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Abstract

We consider the problem of distributedly computing a general class of functions, referred to as gradient-type computation,
while maintaining the privacy of the input dataset. Gradient-type computation evaluates the sum of some “partial gradients”,
defined as polynomials of subsets of the input. It underlies many algorithms in machine learning and data analytics. We propose
Harmonic Coding, which universally computes any gradient-type function, while requiring the minimum possible number of
workers. Harmonic Coding strictly improves computing schemes developed based on prior works, such as Shamir’s secret sharing
and Lagrange Coded Computing, by injecting coded redundancy using harmonic progression. It enables the computing results of
the workers to be interpreted as the sum of partial gradients and some redundant results, which then allows the cancellation of
non-gradient terms in the decoding process. By proving a matching converse, we demonstrate the optimality of Harmonic Coding,
even compared to the schemes that are non-universal (i.e., can be designed based on a specific gradient-type function).

I. INTRODUCTION

Gradient computation is the key building block in many optimization and machine learning algorithms. This computation
can be simply described as computing the sum of some “partial gradients”, which are defined as evaluations of a certain
function over disjoint subsets of the input data. This computation structure also broadly appears in various frameworks such
as MapReduce [1] and tensor algebra [2]. We refer to it in general as gradient-type computation.

Modern applications that use gradient-type computation often require handling massive amount of data, and distributing
the storage and computation onto multiple machines has become a common approach. However, as more participants come
into play, ensuring the privacy of datasets against potential “curious" workers becomes a fundamental challenge. This critical
problem has created a surge of interests in privacy-preserving machine learning (e.g., [3]–[6]).

As such motivated, we consider a master-worker computing framework, where the goal is to compute

f(X1, ..., XK) , g(X1) + ...+ g(XK), (1)

given a large input dataset X = (X1, ..., XK), where g could be any fixed multivariate polynomial with degree deg g (See Fig.
1). Each worker i can take a coded version of the input variables, denoted X̃i, and then return g(X̃i) to the master. We aim
to find an optimum encoding design, which uses the minimum number of worker machines, such that the master can recover
f(X1, ..., XK) given all computing results, and the input dataset is information theoretically private to any worker.

. . .
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Fig. 1. An overview of the framework considered in this paper. The goal is to design a privacy-preserving coded computing scheme for any gradient-type
function, using the minimum possible number of workers. The master aims to recover f(X1, ..., XK) , g(X1) + ... + g(XK) given an input dataset
X = (X1, ..., XK), for a not necessarily linear function g. Each worker i takes a coded version of the inputs (denoted by X̃i) and computes g(X̃i). By
carefully designing the coding strategy, the master can decode the function given computing results from the workers, while keeping the dataset private to
any curious worker (workers 3 and N in this example).
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We present a novel coded computing design, called the “Harmonic coding”, which universally computes any gradient-
type function while enabling the privacy of input data. Our main result is that by carefully designing the encoding strategy,
the proposed Harmonic Coding computes any gradient-type function while providing the required data privacy using only
N = K(deg g−1) + 2 workers. This design strictly improves over the state-of-the-art cryptographic approaches that are based
on Shamir’s secret sharing scheme [7] and the recently proposed Lagrange Coded Computing (LCC) [8] that can be applied to
general polynomial computations. These schemes would respectively require NShamir , K(deg g+ 1) and NLCC , Kdeg g+ 1
workers. Moreover, Harmonic Coding universally computes any gradient-type function with any given degree, using identical
encoding designs. This property allows pre-computing and storing the encoded data far before the identity of the computing
task is revealed, reducing the required computation time.

The main idea of Harmonic Coding is by designing the encoding of the dataset, the computation result from each worker can
be viewed as a linear combination of a partial gradient and some predefined intermediate variables. Using harmonic progression
in the coding design, we can let both the intermediate variables and their coefficients be redundant, which enables cancellation
of the unneeded results in the decoding process. Moreover, Harmonic Coding has a simple recursive structure, which allows
efficient (linear complexity) algorithms for both encoding and decoding.

