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Abstract—This paper considers a sequence of random variables
generated according to a common distribution. The distribution
might undergo periods of transient changes at an unknown set
of time instants, referred to as change-points. The objective
is to sequentially collect measurements from the sequence and
design a dynamic decision rule for the quickest identification
of one change-point in real time, while, in parallel, the rate
of false alarms is controlled. This setting is different from
the conventional change-point detection settings in which there
exists at most one change-point that can be either persistent
or transient. The problem is considered under the minimax
setting with a constraint on the false alarm rate before the first
change occurs. It is proved that the Shewhart test achieves exact
optimality under worst-case change points and also worst-case
data realization. Numerical evaluations are also provided to assess
the performance of the decision rule characterized.

I. INTRODUCTION

Real-time monitoring of a system or process for identifying

a change of behavior arises in many application domains

such as detecting faults or security breaches in networks, and

searching for under-utilized spectrum bands for opportunistic

spectrum access. It is often of interest to detect abrupt changes

with minimal delay after they occur. At the same time de-

signing detection rules that are too sensitive to changes in

observations are susceptible to raising frequent false alarms.

This creates an inherent tension between the quickness and

the quality of the decisions.

In classical quickest change-point detection, the process

under consideration is a sequence of random variables, dis-

tribution of which changes at an unknown time instant perma-

nently [1]. A decision maker aims to design a stopping rule

to detect such a change with the minimal average delay by

monitoring it sequentially, while, in parallel, controlling the

rate of false alarms. The setting and objective of this paper

has major distinctions from the classical quickest change-point

detection. First the change is not persistent, i.e., the distribution

of the sequence returns to the pre-change distribution after

the change. Secondly, multiple changes occur throughout the

monitoring process. Furthermore, the goal of this paper is to

search for one of the change-points and detect it immediately

after it occurs, while in the classical setting the objective

is to minimize the average decision delay. The drawback of

minimizing the average decision delay is that it allows for

arbitrary large delay [1]. Therefore, in this paper, similar

to [2]–[5], a probability maximizing approach is adopted. In

this approach the objective is to design a stopping rule that

maximizes the probability of stopping at a change-point.

Quickest detection of transient changes in a sequence has

gained research interest in recent years. In [6], [7], the problem

of detecting one transient change is considered. The study

in [6] aims to characterize the shortest duration of a change

that can be detected as the false alarm rate goes to zero,

while [7] treats a detection when the transient change is

over as a missed detection and aims to minimize it. The

studies in [8]–[11] consider a setting in which the change does

not occur abruptly, but rather through a series of changes,

after which it settles to a permanent steady state. In this

setting, the steady-state distribution is different from the pre-

change one, while the pre-change and post-change models

are identical in [6], [7]. In [8] the transient duration is a

single measurement, while in [9] it is a deterministic unknown

constant. The data model of this paper is similar to that

of [6], [7] in the sense that the pre-change and post-change

distributions are the same. However, in this paper the sequence

experiences multiple transient changes. Quickest change-point

detection under multiple transient changes is also considered

in [10], [11], where the state of the system is assumed to be

a Markov process and only one of the states, which is also

an absorbing state, is considered as the desirable change state.

The oscillatory behavior of the sequence under consideration

in this paper between two distributions (pre-change and post-

change) is its fundamental difference with the aforementioned

studies.

Besides the distinction in the data model, the ultimate goal

of this paper differs from the classical settings. Instead of mini-

mizing the average detection delay, a probability maximization

approach is adopted in order to maximize the probability of

stopping at a change-point. This approach was first proposed

in [2] in a Bayesian setting for detecting a persistent change

in a sequence of independent and identically distributed (i.i.d.)

random variables. The results were extended to dependent

random variables [12], and composite post-change model [3].

In [4], [5], the objective is detecting a persistent change

immediately by using the first measurement under the change

state. Under both Bayesian and minimax regimes the exactly

optimal detection rules have been characterized, and the results

have been extended to independent non-identically distributed

measurements, composite post-change models [4]. The exten-

sion to Markovian measurements is studied in [5].

