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Abstract—It is well established that the notion of min-entropy
fails to satisfy the chain rule of the form H(X,Y ) = H(X|Y )+
H(Y ), known for Shannon Entropy. The lack of a chain rule
causes a lot of technical difficulties, particularly in cryptography
where the chain rule would be a natural way to analyze how
min-entropy is split among smaller blocks. Such problems arise
for example when constructing extractors and dispersers.

We show that any sequence of variables exhibits a very strong
strong block-source structure (conditional distributions of blocks
are nearly flat) when we spoil few correlated bits. This implies,
conditioned on the spoiled bits, that splitting-recombination prop-
erties hold. In particular, we have many nice properties that min-
entropy doesn’t obey in general, for example strong chain rules,
“information can’t hurt” inequalities, equivalences of average
and worst-case conditional entropy definitions and others.

Quantitatively, for any sequence X1, . . . , Xt of random vari-
ables over an alphabet X we prove that, when conditioned on
m = t · O(log log |X | + log log(1/ǫ) + log t) bits of auxiliary
information, all conditional distributions of the form Xi|X<i

are ǫ-close to be nearly flat (only a constant factor away). The
argument is combinatorial (based on simplex coverings).

This result may be used as a generic tool for exhibiting block-
source structures. We demonstrate this by reproving the funda-
mental converter due to Nisan and Zuckermann (J. Computer and
System Sciences, 1996), which shows that sampling blocks from
a min-entropy source roughly preserves the entropy rate. Our
bound implies, only by straightforward chain rules, an additive
loss of o(1) (for sufficiently many samples), which qualitatively
meets the first tighter analysis of this problem due to Vadhan
(CRYPTO’03), obtained by large deviation techniques.

Keywords—chain rule, min-entropy, spoiling knowledge, block
sources, local extractors

I. INTRODUCTION

A. Strong vs Weak Entropy Chain Rules

One of the most useful properties of Shannon entropy is the

chain rule, showing how entropy splits between distributions

H1(X |Y ) = H(X,Y )−H(Y ). (1)

The notion of min-entropy, very important for cryptogra-

phy [Sha11], fails to satisfy this property [IS13]. In the

lack of a chain rule, a much weaker one-sided bound (e.g.

of the form H̃∞(X |Y ) > H∞(X) − H0(Y ), where H̃∞
is an appropriate extension of min-entropy to conditional

distributions) is sometimes used [DORS08], which we address

as a weak chain rule1.

1In leakage-resilient cryptography such bounds are simply called chain
rules. In this paper we discuss chain rules in a strong sense.

B. Need for Strong Chain Rules

While the weak chain rule suffices for many applications

related to bounded leakage [DORS08; DP08] (where Y is

leakage much shorter than the amount of min-entropy in X),

it is insufficient where one needs to estimate how entropy

is distributed among blocks. In these settings, one would

like to argue that (roughly) either X or Y |X has high min-

entropy if the joint min-entropy (of (X,Y )) is high. Examples

of such problems are randomness extraction in the bounded

storage model [Cac97], constructions of dispersers [BRSW06],

or oblivious transfer protocols [DFRSS07].

C. Our Contribution and Related Works

Although the chain rule fails in general, we show that it is

true conditioned on few spoiled bits. We actually show more,

that (locally, conditioned on auxiliary bits) a very strong block-

source structure exists. Namely, each block is nearly flat given

previous blocks. Informally, the theorem reads as follows

Theorem (Informal: exhibiting flat block-source structures).

For any sequence X = X1, . . . , Xt of correlated random vari-

ables each over X and any ǫ there exists auxiliary information

S of length m bits such that

(a) S is short: m = t ·O(log log |X |+ log log(1/ǫ) + log t)
(b) Conditioned on S, conditional block distributions

Pr[Xi|Xi = xi, Xi−1 = xi−1, . . . , X1 = x1] are nearly

flat (ǫ-close to a probability distribution whose values

differ by a constant factor).