We prove the optimality of Harmonic coding through a matching converse. We show that any linear scheme that computes
any gradient-type function with data privacy must use at least the same number of workers required by Harmonic Coding, when
the characteristic of the base field is sufficiently large. In the other case where the characteristic of the base field could be small,
we show that improved scheme could be developed for certain functions, while Harmonic Coding remains optimal whenever
the partial gradient function g is multilinear. As a side consequence, this converse result also provides a sharp characterization
on the characteristic condition of the base field for the existence of universally optimal schemes.
Related Work. Coded computing techniques have seen tremendous success recently in alleviating the communication bottleneck
and mitigating stragglers in distributed computing/learning settings (e.g. [8]–[18]). More recently, coded computing techniques
has also been developed for secure and private learning, in particular for logistic regression [19].

II. PROBLEM FORMULATION

We consider a problem of evaluating a gradient-type function f : VK → U, characterized by a multivariate polynomial
g : V → U according to equation (1), given an input dataset X1, ..., XK ∈ V, where V and U are some vector spaces over
a finite field F.1 The computation is carried out in a distributed system with a master and N workers, where each worker i
can take a coded variable, denoted by X̃i, compute g(X̃i), and return the result to the master. The master aims to recover
f(X1, ..., XK) using all computing results from the workers.

More specifically, using some possibly random encoding functions h1, ..., hN , each worker i stores X̃i = hi(X1, ..., XK)
prior to computation. Then after all workers return the results, the master uses a decoding function ` (which is also possibly
random, but is independent of the encoding functions) to recover the final output, by computing `(g(X̃1), ..., g(X̃N )). We
restrict our attention to linear coding schemes2, which ensures low coding complexities and is easy to implement.

We say a computing scheme is valid, if the master always recovers f(X1, ..., XK) for any possible values of the input
dataset. Moreover, we require that the encoding scheme be data-private, in the sense that none of the workers can infer any
information regarding the input dataset. Formally, we require that

I(X1, ..., XK ; X̃i) = 0 (2)

for any worker i, if the input variables are randomly sampled from any distribution.
We aim to characterize the fundamental limit of this problem: finding the minimum possible number of workers among all

valid data-private encoding-decoding designs, as well as finding an explicit construction which achieves this optimality.

III. MAIN RESULTS

We summarize our main results in the following theorem. Our main result is two fold: we first characterized the number
workers required by the proposed Harmonic coding scheme, then we prove that it achieves the fundamental limit, i.e., using
the minimum number of workers.

Theorem 1. For any gradient-type function characterized by a polynomial g, Harmonic coding provides a data-private scheme
using K(deg g−1)+2 workers, where deg g denotes the total degree3 of g. Moreover, Harmonic Coding requires the optimum
number of workers among all linear coding schemes, when the characteristic of the base field is greater than deg g.

Remark 1. To prove the first result in Theorem 1, we present Harmonic Coding in Section IV, which only uses the stated
optimum number of workers. Compared to Harmonic Coding, one conventional approach used in Multiparty computing (MPC)
is to first encode each input variable separately using Shamir’s secret sharing scheme [7], then apply the computation on top

1We focus on the non-trivial case, where g is not a constant. We also assume that F is sufficiently large.
2A formal definition is provided in Section V.
3 Formally, deg g is defined based on the canonical representation of g, in which the individual degree within each term is no more than (|F| − 1).
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of the shared pieces. This MPC based approach requires deg g + 1 evaluations of function g to compute every single g(Xi),
and thus uses K(deg g + 1) workers in total. More recently, we proposed Lagrange Coded Computing [8], which enables
evaluating all g(Xi)’s through a joint computing design. Lagrange Coded Computing encodes the data by constructing a degree
K polynomial whose evaluations are the input variables and the padded random keys at K+ 1 points, then assign the workers
its evaluation at N other distinct points. After computation, the decoding process reduces to interpolating a polynomial of
degree Kdeg g, which requires Kdeg g + 1 workers. Harmonic Coding strictly improves these two approaches.

