈ [T], B ∈ [CBk], ℓ ∈ [3], r ∈ [C3 log(1/δ)] we
pick the following random variables:

1. fully independent hash functions hr,ℓ : [T] → [CBk].

2. random signs σj,B,ℓ,r. Intuitively, one can think of this random variable as the sign assigned
to set Pj in bucket B of sub-iteration ℓ of iteration r.

3. normal random variables gi,r. One can think of this random variable as the gaussian associated
with i in iteration r.

6

Then, for every B ∈ [CBk], ℓ ∈ [3], r ∈ [CB log(1/δ)] we perform linear measurements

zB,ℓ,r =
∑

j∈h−1
r,ℓ

(B)

σj,B,ℓ,r

∑

i∈Pj

gi,rxi,

as well as measurements −zB,ℓ,r (the reason why we need this will become clear later).
Of course we have access only to the sign of the measurement: yB,ℓ,r = sign(zB,ℓ,r). We slightly

abuse notation here, as y is described as a 3-dimensional vector; it is straightforward to see how
this vector can be mapped to a 1-dimensional vector.

We will make use of the following lemmata. The value CB is a large enough constant, chosen in
order for the analysis to work out. Before proceeding with the lemmas, we pick constants Cu, Cd

such that

1. PY∼N (0,1)[|Y | < Cu] =
19
20 .

2. PY∼N (0,1)[|Y | > Cd] =
19
20 .

Lemma 3. Fix i∗ ∈ H(x, k), j∗ such that i∗ ∈ Pj∗, as well as r ∈ [C3 log(1/δ)]. We also set
Bℓ = hr,ℓ(j

∗). Then, with probability at least 3
5 we have that for all ℓ ∈ [3] either

yBℓ,ℓ,r = σj∗,Bℓ,ℓ,r or yBℓ,ℓ,r = −σj∗,Bℓ,ℓ,r.

Proof.

For the need of the proof we define B−1
ℓ = h−1

r,ℓ (hr,ℓ(j
∗)). First, observe that for all ℓ ∈ [3] that

the random variable

Yℓ =
∑

j∈B−1
ℓ

\{j∗}

σj,Bℓ,ℓ,r

∑

i∈Pj

gi,rxi

is distributed as
√

√

√

√

√

√

∑

j∈B−1
l

\{j∗}

∑

i∈Pj

x2i

· N (0, 1).

Observe that with probability at least 19
20 , |Yℓ| will be at most

Cu

√

∑

j∈B−1
ℓ

\{j∗}

∑

i∈Pj

x2i .

Define
Zℓ =

∑

j∈B−1
ℓ

\{j∗}

∑

i∈Pj

x2i .

Consider now the set Pbad of Pj , j ∈ [T] \ {j∗} for which there exists i ∈ H(x, k) such that
i ∈ Pj . Since there are at most 2k elements in Pbad, with probability at least 1− 2

CB
it holds that

B−1
ℓ ∩ Pbad = ∅. Let this event be W. It is a standard calculation that E[Zl|W] ≤ 1

CBk‖x−k‖22.

7

Invoking Markov’s inequality one gets that Zl is at most 20
CBk‖x−k‖22 with probability at least 19

20 .
Putting everything together, this gives that

|Yℓ| > Cu

√

20

CBk
‖x−k‖2

with probability 1
20 . The probability that there exist l ∈ [3] such that |Yℓ| > Cu

√

20
CBk‖x−k‖2 is at

most 3
20 . We now observe that the

|
∑

i∈Pj∗

gi,rxi| ≥ Cd‖xPj∗
‖2 ≥ Cd

1√
k
‖x−k‖2

with probability at least 19
20 . The above discussion implies that with probability at least 15

20 the

quantity |∑i∈Pj∗
gi,rxi| is larger than |Yℓ|, for all l ∈ [3], if Cd/

√
k > Cu

√

20
CBk . This means that,

with probability at least 3
4 , the sign of zBℓ,ℓ,r will be determined by the sign of σj∗,Bℓ,ℓ,r

∑

i∈Pj∗
gi,rxi

for all ℓ ∈ [3]. This implies that if
∑

i∈Pj∗
gi,rxi > 0, we will get that yBℓ,ℓ,r = σj∗,Bℓ,ℓ,r. On the

other hand, if
∑

i∈Pj∗
gi,rxi < 0 then yBℓ,ℓ,r = −σj∗,Bℓ,ℓ,r. This gives the proof of the lemma.