The formal statement is given in Theorem 1. For cryp-

tographic applications, log log(ǫ−1) is pretty much a small

constant (typically ǫ = 2−100). Also, for sources with super-

logarithmic entropy per block, that is when H∞(X) ≫
t log log |X |), and the number of blocks t growing not too

fast, e.g. t = logO(1)(|X |), the error term is of a smaller order

than the entropy. Under these mild assumptions, conditioned

on the partition generated by auxiliary bits, we conclude many

nice properties that fail in general. Examples are chain rules,

“conditioning only decreases entropy” properties, equivalences

of conditional entropy defined in different ways and others.

1) Our Tools:

a) Spoiling Knowledge: The spoiling knowledge tech-

nique is essentially about finding auxiliary information that

increases entropy, and was introduced in [BBCM95]. We use

the same idea to force block distributions to be nearly flat.
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b) Covering techniques (combinatorial geometry): In

order to construct a good “spoiling”, we consider the logarithm

of the chaining identity pX1...Xt
(·) =

∏t

j=1 pXi|Xi−1...X1
(·)

which represents the “surprise” of the total distribution

as a sum of “next-block surprises” of the form ri(·) =
− log pXi|Xi−1...X1

(·). It follows that the vector of all ri (for

i = 1, . . . , t) lie in a (t − 1)-dimensional simplex of edge

roughly O(t log |X |). Our partition is obtained from coverings,

as for all x in the same part ri(·) is roughly constant (when the

radius is small enough). This approach can be likely optimized

(we use a crude bound on the covering number). Also the

lower bounds on the necessary number of spoiled buts are

possible, by considering packings instead of coverings. We

defer this discussion to the full version.

D. Related works

As far as we know, the presented result on spoiling min-

entropy is knew. The Nisan-Zuckerman lemma, discussed in

this paper as an application, was analyzed by Vadhan [Vad03]

and recently by Bellare [BKR16]. These results study min-

entropy present in random chunks of a larger source, and don’t

offer tools for splitting entropy in any source deterministically

(particularly for a small number of blocks), as we do.

E. Applications

The important result due to Nisan and Zuckerman [NZ96],

improved later by Vadhan [Vad03] states that sampling from

a given source of high min-entropy rate α yields a source

of a comparable entropy rate β. This fact is a crucial step

in constructions of so called local extractors, that extract

randomness parsing only a part of input. For a while, only

a lossy bound β ≈ α/ log(1/α) was known. The reason was

precisely the lack of a chain rule for min-entropy. As observed

by Cachin [Cac97] the proof for Shannon entropy (a less

interesting case) is straightforward and follows basically by

a splitting-recombining argument, which uses a chain rule in

both directions. We demonstrate by our technique that (surpris-

ingly) a very effective splitting-recombining approach actually

works, and achieves β = α − o(1) in a very straightforward

way. This matches the bound due to Vadhan. Concretely, if the

original source is a sequence of t blocks over an alphabet X
and we take ℓ samples, then β = α−errSpoil−errSamp where

the losses due to chain rules and sampling equal, respectively

errSpoil = O(log log |X |+ log log(1/ǫ) + log t)/ log |X |

errSamp = O(
√

ℓ−1 log(1/ǫ)).

In particular β converges to α when the block length is

log |X | = logω(1)(1/ǫ) and log |X | = ω(1) · t. For more

details see Theorem 2 in Section V. For the discussed result

our bounds converge slightly slower than Vadhan’s bounds

derived by large deviation techniques. However, our spoiling

technique can be used also for small number of samples.

F. Organization

In Section II we explain necessary notions and notations.

Auxiliary facts that will be needed are discussed in Section III.

In Section IV we prove the main result. Applications to

the bounded storage model are discussed in Section V. We

conclude the work in Section VI.

II. PRELIMINARIES

A. Basic Notation

For any random variables X1, X2 by pX1|X2
we denote the

distribution of X1 conditioned on X2, that is pX1|X2
(x1, x2) =

Pr[X1 = x1|X2 = x2]. Throughout this paper, all logarithms

are taken to base 2. For any sequence of random variables

X = X1, . . . , Xn we denote X<i = X1, . . . , Xi−1, X6i =
X1, . . . , Xi and more generally for any subset I ⊂ {1, . . . , n}
we put XI = Xi1Xi2 . . . Xim−1

Xim where i1 < i2 < . . . <
im are all elements of I .