Moreover, Harmonic Coding also enables significant reduction in terms of the required number of workers. As an example,
consider the linear regression model presented in [8], where the computational bottleneck is to evaluate a gradient-type function
characterized by g(Xi) = Xᵀ

i Xiw for some fixed matrix w. As the size of the dataset (K) increases, the MPC and LCC based
designs require approximately 3K and 2K workers respectively. On the other hand, Harmonic Coding only requires about K
workers, which is a two-fold improvement upon the state of the art. Furthermore, it even approaches the fundamental limit for
simply storing the data, where no computation is required.

Unlike prior works, our main coding idea is instead by carefully designing the encoding, that the workers compute the sum
of the g(Xi)’s “in the air”. Specifically, we interpret the workers computing results as the sum of a “partial gradient” (i.e., a
single g(Xi)) and some intermediate variables. By encoding the inputs using harmonic progression, all intermediate variables
cancels out in the decoding process, and the master directly obtain the sum of all gradients.

Remark 2. Harmonic coding also has several additional properties of interest. First, Harmonic coding is identical for any function
f with a given degree. Hence, it enables pre-encoding the data without knowing the identity of the function, and universally
computes any function with an upper bounded degree. Second, Harmonic Coding enables linear complexity algorithms for both
encoding and decoding, hence requiring negligible computational coding overheads for most applications. Finally, to provide
data privacy against every single worker, Harmonic Coding only uses one single random key through the entire process. This
achieves the minimum amount of randomness required by any linear scheme.

Remark 3. Harmonic coding reduces to Lagrange Coded Computing in several basic cases. For example, when K = 1, the
master only needs a single evaluation of function g, which can be optimally computed by LCC. On the other hand, when the
computation task is linear, due to commutativity between g and the sum in function f , the master essentially wants to recover
g(X1+...+XK

K ), which can also be optimally computed using LCC by pre-encoding the dataset into a single variable X1+...+XK

K .
However, for all other cases, Harmonic Coding achieves the optimum number of workers, which was earlier unknown.

We complete the proof of Theorem 1 by providing a matching converse, which is presented in Section V.

IV. ACHIEVABILITY SCHEME

In this section, we prove the achievability part of Theorem 1 by presenting Harmonic Coding. We start with a motivating
example for the first non-trivial case, where the master aims to recover the sum of K = 2 quadratic functions.

A. Example for K = 2, deg g = 2

Consider a gradient-type function given input variables X1, X2 ∈ Fm×m
5 for some integer m, characterized by a quadratic

polynomial g(Xi) = AXᵀ
i Xi +BXi +C with some constant matrices A, B, and C. We aim to find a data-private computing

scheme which only uses 4 workers.
To achieve the privacy requirement, we pick a uniformly random matrix Z ∈ Fm×m

5 , and assign the coded variables by
linearly combining X1, X2, and Z. One can verify that this requirement is satisfied as long as variable Z is encoded with
non-zero coefficients for every X̃i. Hence, it remains to design the code with validity.

The main idea of Harmonic Coding is to carefully design the linear combinations, such that after applying g to the coded
variables, each computing result equals to the sum of a “partial gradient” and some intermediate values that can be canceled
out in the decoding process. Such property is achieved by encoding the variables using harmonic progression4.

Specifically, we first define some parameters, letting c = 4 and β = 4. These values are selected such that c 6∈ {0, 1, 2} and
β 6∈ {0, 1, c

c−1 ,
c

c−2}. We then defined some intermediate variables, which are coded using harmonic progression.

P0 ,
c

c− 0
Z = Z

P1 ,
c

c− 1
Z − 1

c− 1
X1 = 3X1 + 3Z

P2 ,
c

c− 2
Z − 1

c− 2
(X1 +X2) = 2X2 + 2X1 + 2Z.

4Explicitly, using the sequence { 1
c−i
}i∈N+

as encoding coefficients.
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Given these definitions, the input data is encoded as follows.

X̃1 = P0 = Z

X̃2 = (1− β)X1 + βP0 = 2X1 + 4Z

X̃3 = (1− c− 1

c
β)X2 +

c− 1

c
βP1 = 3X2 + 4X1 + 4Z

X̃4 = P2 = 2X2 + 2X1 + 2Z.