�

Lemma 4. Let j∗ such that ‖xPj∗
‖2 > 0. We also define Bℓ = hr,ℓ(j

∗). Assume that there exist at
least ck indices j such that ‖xPj

‖2 ≥ ‖xPj∗
‖2, for some absolute constant c. Then, with probability

3
5 , there exists indices ℓ1, ℓ2 ∈ [3] such that

yBℓ1
,ℓ1,r = σj∗,Bℓ1

,ℓ1,r and yBℓ2
,ℓ2,r = −σj∗,Bℓ2

,ℓ2,r.

Proof. For the need of the proof we also define B−1
ℓ = h−1

r,ℓ (hr,ℓ(j
∗)). Fix ℓ ∈ [3]. Let Pgood be the

set of indices j ∈ [T] such that ‖xPj
‖2 ≥ ‖xPj∗

‖2. Let the random variable Zℓ be defined as

Zℓ = |{j ∈ Pgood \ {j∗} : j ∈ B−1
ℓ }|.

Observe now that E[Zℓ] =
ck

CBk = c
CB

and moreover Zl is a sum of independent Bernoulli random

variables with mean 1
CBk , hence a standard concetration bound gives that, for c large enough, Zℓ

will be larger than 4C2
dC

2
u with probability 19

20 . This implies that

∑

j∈B−1
ℓ

\{j∗}

‖xPj
‖22 ≥ 4C2

dC
2
u‖xPj∗

‖22.

for all ℓ ∈ [3]. This implies that, for any λ ∈ R,

P

|

∑

j∈B−1
ℓ

\{j∗}

σj,Bℓ

∑

i∈Pj

gi,rxi| ≥ λ

≥

P

[

2CdCu‖xPj∗
‖2 · |N (0, 1)| ≥ λ

]

.

8

The above implies that

P

|
∑

j∈Bl\{j∗}

σj,Bℓ,ℓ,r

∑

i∈Pj

gi,rxi| ≥ 2Cu‖xPj∗
‖2

 ≥ 19

20

and moreover

P

|
∑

i∈Pj∗

gi,rxi| ≤ Cu‖xPj∗
‖2

 ≥ 19

20
,

which implies that with probability 17
20 we have that

|
∑

j∈B−1
ℓ

\{j∗}

σj,B−1
ℓ

,l,r

∑

i∈Pj

gi,rxi| ≤ 2|
∑

i∈Pj∗

gi,rxi|.

Observe now that yBℓ,ℓ,r is the same as the sign of
∑

j∈Bℓ\{j∗}
σj,B−1

ℓ
,l,r

∑

i∈Pj
gi,rxi, which, because of the random signs, means that

P [yBℓ,ℓ,r = 1] =
1

2
.

Moreover, we get that yBℓ,ℓ,r and σj∗,Bℓ,ℓ,r are independent. Conditioned on the previous events,
the probability that either

yBℓ,ℓ,r = σj∗,Bℓ,ℓ,r

for all ℓ ∈ [3], or

yBℓ,ℓ,r = −σj∗,Bℓ,ℓ,r

for all ℓ ∈ [3], is 2
8 . This gives the proof of the claim since 3

20 + 2
8 ≤ 8

20 = 2
5 .

�

We are now ready to proceed with the proof of Theorem 5.
Proof.

We iterate over all r ∈ [C3 log(1/δ)] and count the number of “good” repetitions: a repetition r is
good if for all ℓ ∈ [3], yhr,ℓ(j∗),ℓ,r = σj,hr,ℓ(j∗),ℓ,r or yhr,ℓ(j∗),ℓ,r = −σj,hr,ℓ(j∗),ℓ,r. We also check if there
exists l ∈ [3] such that yhr,ℓ(j∗),ℓ,r = 0 by checking the values of yhr,ℓ(j∗),ℓ,r = 0 and −yhr,ℓ(j∗),ℓ,r = 0.