B. Distances, Entropies

In the definitions below X is an arbitrary finite set.

Definition 1 (Statistical Distance). For two random variables

X,Y on X by the statistical distance (total variation) we mean

dTV (X ;Y ) =
1

2

∑

x∈X

|Pr[X = x]− Pr[Y = x]|

Definition 2 (Shannon Entropy). The Shannon entropy of a

random variable X on X equals

H1(X) = −
∑

x

Pr[X = x] log Pr[X = x].

Definition 3 (Min-Entropy). The min-entropy of a random

variable X on X equals

H∞(X) = − logmax
x∈X

Pr[X = x].

Definition 4 (Conditional Min-Entropy [DORS08]). Let X,Y
be random variables over X and Y respectively. The worst-

case min-entropy of X conditioned on Y equals

H∞(X |Y ) = min
y∈Y

H∞(X |Y = y).

The average min-entropy of X conditioned on Y equals

H̃∞(X |Y ) = − log
(
Ey←Y 2

−H∞(X|Y=y)
)
.

Remark 1. The averaged notion is slightly weaker, but

has better properties and actually better suits applica-

tions [DORS08].

The notion of smooth entropy is more accurate than min-

entropy because quantifies entropy up to small perturbations

in the probability mass.

Definition 5 (Smooth Min-Entropy [RW04]). The ǫ-smooth

min-entropy of a random variable X on X is defined as

Hǫ
∞(X) = max

X′:dTV (X,X′)6ǫ
H∞(X ′)

where the maximum is over all random variables X ′ on X .

In other words, X has at least k bits of smooth min-entropy

if there is X ′ of min-entropy at least k and ǫ-close to X .



C. Randomness Extractors

Below we recall the definition of seeded extractors

Definition 6 (Randomness Extractor [NZ96]). We say that a

function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ǫ)-extractor

if and only if

dTV (Ext(X,Ud), Ud;Um, Ud) 6 ǫ

for any X on {0, 1}n with min-entropy at least k.

D. Samplers

Averaging samplers are procedures which sample points,

within a given domain, that are distributed enough random to

approximate every function. It turns out that there exist good

averaging samples, using much less auxiliary randomness than

necessary to generate independent points. For our applications

we consider samplers that approximate averages from below.

Definition 7 (Averaging Samplers [Vad03]). A function

Samp : {0, 1}d → [t]ℓ is a (µ, θ, γ)-averaging sampler

if for every function f : [t] → [0, 1] with average value
1
ℓ

∑ℓ

i=1 f(i) > µ it holds that

Pr
i1,...,iℓ←Samp(Ur)

[
1

ℓ

ℓ∑

i=1

f(i) > µ− θ

]
6 1− γ.

Lemma 1 (Optimal Averaging Samplers (Nonconstruc-

tive) [Vad03]). For the setting in Definition 7 there is an aver-

aging sampler which for any ℓ′ such that Ω(µθ−2 log(1/γ)) 6
ℓ′ 6 ℓ produces ℓ′ distinct samples and uses d = log(t/ℓ′) +
log(1/γ) + 2 log(µ/θ) + log log(1/µ) +O(1) random bits.

III. AUXILIARY LEMMAS

The following lemma is essentially the information can’t

hurt principle, well known for Shannon entropy, stated for the

notion of min-entropy. It says that extra information can only

reduce the uncertainty, and comes up often in cryptography.

Lemma 2 (Conditioning only reduces entropy [IS13]). For

any X,Y, Z we have H̃∞(X |Y, Z) 6 H̃∞(X |Y ).

It is well known (see, e.g., [BST03]) that when each

block has certain min-entropy entropy conditioned on previous

blocks, the total entropy grows linearly with the number of

blocks (as expected). The lemma is stated without a proof

(it follows directly from definitions). We stress, however, that

using the worst-case notion of conditional entropy is crucial.