Using this encoding design, the master can decode the final result by computing 2g(X̃1) + g(X̃2) + 3g(X̃3) + g(X̃4), which
exactly recovers g(X1) + g(X2). As mentioned earlier, the intuition for this decodability is that g(X̃2) and g(X̃3) can be
represented as the sum of some intermediate values and g(X1), g(X2), respectively. This representation is constructed using
Lagrange’s interpolation formula by viewing each of them as a quadratic function of β or c−1

c β.
For instance, by viewing X̃2 as a linear function of β, after applying polynomial g, we obtain a quadratic function.

Reevaluating this function at point 0 and 1 gives g(X1) and g(P0). Moreover, Harmonic Coding provides a recursive relation
P1 = (1− c

c−1 )X1 + c
c−1P0, which indicates that g(P1) can be viewed as evaluating the same polynomial at point c

c−1 . Hence,
the Lagrange’s interpolation formula suggests

g(X1) =
1 · c

c−1
(1− β)( c

c−1 − β)
g(X̃2)

+
β · c

c−1
(β − 1)( c

c−1 − 1)
g(P0)

+
1 · β

(1− c
c−1 )(β − c

c−1 )
g(P1)

=g(X̃2) + 2g(P0) + 3g(P1). (3)

Similarly, by viewing g(X̃3) as a quadratic function of c−1
c β, and viewing g(X2), g(P1) and g(P2) as its evaluations at points

0, 1, and c−1
c−2 , we have

g(X2) =
1 · c−1c−2

(1− c−1
c β)( c−1

c−2 −
c−1
c β)

g(X̃3)

+
c−1
c β · c−1c−2

( c−1
c β − 1)( c−1

c−2 − 1)
g(P1)

+
1 · c−1c β

(1− c−1
c−2 )( c−1

c β − c−1
c−2 )

g(P2)

=3g(X̃3) + 2g(P1) + g(P2). (4)

Note that the LHS of equations (3) and (4) are exactly the two needed “partial gradients”, while the sum of the coefficients
of g(P1) on the RHS is zero (which is also due to the Harmonic Coding structure). Thus, by adding these two equations, the
intermediate value g(P1) is canceled, and we have shown that f(X1, X2) can be recovered from g(X̃2), g(X̃3), g(P0), and
g(P2). Moreover, note that g(P0) and g(P2) are directly computed by worker 1 and worker 4. This completes the intuition
for the validity of the proposed design.

B. General Scheme

Now we present Harmonic Coding for any gradient-type function f with degree d, and for any parameter value of K. We
first partition the workers into K + 2 groups, where the first K groups each contain d − 1 workers, and the rest two groups
each contains 1 worker. For brevity, we refer to the workers in the first K groups as “worker i in group j” for i ∈ [d − 1],
j ∈ [K], and denote the assigned coded variable X̃(i,j); we refer to the rest 2 workers as worker 1 and worker N .

Recall that the base field is assumed to be sufficiently large, we can find a parameter c ∈ F that is not from {0, 1, ...,K}.
Moreover, we find parameters β1, ..., βd−1 ∈ F with distinct values that are not from {0}∪{ c

c−i}
K
i=0. Similar to Section IV-A,

we use a uniformly random variable Z ∈ V, and define intermediate variables P0, ..., PK as follows.

Pj ,
c

c− j
Z − 1

c− j

j∑
k=1

XK . (5)
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Then the input data is encoded based on the following equations.

X̃1 = P0 (6)

X̃(i,j) = Xj(1− βi
c− j + 1

c
) + Pj−1βi

c− j + 1

c
(7)

X̃N = PK , (8)

Using the above encoding scheme, one can verify that all coded variables are masked by the variable Z, which guarantees
the data privacy. Hence, it remains to prove the decodability, i.e., f(X1, ..., XK) can be recovered by linearly combining the
results from the workers. The proof relies on the following lemma, which is proved in Appendix A.