If there exists no such ℓ and the number of good repetitions is at least ⌈12C3 log(T/δ)⌉+1 we output
1, otherwise we output 0.
We proceed with the analysis. First of all, if there exists an ℓ ∈ [3] that satisfies yhr,ℓ(j∗),ℓ,r = 0, this
would mean that ‖xPj∗

‖ = 0. Let us assume that this is not the case, otherwise we can ignore j∗.
If i∗ ∈ H(x, k) belongs to Pj∗ , for some j∗, using Lemma 3 the expected number of good iterations
equals (3/5)C3 log(1/δ),and by a Chernoff Bound we get that at least (2.6/3) · (3/5)C3 log(1/δ) =
(2.6/5)C3 log(1/δ) repetitions will be good with probability

1− e−Ω(log(|T |/δ)) ≥ 1− δ,

9

for large enough C3. In the same way, using Lemma 4 we can bound by δ the probability that a set
Pj∗ , for which there exist at least ck set Pj with ‖xPj

‖2 ≥ ‖xPj∗
‖2, has more than ⌈12C3 log(T/δ)⌉−1

good repetitions. This concludes the proof of the lema.
�

The following lemma is immediate by taking δ = T−C0−1 and taking a union-bound over all
j ∈ [T].

Lemma 5 (One-BitPartitionCountSketch). Let x ∈ R
n and a partition P = {P1, P2, . . . , PT }

of [n]. There exists a randomized construction of a matrix Z ∈ R
m×n, such that given y = sign(Zx),

we can find in time O(k log T) a set S of size O(k) that satisfies contains every j ∈ [T] for which
there exists i ∈ Hk(x) ∩ Pj . Moreover, the failure probability is T−C0.

2.3 One-Bit b-tree

We now describe the scheme of One-Bit b-tree. The b-tree is a folkore data structure in streaming
algorithms, first appearing in [CH08] in the case of vectors with positive coordinates. The version
of the b-tree we are using here is more closely related in [LNNT16]. We remind the reader that
the aforementioned papers treated the case where we have access to Φx and not only to sign(Φx).
Here, we describe it a sensing matrix associated with a decoding procedure, rather than a data
structure. Given the b-tree, we can find elements i ∈ H(x, k) and get an analog of Theorem 1;
however, this would only give 1/poly(log n) failure probability. Getting 1/poly(n) failure probability
requires using the ExpanderSketch algorithm of [LNNT16]In fact, we can use the One-Bit b-
tree to speed up the One-Bit ExpanderSketch decoding procedure, but since our overall scheme
already has a polynomial dependence on k in the running time due to the application of Theorem,
this will not give us any crucial improvement. However, we believe that it might of independent
interest in the sparse recovery community.

The following lemma holds.

Lemma 6. Let k, b < n be integers. There exists a randomized construction of a matrix A ∈ R
M×n

such that given y = sign(Ax) we can find a set S of size O(k) such that ∀i ∈ H(x, k), i ∈ S. The
total number of measurements equals

M = O(k
log(n/k)

log b
(log(k/δ) + log log(n/k)− log log b))

the decoding time is

O(bk
log(n/k)

log b
(log(k/δ) + log log(n/k) − log log b))

and the failure probability is δ.

Proof.

Let R be the smallest integer such that kbR ≥ n; this means that R = ⌈log(n/k)/ log b⌉. For
r = 0, . . . , R we use the One-Bit PartitionCountSketch scheme guaranteed by Lemma, with
δ = δ/(bkR) and partition Pr = {{1, . . . ,

⌈

n
kbr

⌉

}, {
⌈

n
kbr

⌉

+ 1, . . . , 2
⌈

n
kb2

⌉

}, . . .}, of size Tr = Θ(kbr).
The total number of measurements equals

O(Rk log(bkR/δ)) = O(k
log(n/k)

log b
(log(k/δ) + log log(n/k) − log log b)).

10

We can think of the partitions T1, T2, . . . , TR as the levels of a b-ary tree; for every set if T ∈ Tr,
there are b sets T ′ ∈ Tr+1 which are neighbours of T . The decoding algorithms starts at quering
the One-Bit PartitionCountSketch for r = 0 to obtain a set S0. Then, for every i ∈ [1, r],
it computes all the neighbours of Sr−1, where the for a total of O(b|S|) sets. Then using One-

BitPartitionPointQuery we query every new partition, to obtain a set Sr of size O(k). The
output of the algorithm is the set SR. The running time then is computed as

O(bRk log(bkR/δ) = O(bk
log(n/k)

log b
(log(k/δ) + log log(n/k) − log log b))

�

From the above lemma, we get the following result, by carefully instatianting the parameter b.

Lemma 7. There exists a b such that the One-Bit b-tree uses O(γ−1k log(n/δ)) measurements
and runs in time O(γ−1(k log(n/δ))2+γ), for any arbitarily constant γ.