The remainder of the paper is organized as follows. Sec-

tion II provides the data model and formalizes the search

problem of interest. The quickest search rule is characterized in

Section III, where the performance bounds and the associated

stopping rule that achieves this bound are specified. Section IV

provides the numerical evaluation of the quickest search ap-

proach, and concluding remarks are provided in Section V.
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II. MODEL AND FORMULATION

A. Data Model

Consider a sequence of random variables denoted by X
△

=
{Xt : t ∈ N}. As shown in Fig. 1, these random variables

have a common probability distribution that undergoes periods

of transient changes at an unknown and non-random set of

time instants. Specifically, the elements of X are nominally

generated according to a probabilistic distribution with the

cumulative density function (cdf) F0. However, there poten-

tially exist a finite but unknown number of time instants

γ
△

= {γi : i ∈ {1, . . . , s}}, referred to as change-points, at

which the distribution changes from the nominal cdf F0 to a

distinct one with cdf F1. It is assumed that s ∈ N is unknown,

and the duration of each transient change is a known constant

denoted by T , and the transient intervals are assumed to be

non-overlapping, i.e., |γi − γj | > T for all i, j ∈ {1, . . . , s}.

We define S as the set of all instants t ∈ N at which Xt is

generated by F1, i.e.,

S
△

= {t : Xt ∼ F1} . (1)

Hence, for the elements of X we have the dichotomous model

Xt ∼ F0 , t ∈ N\S
Xt ∼ F1 , t ∈ S

. (2)

We also assume that there exist well-defined probability den-

sity functions (pdfs) corresponding to F0 and F1, which we

denote by f0 and f1, respectively. Subsequently, we denote the

probability measure governing sequence X and the expectation

with respect to this measure by Pγ and Eγ , respectively. We

also use P∞ and E∞ for the case that no change occurs in

the data under consideration, i.e., s = 0, and the distribution

is always F0.

B. Problem Formulation

The objective is to sequentially collect measurements from

the sequence X and design a sequential decision rule for

the quickest identification of one change-point, i.e., one of

the elements in γ = {γi : i ∈ {1, . . . , s}} in real time,

while, in parallel, the rate of false alarms is controlled. Hence,

the sequential decision-making process continually collects

measurements until the stopping time of the process, at which

point it is confident enough that the last collected sample

belongs to the set γ. It is noteworthy that the setting in

which there exists only one change-point, which can be either

persistent or transient, is studied extensively in the literature

(c.f. [1]– [8]). In contrast, in this paper we assume that the

number of change-points and the ensuing transient intervals

can exceed one.

The information generated by the data sequentially up to

time t generates the filtration {Ft : t ∈ N} where

Ft
△

= σ
(

X1, X2, . . . , Xt

)

. (3)

Furthermore, we also define a coarser filtration, which at time

t ∈ N is generated by only the measurements from the last

change-point up to time t. This filtration is denoted by

Gt
△

= σ
(

Xr(t)+1, Xr(t)+2, . . . , Xt

)

, (4)

Fig. 1: Data model.

where we have defined r(t)
△

= sup {i ∈ S : i ≤ t}, and adopt

the convention that the supremum of an empty set is zero. The

sequential sampling process continues until the stopping time,

denoted by τ , after which no further measurements are made

and a change is declared. The stopping time τ is set to be a

Gt-measurable function.

Two relevant performance measures for evaluating the qual-

ity of these sampling and decision-making processes are the

agility of the process as well as the frequency of false alarms.

To account for the agility, since we are interested in the

real-time identification of a change-point, the conventional

average detection delay is ineffective as it does not impose a

hard threshold on the detection delay. To circumvent this, for

quantifying the agility of the process we adopt a probability-

based approach as also done by [2] and [4]. Specifically,

we investigate two minimax settings in which we formalize

probability maximization criteria mimicking Pollak’s [13] and

Lorden’s [14] approach. In particular, we define a Pollak-like

criterion as

LP(τ)
△

= inf
γ

∑

γi∈γ

Pγ(τ = γi | τ ≥ γi) , (5)

where the infimum is over all possible realizations of the

unknown set γ. Similarly, we define a Lorden-like worst case

criterion as

LL(τ)
△

= inf
γ

∑

γi∈γ

essinf
Fγi−1

Pγ(τ = γi | Fγi−1, τ ≥ γi) . (6)

It can be readily verified that

LL(τ) ≤ LP(τ) . (7)

In order to account for the frequency of the false alarms, we

use E∞{τ}, which captures the average run length to a false

alarm before the first change-point γ1 occurs.

There exists an inherent tension between the rate of false

alarms on the one hand, and the measures LP(τ) and LL(τ),
on the other hand as improving these two measures penalizes

the false alarm rate. Leveraging such tension, an optimal

sampling strategy can be obtained by balancing false alarm

rate and the detection probability. Hence, under the Pollak-

like criterion in (5) the sampling strategy is the solution to

supτ LP(τ)
s.t. E∞{τ} ≥ η

, (8)

and under the Lorden-like criterion in (6) it is the solution to

supτ LL(τ)
s.t. E∞{τ} ≥ η

, (9)



where η ≥ 1 in both settings controls the false alarm rate.