Lemma 1. For any gradient-type function with degree of at most d, using Harmonic coding, the master can compute

Qj ,g(Xj)− g(Pj−1)(c− j + 1)

d−1∏
i=1

βi(c− j + 1)

βi(c− j + 1)− c

+ g(Pj)(c− j)
d−1∏
i=1

βi(c− j)
βi(c− j)− c

(9)

for any j ∈ [K], by linearly combining computing results from workers in group j.

Similar to the motivating example, the proof idea of Lemma 1 is to view {g(X(i,j))}i∈[d−1], g(Xj), g(Pj−1), and g(Pj) as
evaluations of a degree d polynomial at d+ 2 different points, and derive equation (9) using Lagrange’s interpolation formula.
Assuming the correctness of the Lemma 1, the master can first decode Qj’s given the computing results from the workers.
Then note that in equation (9) the sum of the coefficients of each g(Pj) in Qj and Qj+1 is zero for any j ∈ [K−1]. By adding
all the variables Q1, ..., QK , the master can obtain a linear combination of f(X1, ..., XK), g(P0), and g(PK). Finally, because
g(P0) and g(PK) are computed by worker 1 and worker N , f(X1, ..., XK) can be computed by subtracting the corresponding
terms. This proves the validity of Harmonic Coding.

Remark 4. Harmonic Coding enables efficient encoding and decoding algorithms, both with linearly complexities. A linear
complexity encoding algorithm can be designed by exploiting the recursive structures between the intermediate variables and
coded variables. Specifically, the encoder can first compute all Pi’s recursively, each Pi by linearly combining Pi−1 and Xi;
then every other coded variable that is not available can be computed directly using equation (7). This encoding algorithm
requires computing O(N) linear combinations of two variables in V, which is linear with respect to the output size of the
encoder. On the other hand, the decoding process is simply linearly combining the outputs from all workers, and a natural
algorithm achieves linear complexity with respect to the input size of the decoder.

Remark 5. Harmonic Coding can also be extend to scenarios where the base field F is infinite. Note that any practical (digital)
implementation for such computing tasks requires quantizing the variables into discrete values. We can thus embed them into
a finite field, then directly apply the finite field version of Harmonic Coding. For instance, if the input variables and the
coefficients of g are quantized into k-bit integers, the length of output values are thus bounded by Õ(k · degg), which only
scales logarithmically with respect to parameters such as number of workers (N ). We can always find a finite field Fp with
a prime p = Θ̃(k · degg), that enables computing f with zero numerical error. This approach also avoids potentially large
intermediate computing results, which could save storage and computation time.

V. CONVERSE

In this Section, we prove the converse part of Theorem 1, which shows the optimality of Harmonic Coding. Formally, we
define that linear coding schemes are ones that uses linear encoding functions and linear decoding functions. A linear encoding
function computes a linear combination of the input variables and a list of independent uniformly random keys; while a linear
decoding function computes a linear combination of workers’ output.

We need to prove that for any gradient-type function characterized by a polynomial g, any linear coding scheme requires at
least K(deg g − 1) + 2 workers, if the characteristic of F is greater than deg g. The proof rely on the following key lemma,
which essentially states the optimallity of Harmonic Coding among any scheme that uses linear encoding functions when g is
multilinear.

Lemma 2. For any gradient-type computation where g is a multilinear function, any valid data-private scheme that uses linear
encoding functions requires at least K(deg g − 1) + 2 workers.

The proof of Lemma 2 can be found in Appendix B, and the main idea is to construct instances of input values for any
assumed scheme that uses a smaller number of workers, where the validity does not hold true. Assuming the correctness of
Lemma 2 and to prove the converse part of Theorem 1, we need to generalize this converse to arbitrary polynomial functions
g, using the extra assumptions on linear decoding and large characteristic of F.
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Note that the minimum number of workers stated in Theorem 1 only depends on the degree of the computation task. We
can generalize Lemma 2 by showing that for any gradient-type function f that can be computed with Nf workers, there exists
a gradient-type function f ′ with the same degree characterized by a multilinear function, which can also be computed with
Nf workers.