Proof.

We set b = (k log(n/δ))γ and observe that the number measurements is at most

O
(

k
log n

γ(log(k/δ) + log log n)
(log(k/δ) + log log n)

)

= O
(

1

γ
k log(n/δ)

)

,

while the decoding time becomes

O
(

(k log(n/δ))γk
log n

γ(log(k/δ) + log log n)
(log(k/δ) + log log n)

)

= O
(

1

γ
(k log(n/δ))2+γ

)

�

2.4 One-Bit ExpanderSketch

In this subsection we prove Theorem 4. Given the results aboutOne-BitPartitionCountSketch

we developed in the previous sections, the proof of the theorem is almost identical to [LNNT16]
with a very simple modification. For completeness, we go again over their construction. We remind
the reader that in our case k = O(log n).

Construction of the Sensing Matrix: We first pick a code enc : {0, 1}log n → {0, 1}O(log n),
which corrects a constant fraction of errors with linear-time decoding; such a code is guaranteed
by [Spi96]. We then partition enc(i) into s = Θ(log n/ log log n) continuous substrings of length
t = Θ(log log n). We denote by enc(i)j the j-th bitstring of length t in enc(i).

We define s hash functions h1, h2, . . . , hs : [n] → [poly(log n)]. Let also F be an arbitrary d-
regular connected expander on the vertex set [s] for some d = O(1). For j ∈ [s], we define Γj ⊂ [s]
as the set of neighbours of j. Then, for every j ∈ [n] we define the bit-strings

mi,j = hj(i) ◦ enc(i)j ◦ hΓ1(j)(i) . . . ◦ hΓd(j)(i),

and the following partitions P(j) containg set P
(j)
mi,j , where mi,j is a string of Θ(t) bits, such

that:

11

∀i ∈ [n], i ∈ P (j)
mi,j

Then for every partition P(j) we pick a random matrix Φ(j) using Lemma 5 with sparsity k,
as well as a random matrix Z(j) using Lemma 5 with sparsity k and failure probability 1

poly(log n) .

Each of these matrices has O(k log(2O(t))) = O(kt) = O(k log log n) rows. The total number of
rows is O(sk log log n) = O(k log n). Then our sensing matrix is the vertical concatenation of
Φ(1), Z(1), . . . ,Φ(s), Z(s).

Decoding Algorithm: For every j ∈ [s] we run the decoding algorithm of Lemma 5 on matrix
Φ(j) to obtain a list Lj of size O(k) such that every “heavy” set of P(j) is included. The running
time in total is m · k · poly(log n) = poly(log n). For every j ∈ [s], we now have that:

• With probability 1/poly(log n), hj perfectly hashes every P
(j)
mi,j for every i ∈ H(x, k).

• With probability 1/poly(log n), for every i∗ ∈ H(x, k), ‖x
P

(j)
mi,j

‖2 ≥ 9
10‖x−k‖2.

• With probability 1/poly(log n), the decoding procedure on Φ(j) succeeds. This follows by
taking a union bound over the events of the previous two bullets and the failure probability
guarantee of Lemma 5 in our instance.

We call by “name” of P
(j)
mi,j the O(log log n)-length substring of bits of mi,j, which correspond

to the bits of hj(i). We then filter out vertices in layer j, by keeping only those that have unique
names. Our next step is to point-query every set z ∈ Lj using the matrices Z(j) and Theorem 5 and
keep the largest O(k) coordinates; this is the difference with [LNNT16], since we can implement
only one-bit point query. Now we let G be the graph created by including the at most (d/2)

∑s
j=1 Lj

edges suggested by the z’s across all Lj, where we only include an edge if both endpoints suggest
it. Now the algorithm and analysis proceeds exactly as [LNNT16].

References

[ABK17] Jayadev Acharya, Arnab Bhattacharyya, and Pritish Kamath. Improved bounds for
universal one-bit compressive sensing. arXiv preprint arXiv:1705.00763, 2017.

[BB08] Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. In Information
Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on, pages 16–21.
IEEE, 2008.

[BFN+16] Rich Baraniuk, Simon Foucart, Deanna Needell, Yaniv Plan, and Mary Wootters. One-
bit compressive sensing of dictionary-sparse signals. arXiv preprint arXiv:1606.07531,
2016.