III. QUICKEST SEARCH RULES

In this paper we characterize the optimal stopping rules for

the problems in (8) and (9). For this purpose, we first find

upper bounds on the objective functions LP(τ) and LL(τ) in

Section III-A. Then we briefly review the Shewhart test in

Section III-B, and in Section III-C we show that by using

the Shewhart test as the decision rule the values of LP(τ) and

LL(τ) achieve their upper bounds established in Section III-A,

thereby establishing that the Shewhart test is an optimal

solution to (8) and (9)

A. Upper Bounds on the Objective Functions

In order to facilitate finding upper bounds on the objective

functions in (5) and (6), we denote the likelihood ratio of the

measurement made at time t by

ℓt
△

=
f1(Xt)

f0(Xt)
. (10)

The following theorem characterizes an upper bound for

both Lorden-like and modified Pollak-like criteria defined in

(5) and (6), respectively.

Theorem 1 (Upper Bound): For the objective functions

LP(τ) and LL(τ) we have

LL(τ) ≤ s ·
E∞{ℓτ}

E∞{τ}
, (11)

and LP(τ) ≤ s ·
E∞{ℓτ}

E∞{τ}
. (12)

Proof: We provide the proof for the Loreden-like criterion

LL(τ). The proof for the Pollak-like criterion follows the same

line of arguments, and is omitted for brevity.

We start by considering that case that we only have one

change-point, i.e., s = 1. From the definition in (6) we have

LL(τ) ≤ Pγ(τ = γ1 | Fγ1−1, τ ≥ γ1) . (13)

By multiplying both sides of (13) by 1{τ≥γ1}, and taking the

expectation with respect to the nominal measure P∞ we obtain

E∞{1{τ≥γ1}LL(τ)} (14)

≤ E∞{1{τ≥γ1}Pγ(τ = γ1 | Fγ1−1, τ ≥ γ1)} (15)

= E∞{Eγ{1{τ=γ1} | Fγ1−1, τ ≥ γ1}} (16)

= E∞

{

E∞

{

1{τ=γ1}

∏

t∈S,t≤τ

ℓt | Fγ1−1, τ ≥ γ1

}}

(17)

= E∞

{

1{τ=γ1}

∏

t∈S,t≤τ

ℓt

}

(18)

= E∞{1{τ=γ1}ℓγ1
} , (19)

where (15) is due to the definition of LL(τ), (16) holds since

1{τ≥γ1} is measurable with respect to Fγ1−1 and the event

{τ = γ1} is a subset of {τ ≥ γ1}, (17) results from changing

the expectation measure, (18) is due to the towering property

of expectation, and (19) holds since τ is Gt-measurable. On

the other hand, since LL(τ) is deterministic, the term in (14)

can be expanded to

E∞{1{τ≥γ1}LL(τ)} = P∞{τ ≥ γ1}LL(τ) , (20)

which in conjunction with (14) and (19) establishes that

P∞{τ ≥ γ1}LL(τ) ≤ E∞{ℓγ1
1{τ=γ1}} . (21)

Summing both sides of (21) over all γ1 ∈ N ∪ {0} yields

LL(τ)E∞{τ} ≤ E∞{ℓτ} , (22)

which concludes the desired result for the case of s = 1. For

any s > 1 we have

LL(τ) (23)

≤ inf
γs

inf
γ1<···<γs

s
∑

i=1

Pγ(τ = γi | Fγi−1, τ ≥ γi) (24)

≤
E∞ {ℓτ}

E∞{τ}
+ inf

γ1<···<γs

s−1
∑

i=1

Pγ(τ = γi | Fγi−1, τ ≥ γi)

(25)

=
E∞ {ℓτ}

E∞{τ}
+ inf

γ1<···<γs−1

s−1
∑

i=1

Pγ(τ = γi | Fγi−1, τ ≥ γi)

(26)

≤ s ·
E∞ {ℓτ}

E∞{τ}
, (27)

where (25) is due to the result we obtained from case s =
1, (26) holds since the remaining terms are independent of

γs, and (27) results from applying induction. Generally, when

we have multiple change-points, for any i ∈ {1, . . . , s} if we

define

Li
L(τ)

△

= Pγ(τ = γi | Fγi−1, τ ≥ γi) , (28)

by following the same line of argument as the case of s = 1
we can show that for every i ∈ {1, . . . , s} we have

Li
L(τ) ≤

E∞{ℓτ}

E∞{τ}
. (29)

which concludes the proof.