Specifically, given any function f characterized by a polynomial g with degree d, we provide an explicit construction for
such f ′, which is characterized by a multilinear map g′ : Vd → U, defined as

g′(Xi,1, ..., Xi,d) =
∑
S⊆[d]

(−1)|S|g(
∑
j∈S

Xi,j) (10)

for any {Xi,j}j∈[d] ∈ Vd. As we have proved in an earlier work (see Lemma 4 in [8]), g′ is multilinear with respect to the d
inputs. Moreover, if the characteristic of F is greater than d, then g′ is non-zero.

Given this construction, it suffices to prove that f ′ enables computation designs that uses at most the same number of
workers compared to that of f . We prove this fact by constructing such computing schemes for f ′ given any design for f ,
presented as follows.

Let X ′1, ..., X
′
K ∈ Vd denote the input variables of f ′, we use a uniformly random key, denoted Z ′ ∈ Vd, and encode these

variables linearly using the same encoding matrix used in the scheme for f . Then similarly in the decoding process, we let
the master compute the final result using the same coefficients for the linear combination.

Because the same encoding matrix is used, the new scheme constructed for f ′ is also data private. On the other hand, note
that g′ is defined as a linear combination of functions g(

∑
j∈S Xi,j), each of which is a composition of a linear map and

g. Given the linearity of the encoding design, for any subset S, the variables {
∑

j∈S Xi,j}i∈[K] are encoded as if using the
scheme for f . Hence, the master would return

∑
i∈[K] g(

∑
j∈S Xi,j) if the workers only evaluate the term corresponding to S.

Now recall that the decoding function is also assumed to be linear. The same scheme is also valid to any linear combinations of
them, which includes f ′. Hence, the same number of worker Nf achievable for f can also be achieved by f ′. This concludes
the converse proof.

VI. CONCLUSION

In this paper, we characterized the fundamental limit for computing gradient-type functions distributedly with data privacy.
We proposed Harmonic Coding, which uses the optimum number of workers, and proved a matching converse. However, note
that by relaxing the assumptions we made in the system model and the converse theorem (e.g., random key access, coding
complexity, characteristic of F), improved schemes could be found. We present the following two examples.5

A. Random Key Access and Extra Computing Power at Master

Recall that in the system model, we assumed that the decoding function is independent of the encoding functions. This
essentially states that the master does not have access to the random keys when decoding the final results. Moreover, we
assumed linear decoding, which restricts the computational power of the master.

However, if both of these assumptions are removed, and the master has the knowledge of function f , an improved yet
practical scheme based on Harmonic Coding can be obtained by letting the master compute g(Z) in parallel with the workers.
In this way, the required number of workers can be reduced by 1. Alternatively, if the master has access to the input data, it
can compute any g(Xi), effectively reducing K by 1, and reducing the required number of workers by deg g − 1.

B. An Optimum Scheme for Char F = deg g

The converse presented in Theorem 1 is only stated for the case where the characteristic of the base field F is greater than
the degree of function g. In fact, when this condition does not hold, improved coding designs can be found for certain functions
f . For example, consider a gradient-type function characterized by g : Fm → Fn defined as

g(Xi) = A ·


Xd

i,1

Xd
i,2
...

Xd
i,m

 , (11)

where A is a fixed non-zero n-by-m matrix, and d equals the characteristic of F. By exploiting the “Freshman’s dream”
formula (i.e.,

∑
iX

d
i,j = (

∑
iXi,j)

d), one can actually design an optimal data private scheme that only uses 2 workers for
any possible d, instead of using Harmonic coding which requires K(d− 1) + 2 workers.

5Similar examples and discussions can also be made to the polynomial evaluation problem we formulated in [8].
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Recall that Lemma 2 states that Harmonic Coding does achieve optimality for any multilinear g and for any characteristic of
F. This in fact shows that when the characteristic of the base field equals deg g, we are not able to find a coding scheme that
is universally optimal for all gradient-type functions of the same degree. Equivalently, we have shown that the Char F > deg g
requirement in the converse statement in Theorem 1 provides a sharp lower bound on the characteristic of the base field to
guarantee the existence of universally optimal schemes.