Lemma 3 (Min-entropy from block sources). For any X,Y, Z
we have H∞(X,Y |Z) > H∞(X |Y, Z) +H∞(Y |Z).

Another lemma, well known in folklore, quantifies the

intuition that conditioning on “large” events (not too surprising

information) doesn’t decrease entropy too much.

Lemma 4 (Leakage lemma for min-entropy). For any random

variable X and any events A,B we have H∞(X |B,A) >
H∞(X |B)− log(1/Pr(A|B)).

Proof. The first part of the lemma follows because we have

Pr[X = x|A,B] = Pr[X = x,A ∩B]/Pr[A ∩B] 6 Pr[X =
x,B]/(Pr[B] · Pr[A|B]) for every x.

IV. MAIN RESULT

A. Chain Rule

Theorem 1 (Exhibiting block structures with few bits spoiled).

Let X be a fixed alphabet and X = (X1, . . . , Xt) be a

sequence of (possibly correlated) random variables each over

X . Then for any 1 > ǫ > 0 and δ > 0 there exists a collection

B of disjoint sets on X t such that

(a) B can be indexed by a small number of bits, namely

log |B| = t · O
(
log log |X |+ log log(ǫ−1) + log(t/δ)

)

(b) B almost covers the domain
∑

B∈B

pX(B) > 1− ǫ

(c) Conditioned on members of B, block distributions Xi|X<i

are nearly flat.

∀x, x′ ∈ B : 2−O(δ) 6
pX(xi|x<i)

pX(x′i|x
′
<i)

6 2O(δ).

for every B ∈ B and i = 1, . . . , t.

In some applications (see for example Section V) it is

convenient to work with parts that are not too small. By

substituting ǫ := ǫ
2 , and deleting from B all members of

smaller than ǫ
2|B| (their mass is at most ǫ

2 ), we obtain

Remark 2 (Getting rid of tiny parts). In Theorem 1, we may

assume pX(B) = Ω
(
ǫ · |B|−1

)
for every B ∈ B.

Corollary 1 (Conditional entropies under few bits spoiled).

Under the assumptions of Theorem 1, for every B ∈ B for

every index i and for every set I ⊂ {1, . . . , i− 1} we have

(a) The chain rule for min-entropy

H∞(Xi|XI , B) = H∞(Xi, XI |B)−H∞(XI |B)±O(δ).

(b) The average and worst-case min-entropy almost match

H̃∞(Xi|XI , B) = H∞(Xi|XI , B)±O(δ).

Proof of Corollary 1. Fix any subset I ⊂ {1, . . . , i − 1} of

size m. By Theorem 1 for every x and B we have

Pr[X6i = x6i|B] = 2±O(δ) Pr[X<i = x<i|B]. (2)

Let J = {1, . . . , i − 1} \ I . Taking the sum of Equation (2)

over x such that xI = x′I and xi = x′′ are fixed but xJ varies

we obtain

Pr[Xi = x′′, XI = x′I |B] = 2±O(δ) Pr[XI = x′I |B].

This implies

H∞(Xi|XI , B) = H∞(Xi, XI , B)−H∞(XI , B)±O(δ)

H̃∞(Xi|XI , B) = H∞(Xi|XI , B)±O(δ)

which finishes the proof.



Proof of Theorem 1. Let p be the joint distribution of

X1, . . . , Xn. For any i denote

pi(xi|xi−1, . . . , x1) = pXi|X<i
(xi, . . . , x1). (3)

and let the “surprise” of the bit xi be

ri(x) = − log pi(xi, . . . , x1).

Note that p(x1, . . . , xn) =
∏n

i=1 pi(xi, xi−1, . . . , x1) and

therefore, denoting x = (x1, . . . , xn), we obtain

Claim 1 (Decomposing surprises). We have

t∑

i=1

ri(x) = − log p(x). (4)

The next claim follows by a simple Markov-type argument.

Claim 2 (Significant probabilities). There exists a set A ⊂ X t

of probability 1− ǫ such that p(x) > ǫ
|X |t for all x ∈ A.