B. Shewhart Test

The form of Shewhart test that we adopt in this paper

consists in a dynamic and sequential likelihood ratio test.

Formally, at each time t based on the observation Xt we form

the likelihood ratio value ℓt defined in (10). The Shewhart test

compares ℓt with a pre-specified and deterministic threshold

α and declares a change when ℓt exceeds α. Specifically, the

stopping time of the Shewhart test is found via

τs
△

= inf {t : ℓt ≥ α} . (30)

The value of the threshold α is chosen such that the average

run length to a false alarm is guaranteed to be not smaller than

η, and can be computed from

P∞(ℓ1 ≥ α) = η−1 . (31)



C. Optimality of Shewhart Test

In this subsection we prove the exact optimality of the

Shewhart test formalized in (30) and (31) for both problems

in (8) and (9). For this purpose, we start by proving that

corresponding to any feasible1 decision rule with the stopping

time ν and the associated ratio

E∞{ℓν}

E∞{ν}
, (32)

we can construct an alternative feasible decision rule that

achieves the false alarm constraint with equality, and its

stopping time, denoted by ν′ achieves the same ratio, i.e.,

E{ν′} = η and
E∞{ℓν′}

E∞{ν′}
=

E∞{ℓν}

E∞{ν}
. (33)

This observation is formalized in the following lemma.

Lemma 1: Corresponding to any given feasible decision rule

with the stopping time ν there always exists an alternative

feasible decision rule that satisfies the false alarm constraint

with equality, and its stopping time, denoted by ν′, yields

E∞{ℓν′}

E∞{ν′}
=

E∞{ℓν}

E∞{ν}
. (34)

Proof: Define π0 as the probability of detecting a change

without taking any measurement by the given stopping rule

with the stopping time ν. Then, it can be readily verified that

E∞{ℓν}

E∞{ν}
=

(1− π0)E∞{ℓν | ν > 0}

(1− π0)E∞{ν | ν > 0}
(35)

=
E∞{ℓν | ν > 0}

E∞{ν | ν > 0}
. (36)

Now, if corresponding to the stopping time ν, the false alarm

constraint does not hold with equality, i.e., if

E∞{ν} = (1 − π0)E∞{ν | ν > 0} > η , (37)

then we design an alternative decision rule that (i) at every

time ν > 0 it is similar to the given rule, which leads to

E∞{ν′ | ν′ > 0} = E∞{ν | ν > 0} , (38)

E∞{ℓν′ | ν′ > 0} = E∞{ℓν | ν > 0} , (39)

and (ii) at ν = 0 the initial probability of detecting a change

without collecting any measurements is set to π′
0 > π0, where

π′
0 is the unique solution to

E∞{ν′} = (1− π′
0)E∞{ν | ν > 0} = η . (40)

Therefore, (38)-(40) collectively establish that ν′ is feasible

and achieves the same ratio specified in (34).

Next, we leverage the result of Lemma 1 and prove the

following properties for the Shewhart test:

1) It is a feasible test.

2) Among all feasible tests, it maximizes the upper bound

on LP(τ) and LL(τ) established in Theorem 1.

1A decision rule with stopping time ν is called feasible if it satisfies the
false alarm constrain, i.e., E∞{ν} ≥ η.

3) The objective functions LP(τ) and LL(τ) meet this

maximum upper bound when using the Shewhart test.

These properties are formalized in the following lemmas.

Lemma 2 (Feasibility of Shewhart): Shewhart test achieves

the false alarm constraints of (8) and (9) with equality.

Proof: For the Shewhart test we have

E∞{τs} =

∞
∑

t=1

P∞(τs ≥ t) (41)

=

∞
∑

t=1

[1− P∞(ℓ1 ≥ α)]t−1 (42)

=
1

P∞(ℓ1 ≥ α)
(43)

= η , (44)

where (42) is due to the fact that at each time we stop we

probability P∞(ℓ1 < α) = 1− P∞(ℓ1 ≥ α), (43) is the result

of the infinite sum, and (44) holds because of (31).

Lemma 3: Shewhart test is the solution to

sup
τ : E∞{τ}=η

E∞{ℓτ}

E∞{τ}
. (45)

Proof: The Lagrangian corresponding to the constrained prob-

lem in (45) is

L(τ)
△

= E∞{ℓτ − λτ} . (46)

We show that the Shewhart test is the solution to this uncon-

strained problem. To this end, leveraging the standard stopping

rule techniques [15] we define

Gt(Ft)
△

= max
{

ℓt , −λ+ E∞{Gt+1(Ft+1) | Ft}
}

(47)

as the maximal utility function at each time t, where ℓt is the

utility if we stop at time t, and −λ+E∞{Gt+1(Ft+1)|Ft} is

the return of taking one more measurement from the sequence.