ACKNOWLEDGEMENT

This material is based upon work supported by Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053, ARO award W911NF1810400, NSF grants CCF-1703575, ONR Award No. N00014-16-1-2189, and
CCF-1763673. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government. Qian Yu is supported by the
Google PhD Fellowship.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” Sixth USENIX Symposium on Operating System Design and
Implementation, Dec. 2004.

[2] P. Renteln, Manifolds, Tensors, and Forms: An Introduction for Mathematicians and Physicists. Cambridge University Press, 2013.
[3] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, “Privacy-preserving ridge regression on hundreds of millions of records,”

in IEEE Symposium on Security and Privacy, pp. 334–348, IEEE, 2013.
[4] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans, “Privacy-preserving distributed linear regression on high-

dimensional data,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4, pp. 345–364, 2017.
[5] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-preserving machine learning,” in 38th IEEE Symposium on Security and Privacy,

pp. 19–38, IEEE, 2017.
[6] V. Chen, V. Pastro, and M. Raykova, “Secure computation for machine learning with SPDZ,” arXiv:1901.00329, 2019.
[7] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–613, Nov. 1979.
[8] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security, and

privacy,” in Proceedings of Machine Learning Research (K. Chaudhuri and M. Sugiyama, eds.), vol. 89 of Proceedings of Machine Learning Research,
pp. 1215–1225, PMLR, 16–18 Apr 2019.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE Transactions on
Information Theory, vol. 64, pp. 1514–1529, March 2018.

[10] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between computation and communication in distributed computing,”
IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 109–128, 2018.

[11] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” in Advances In Neural
Information Processing Systems, pp. 2092–2100, 2016.

[12] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” in Advances in
Neural Information Processing Systems, pp. 4403–4413, 2017.

[13] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr, “Coded terasort,” in 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 389–398, May 2017.

[14] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic mds codes and expander graphs,” arXiv preprint arXiv:1707.03858,
2017.

[15] M. Ye and E. Abbe, “Communication-computation efficient gradient coding,” arXiv preprint arXiv:1802.03475, 2018.
[16] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal coding,”

arXiv preprint arXiv:1801.07487, 2018.
[17] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. R. Cxadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,”

arXiv preprint arXiv: 1801.10292, 2018.
[18] S. Li, S. M. Mousavi Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-optimal straggler mitigation for distributed gradient methods,” in 2018

IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 857–866, May 2018.
[19] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “Codedprivateml: A fast and privacy-preserving framework for distributed machine learning,” arXiv

preprint arXiv:1902.00641, 2019.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, it suffices to find a linear combination of {g(X̃(i,j))}i∈[d−1] for each j ∈ [K] that computes Qj . As
mentioned in Section IV, we construct this function by viewing {g(X(i,j))}i∈[d−1], g(Xj), g(Pj−1), and g(Pj) as evaluations
of a degree d polynomial at d+ 2 distinct points.

Specifically, we view the coded variables {X(i,j)}i∈[d−1] as evaluations of a scalar input linear function, each at point
βi

c−j+1
c , which evaluates Xj and Pj−1 at 0 and 1. One can verify that the same linear function gives Pj at point c−j+1

c−j .
Moreover, these d+ 2 evaluations are at distinct points due to the requirements we imposed on the values of c and βi’s.
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After applying function g, the corresponding results become evaluations of a degree d polynomial at d + 2 points. Hence,
any one of them can be interpolated using the other d+ 1 values. By interpolating g(Xj), we have

g(Xj) =
∑

i∈[d−1]

g(X̃(i,j))

c−j+1
c−j

(1− βi c−j+1
c )( c−j+1

c−j − βi
c−j+1

c )

∏
i′∈[d−1]\{i}

βi′

βi′ − βi

+ g(Pj−1)

c−j+1
c−j

c−j+1
c−j − 1

∏
i∈[d−1]

βi
c−j+1

c

βi
c−j+1

c − 1

+ g(Pj)
1

1− c−j+1
c−j

∏
i∈[d−1]

βi
c−j+1

c

βi
c−j+1

c − c−j+1
c−j

. (12)

Recall the definition of Qj , equation (12) is equivalently

Qj =
∑

i∈[d−1]

g(X̃(i,j))

c−j+1
c−j

(1− βi c−j+1
c )( c−j+1

c−j − βi
c−j+1

c )

∏
i′∈[d−1]\{i}

βi′

βi′ − βi
. (13)

Thus, Qj can be computed using a linear combination of {g(X̃(i,j))}i∈[d−1].