Denoting x = x1, . . . , xn, we have

∀x ∈ A : − log p(x1, . . . , xn) 6 t log |X |+ log(1/ǫ). (5)

The claim below follows from Equation (3) and Equation (4)

Claim 3 (Surprises live in a simplex). We have ri(x) > 0 for

i = 1, . . . , t and
∑

i=1t r
i(x) 6 t log |X | + log(1/ǫ), for all

points x ∈ A.

Claim 4 (Simplex coverings imply a chain rule). If the simplex

with side length t log |X | + log(1/ǫ) can be covered by N
balls of radius R in the ℓ∞ norm, then the theorem holds

with |B| = N and δ = R.

Proof of ?? 4. Let C ⊂ R
t, |C| = N , be the set of the centers

of the covering balls. Let S be the function which assigns to

every point x ∈ A (where A is defined in ?? 2) the point z ∈ C
closest to the vector (r1(x), . . . , rt(x)) in the ℓ∞-norm. Fix

any z and let Bz = {x : S(x) = z}. By the properties of the

covering, for i = 1, . . . , t we obtain

∀x ∈ B :
∣∣ri(x)− zi

∣∣ 6 R (6)

In particular, the surprises for any two points in B are close

∀x, x′ ∈ B :
∣∣ri(x) − ri(x′)

∣∣ 6 2R, i = 1, . . . , t. (7)

Let pB be the conditional probability of p given B. Denote

by riB the surprise of the i-th bit given previous bits and

conditioned on B, that is

riB(x) = − logPr[Xi = xi|Xi−1 = xi−1, . . . , X1 = x1, B]

= − log pB(xi|xi−1, . . . , x1)

Note that pB(x) = p(x)/p(B) for x ∈ B, and hence riB(x) =
ri(x) + log(p(B)−1). Now Equation (7) implies

∀x, x′ ∈ B :
∣∣riB(x) − riB(x

′)
∣∣ 6 2R, i = 1, . . . , t. (8)

which finishes the proof.

It remains to observe that the covering number for our case

is logN = logN0 + log log(|X |) + log log(1/ǫ)) + log(t/δ)
(see for example [Reg07]) which finishes the proof.

V. APPLICATIONS

Theorem 2 (Sampling preserves entropy rate [Vad03]). Let X
be a fixed finite alphabet, and let X1, . . . , Xt be a sequence

of correlated random variables each over X . Let i1, . . . , iℓ ∈
[1, t], where ℓ < t, be chosen from the set {1, . . . , t} by an

averaging (µ, θ, γ)-sampler. Then there is a random variable

B taking m = t · O(log log |X | + log log(1/ǫ) + log t) bits,

such that

1

ℓ log |X |
H̃ǫ
∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) >

1

t log |X |
H̃∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1)−errSpoil−errSampler

where the errors due to spoiling and sampling equal

errSpoil = O(log log |X |+ log log(1/ǫ) + log t)/ log |X |

errSamp = O(
√

ℓ−1 log(1/ǫ)).

Remark 3 (Local extractors). Composing this with an extrac-

tor over X ℓ one obtains a local extractor, which reads only a

small fraction (specifically ℓ
t
) of input bits. We refer to [Vad03]

for a general discussion.

Proof. We will argue that the sequence Xi1 , . . . , Xiℓ , for ℓ
sufficiently big, likely has the same entropy rate (entropy per

block) as the original sequence X1, . . . , Xℓ.