[BFN+17] Richard G Baraniuk, Simon Foucart, Deanna Needell, Yaniv Plan, and Mary Wootters.
Exponential decay of reconstruction error from binary measurements of sparse signals.
IEEE Transactions on Information Theory, 63(6):3368–3385, 2017.

[CDD09] Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Compressed sensing and best
k-term approximation. Journal of the American mathematical society, 22(1):211–231,
2009.

12

[CH08] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams.
Proceedings of the VLDB Endowment, 1(2):1530–1541, 2008.

[CT05] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE trans-
actions on information theory, 51(12):4203–4215, 2005.

[Don06] David L Donoho. Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306, 2006.

[GLP+10] C Sinan Güntürk, Mark Lammers, Alex Powell, Rayan Saab, and Özgür Yilmaz. Sigma
delta quantization for compressed sensing. In Information Sciences and Systems (CISS),
2010 44th Annual Conference on, pages 1–6. IEEE, 2010.

[GLPS12] Anna C Gilbert, Yi Li, Ely Porat, and Martin J Strauss. Approximate sparse recovery:
optimizing time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012.

[GLPS17] Anna C Gilbert, Yi Li, Ely Porat, and Martin J Strauss. For-all sparse recovery in
near-optimal time. ACM Transactions on Algorithms (TALG), 13(3):32, 2017.

[GNJN13] Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and Aditya Nori. One-bit compressed
sensing: Provable support and vector recovery. In International Conference on Machine
Learning, pages 154–162, 2013.

[GNP+13] Anna C Gilbert, Hung Q Ngo, Ely Porat, Atri Rudra, and Martin J Strauss. l 2/l 2-
foreach sparse recovery with low risk. In International Colloquium on Automata, Lan-
guages, and Programming, pages 461–472. Springer, 2013.

[GSTV07] Anna C Gilbert, Martin J Strauss, Joel A Tropp, and Roman Vershynin. One sketch
for all: fast algorithms for compressed sensing. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 237–246. ACM, 2007.

[JDDV13] Laurent Jacques, Kévin Degraux, and Christophe De Vleeschouwer. Quantized iterative
hard thresholding: Bridging 1-bit and high-resolution quantized compressed sensing.
arXiv preprint arXiv:1305.1786, 2013.

[JLBB13] Laurent Jacques, Jason N Laska, Petros T Boufounos, and Richard G Baraniuk. Ro-
bust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE
Transactions on Information Theory, 59(4):2082–2102, 2013.

[KSW16] Karin Knudson, Rayan Saab, and Rachel Ward. One-bit compressive sensing with norm
estimation. IEEE Transactions on Information Theory, 62(5):2748–2758, 2016.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. Heavy hitters
via cluster-preserving clustering. In Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, pages 61–70. IEEE, 2016.

[LRRB05] Bin Le, Thomas W Rondeau, Jeffrey H Reed, and Charles W Bostian. Analog-to-digital
converters. IEEE Signal Processing Magazine, 22(6):69–77, 2005.

[LXZL18] Zhilin Li, Wenbo Xu, Xiaobo Zhang, and Jiaru Lin. A survey on one-bit compressed
sensing: theory and applications. Frontiers of Computer Science, pages 1–14, 2018.

13

[Nak17] Vasileios Nakos. On fast decoding of high-dimensional signals from one-bit measure-
ments. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 61:1–61:14, 2017.

[PS12] Ely Porat and Martin J Strauss. Sublinear time, measurement-optimal, sparse recovery
for all. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1215–1227. Society for Industrial and Applied Mathematics, 2012.

[PV13a] Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming.
Communications on Pure and Applied Mathematics, 66(8):1275–1297, 2013.

[PV13b] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logis-
tic regression: A convex programming approach. IEEE Transactions on Information
Theory, 59(1):482–494, 2013.

[PV14] Yaniv Plan and Roman Vershynin. Dimension reduction by random hyperplane tessel-
lations. Discrete & Computational Geometry, 51(2):438–461, 2014.

[Spi96] Daniel A Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

[Wal99] Robert H Walden. Analog-to-digital converter survey and analysis. IEEE Journal on
selected areas in communications, 17(4):539–550, 1999.

14

	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.3 Preliminaries and Notation
	1.4 Main Result
	1.5 Overview of our Approach
	1.6 Toolkit

	2 Main Algorithm
	2.1 Reduction to small Sparsity
	2.2 One-BitPartitionPointQuery
	2.3 One-Bit b-tree
	2.4 One-Bit ExpanderSketch