APPENDIX B
PROOF OF LEMMA 2

When deg g = 1, we need to prove that at least two workers are needed to compute f with data-privacy. The converse for
this case is trivial, because we require that every single worker stores a random value that is independent of the input dataset,
at least 1 extra worker is needed to provide any information.

Hence, we focus on the case where deg g > 1. The rest of the proof relies on a converse bound we proved in [8] for a
polynomial evaluation problem, stated as follows.

Lemma 3 (Yu et al.). Consider a dataset with inputs X1, ..., XK , and a multilinear function g with degree d ≥ 1. Any
data-private linear encoding scheme that computes g(X1), ..., g(XK) requires at least Kd+ 1 workers.

Based on Lemma 3, we essentially need to prove that computing any gradient-type function with a multilinear g with degree
d requires at least one more worker compared to evaluating multilinear functions with degree d − 1. We prove this fact by
constructing a degree d− 1 multilinear function g′ and a corresponding scheme that evaluates g′ using N − 1 workers, given
any multilinear function g with degree d and any scheme for gradient-type computation which uses N workers.

Specifically, consider any fixed multilinear function g : V1× ...×Vd → U with d inputs denoted by Xi,1, ..., Xi,d, we let g′

be a function that maps V1× ...×Vd−1 to a space of linear functions, such that g′(Xi,1, ..., Xi,d−1)(Xi,d) = g(Xi,1, ..., Xi,d)
for any values of Xi,1, ..., Xi,d. One can verify that g′ is a multilinear map with degree d− 1.

Then consider any fixed valid data-private encoding scheme for a gradient-type computation task specified by g that uses N
workers, we construct an encoding scheme for evaluating g′ using N − 1 workers, such that each worker i encodes the input
variables as if encoding only the first d− 1 entries using the encoding function of worker i in the gradient-type computation
scheme. For brevity, we refer to these two schemes as g-scheme and g′-scheme.

Due to the linearity of encoding functions, one can show that g′-scheme is data-private if g-scheme is data-private. Hence,
it remains to prove the validity of g′-scheme. We first prove that for any fixed X1,d, ..., XK,d, g′-scheme can compute
K∑
i=1

g′(Xi,1, ..., Xi,d−1)(Xi,d).

This decodability can be achieved in 2 steps. First, due to the data-privacy requirement of g-scheme, given any fixed
X1,d, ..., XK,d, one can find values of the padded random variables for the dth entry, such that the coded dth entry stored by
worker N equals 0. We denote the corresponding coded entry stored by any other worker i by X̃i,d. In this case, worker N
would return 0 if g-scheme is used, due to the multilinearity of g. Second, given the results from N−1 workers, the master can
evaluate them at points X̃1,d, ..., X̃N−1,d, respectively, which essentially recovers the computing results of workers 1, ..., N −1

in g-scheme. Knowing that the absent worker N would return 0, the needed gradient function
K∑
i=1

g′(Xi,1, ..., Xi,d−1)(Xi,d)

can thus be directly computed using the decoding function of g-scheme.
Now to recover each g′(Xi,1, ..., Xi,d−1) individually, it is equivalent to recover g′(Xi,1, ..., Xi,d−1)(Xi,d) individually for

any Xi,d ∈ Vd. This can be done by simply zeroing all the rest Xi′,d’s, which completes the proof of validity.
Now that g′-scheme is valid and data-private, according to Lemma 3, it uses at least K(d−1)+1 workers. Hence g-scheme

uses at least K(d − 1) + 2 workers. As the above proof holds true for any possible g-scheme, we have proved the converse
bound in Lemma 2.
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