The sampling process stops as soon as the

ℓt ≥ −λ+ E∞{Gt+1(Ft+1) | Ft} . (48)

It can be readily verified through backward induction that

the maximal utility function depends on Ft only through ℓt.

Furthermore, backward induction can be used to show that

Gt(ℓt)
△

= max
{

ℓt , −λ+ E∞{ℓt+1}
}

(49)

= max
{

ℓt , C
}

. (50)

where C is a constant. Hence, the optimal solution reduces

to comparing the likelihood ratio of the current measurement

with a constant, which is the Shewhart test.

Theorem 2: The Shewhart test with the stopping time and

threshold given in (30) and (31), respectively, optimizes (45)

and, therefore, is the optimal solution to (8) and (9), i.e.,

LL(τs) = sup
τ : E∞{τ}≥η

LL(τ) . (51)

Proof: From Lemma 3 for any feasible stopping time τ that

meets the false alarm constraint with equality we have

L(τ) = E∞{ℓτ − λτ} ≤ E∞{ℓτs − λτs} = L(τs) , (52)
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Fig. 2: The probability of detecting the first or any change-point.
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Fig. 3: The average number of missed change-points before detection.

and therefore, E∞{ℓτ} ≤ E∞{ℓτs}. Now, we have

sup
τ :E∞{τ}≥η

LL(τ) ≤ η−1 sup
τ :E∞{τ}=η

E∞{ℓτ} (53)

≤ η−1 sup
τ :E∞{τ}=η

E∞{ℓτs} (54)

= LL(τs) , (55)

where (53) results from replacing LL(τ) with its upper

bound, (54) holds due to (52), and (55) is due to Lemma 3.

Since the upper bound on the objective is achieved, the proof

is concluded.

The popularity of Shewhart test is mostly due to its simple

implementation. At each time t we take a new measurement

from the sequence, form its likelihood ratio, and compare

the likelihood ratio with a fixed pre-specified upper threshold.

We stop the process and declare a change the first time the

likelihood ratio exceeds the threshold.

IV. NUMERICAL RESULTS

In this section we numerically evaluate the performance of

the Shewhart test corresponding to the Pollak-like criterion.

Specifically, we are interested in assessing the impact that

our choice of the selected agility criterion has on the test

performance. Based on our Pollak-like criterion, we can afford

to miss some of the change-points in favor of making more

confident decisions about the onset of a change. In order to

quantify how this specific objective function affects the test

performance, for the Shewhart test we compare the probability

of detecting the first change-point with the probability of

detecting any change-point. We, also, provide the average

number of missed change-points by the Shewhart test.

To this end, we consider a sequence of 105 random vari-

ables, where the nominal and alternative distributions are unit-

variance Gaussian distributions with mean values 0 and 1,

respectively. There exist 1000 change-points in the sequence,

each with the duration T = 1. Figure 2 compares the

conditional probability of detecting the first change-point with

that of detecting any change-point. It is observed that when

we have a more stringent constraint on the false alarm rates,

i.e., the average run length to a false alarm increases, the

detection probability decreases since we want to raise fewer

false alarms. Also, the ratio gap between these two objective

function becomes more significant. This is due to the fact

that in our objective function, we can afford to wait for a

more reliable decision about the occurrence of a change-point.

Figure 3 illustrates the average number of missed change-

points in our setting. It is observed that for larger average

run length to a false alarm we miss more change-points in

order to detect one of them more reliably.

In order to evaluate the effect of similarity level of the

pre-change and post-change distributions, in Fig. 4 we repeat

the simulation for various values of the mean for the post-

change distribution. It is observed that by increasing the

mean, which is equivalent to more less similarity to the pre-

change distribution, the average number of missed change-

points decreases and the Shewhart test detects the first change-

point more reliably.

V. CONCLUSION

We have analyzed the problem of quickest search for

change-points when the changes are not persistent. We have

considered a setting in which a sequence of random variables

might undergo multiple change-points and after each change-

point it returns to the nominal distribution. Both the pre-change

and post-change distributions are known and the objective is

to identify one of these change-points in real-time, i.e., by

observing the first measurement generated according to the

post-change distribution, while controlling the false alarm rate

in parallel. To this end, we have considered a probability

maximizing approach in a minimax setting. We have shown

that the Shewhart test, which is a likelihood ratio test based

on the current observed measurement, is exactly optimal.
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