Let B be the family guaranteed by Theorem 1. By part (a)

of Corollary 1 applied t times (starting from i = t downto

i = 1) we have for every B ∈ B

t∑

i=1

H∞(Xi|X<i, B) > H∞(X |B)−O(tδ)

and now by part (b) applied to each summand

t∑

i=1

H̃∞(Xi|X<i, B) > H∞(X |B)−O(tδ). (9)

Note that

Ei1,...,iℓ

ℓ∑

j=1

H̃∞(Xij |X<ij , B) =
1

t

t∑

i=1

H̃∞(Xi|X<i, B)

In particular, with high probability over (ij)j=1,...,ℓ

1

ℓ

ℓ∑

j=1

H̃∞(Xij |X<ij , B) &
1

t

t∑

i=1

H∞(Xi|X<i, B). (10)

For the sake of clarity, we comment later on the exact error

in accuracy and probability in Equation (10). Observe that by

part (b) of Corollary 1 we obtain

1

ℓ

ℓ∑

j=1

H̃∞(Xij |XijXij−1
. . . , Xi1 |B) >

1

ℓ

ℓ∑

j=1

H̃∞(Xij |X<ij |B)−O(δ) (11)



(which is the conditioning reduces entropy property). Again,

by applying part (b) of Corollary 1 to the sum on the right-

hand side of Equation (11) we get

1

ℓ

ℓ∑

j=1

H∞(Xij |XijXij−1
. . . , Xi1 |B) >

1

ℓ

ℓ∑

j=1

H̃∞(Xij |XijXij−1
. . . , Xi1 |B)−O(δ) (12)

By Lemma 3 from Equation (11) we get for every B′ ∈ B′

1

ℓ
H∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) >

1

ℓ

ℓ∑

j=1

H̃∞(Xij |XijXij−1
. . . , Xi1 |B)−O(δ). (13)

Combining this with Equation (11),Equation (10) and

Equation (9) we finally obtain (with high probability)

1

ℓ
H∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) &

1

t
H∞(X |B)−O(δ). (14)

Note that this holds for every B. Recall that by Remark 2 we

can assume Pr[B] = Ω(|B|−1ǫ). Now by Lemma 4 we have

H∞(X |B) > H∞(X)−O(log |B|+ log(1/ǫ)) and thus

1

ℓ
H∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) &

1

t
H∞(X |B)−

O(log |B|+ log(1/ǫ))

t
.

We can do slightly better. Namely, from Equation (14)

1

ℓ
H̃∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) &

1

t
H∞(X |B)−O(δ). (15)

where B is a random variable that assigns to every point x
the corresponding set B covering x, conditioned in addition

on the map being defined (it fails when x is not covered by

any B which happens w.p. at most ǫ) Indeed, we have

2−H∞(Xiℓ
Xiℓ−1

Xiℓ−2
...,Xi1

|B) 6
(
2−H∞(Xit

Xit−1
Xiℓ−2

...,Xi1
)
) ℓ

t

.

and Equation (16) follows by averaging over B and the Jensen

Inequality (note that ℓ < t implies that the corresponding

mapping is concave). By Lemma 3 applied to X |B = B for

all possible B to outcomes of B we obtain

1

ℓ
H̃∞(XiℓXiℓ−1

Xiℓ−2
. . . , Xi1 |B) &

1

t
H∞(X)−

log |B|

t
−O(δ) (16)

It remains to use an explicit bound on |B| from Theorem 1,

set the sampler to γ = ǫ and compute θ from ǫ and ℓ.

VI. CONCLUSION

By a simple combinatorial argument combined with the

spoiling knowledge technique we showed how to exhibits

strong block-source structures in any min-entropy source. This

approach may be applied to locally enforce chain rules (or

other desired properties) for min-entropy.
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U. M. Maurer. “Generalized privacy amplifi-

cation”. In: IEEE Trans. Information Theory

(1995).

[BKR16] M. Bellare, D. Kane, and P. Rogaway. “Big-Key

Symmetric Encryption: Resisting Key Exfiltra-

tion”. In: CRYPTO. 2016.

[BRSW06] B. Barak, A. Rao, R. Shaltiel, and A. Wigder-

son. “2sourcee Dispersers for Sub-polynomial

Entropy and Ramsey Graphs Beating the Frankl-

Wilson Construction”. In: STOC ’06. 2006.

[BST03] B. Barak, R. Shaltiel, and E. Tromer. “True Ran-

dom Number Generators Secure in a Changing

Environment”. In: CHES. 2003.

[Cac97] C. Cachin. “Smooth Entropy and Rényi En-
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