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Abstract—In this work, we consider tilings of the Hamming
cube and look for metrics which turn the tilings into a perfect
code. We consider the family of metrics which are determined
by a weight and are compatible with the support of vectors (TS-
metrics). We determine which of the tilings with small tiles or
high rank can be a perfect code for some TS-metric and we
characterize all such metrics. Finally, we show some procedures
to obtain new perfect codes (relatively to TS-metrics) out of
existing ones.

I. INTRODUCTION

The study of perfect codes is an important topic in coding

theory, since it satisfies an optimality condition: the coinci-

dence between the packing and covering radii. Finding perfect

codes is a difficult issue. For the Hamming metric, there is

a complete characterization of its parameters, which are the

parameters of a trivial code, a Hamming code [12] and Golay

codes [9]. In Lee metric, the situation is more unclear (see

[10], [11], [17]). Besides Van Lint’s good survey of perfect

codes from 1975 [14], a more recent survey was made by

Olof in 2008 [13].

The concept of perfect code, that is, the coincidence be-

tween the packing and covering radii, can naturally be stated

for any discrete metric d(·, ·), so we stress the metric in

question by saying it is a d-perfect code.

In this work we are concerned with perfect codes when con-

sidering a particular but reasonable family of metrics on F
n
2 ,

called TS-metrics, which stands for invariant by Translations

and respecting Support. These are metrics that are defined

by a weight and respects the support of vectors (details on

Section II-A). These two properties are quite natural to be

asked when considering linear binary error correcting codes.

It is worth noting that such metrics admit a syndrome decoding

algorithm and, under some circumstances, this algorithm may

have a significant gain in reducing the table of coset leaders

(see [7, Section 4.1]).

There are two large families of TS-metrics, namely the poset

metrics and the combinatorial metrics, introduced respectively

by R. Brualdi at. al in [2, 1995] and E. Gabidulin in [8,

1973]. In this more general setting, the only family of metrics

in which perfect codes were studied are the so called poset

metrics. A recent account of it can be found in [15, Chapter

6.3.1].

Our approach has two steps that are simple to explain.

1) If we have a tiling of the Hamming cube and each

tile is a ball for a given metric d, then the center of

the balls constitute a d-perfect code. So, we consider

known tilings of the Hamming cube and ask which of

these tilings can be a metric ball of a TS-metric. For

those that satisfy this condition, we try to classify (up

to equivalence) all such metrics.

2) The second step asks to construct new perfect codes out

of existing ones. To be more precise, given a d1-perfect

code on F
n1

2 and a d2-perfect code on F
n2

2 we try to find

a metric d that turns the concatenation of the two codes

into a d-perfect code in F
n1+n2

2 .

The main source of existing tilings of the Hamming cube,

and of ways to construct tilings out of existing ones is [3], our

main reference for this text. In that work, the authors present

a complete classification of small tilings (for tiles with up to

eight elements) and tilings with tiles of high rank. To be more

clear, to each tiling presented in [3] we first determine if there

exists a metric for which it is a perfect code. After that, for

those which admit such a metric, we classify all the metrics

that do it. This is the starting point of our first approach. They

also show that tilings are invariant by concatenation, and we

use it for our second step.

Due to lack of space, proofs are omitted, but can be found

in a complete version of this work in [16].

II. PRELIMINARIES

Throughout this paper, let Fn
2 be the n-dimensional vector

space over F2, [n] = {1, ..., n} and supp(x) := {i ∈ [n];xi 6=
0} the support of x ∈ F

n
2 . We let ωH and dH denote the

Hamming weight and Hamming metric, respectively.

A. TS-metrics

The Hamming metric has two important properties, ex-

pressed in the next two definitions.

Definition 1: A metric d : F
n
2 × F

n
2 → R is said to be

translation-invariant if

d(x+ z,y + z) = d(x,y)

for every x,y, z ∈ F
n
2 .

It is well known and worth noting that a metric is

translation-invariant iff it is defined by a weight 1.

Definition 2: A weight function ω is said to respect the

support of vectors if supp(x) ⊆ supp(y) =⇒ ω(x) ≤ ω(y).

1A function ω : Fn

2
→ R is a weight if it satisfies the following axioms: (1)

ω(x) ≥ 0 for every x; (2) ω(x) = 0 if, and only if, x = 0; (3) ω(x+y) ≤
ω(x)+ω(y). A weight determines a metric by defining d(x,y) = ω(x−y).
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A translation-support metric (TS-metric) is a metric

that is translation-invariant and which respects the support of

vectors.

Being translation-invariant is a key property for decoding

linear codes, since syndrome decoding depends exclusively

on this property.

Respecting the support of vectors is a property that is crucial

in coding theory (for binary codes), once it means that making

extra errors cannot lead to a better situation, in the sense that

making an error on the coordinate i in a message cannot be

worse than making two errors, one on the coordinate i and the

other on j.

We present now the two principal families of TS-metrics

which will be explored in this work.

1) Poset Metric: The poset metrics were introduced by

Brualdi et al. in [2].

Let P = ([n],�) be a partially ordered set (poset). An ideal

in a poset P = ([n],�) is a nonempty subset I ⊆ [n] such

that, for a ∈ I and b ∈ [n], if b � a then b ∈ I . We denote by

〈I〉 the ideal generated by I ⊆ [n]. An element a of an ideal

I ⊂ [n] is called a maximal element of I if a � b for some

b ∈ I implies b = a. We say that b covers a if a � b, a 6= b
and there is no extra element c ∈ [n] such that a � c � b.

Definition 3: The P -weight of a vector x ∈ F
n
2 is defined

by

ωP (x) := |〈supp(x)〉|,

where |A| is the cardinality of A.

The P -weight clearly respects support, since A ⊂ B implies

〈A〉 ⊂ 〈B〉. The P -distance in F
n
2 is the metric induced by

ωP : dP (x,y) := ωP (x− y).

2) Combinatorial Metric: The combinatorial metrics were

introduced by Gabidulin in [8].

Let Pn = {A;A ⊂ [n]} be the power set of [n]. We say

that a family A ⊂ Pn is a covering of a set X ⊂ [n] if

X ⊂
⋃

A∈A

A.

If F is a covering of [n], then the F -combinatorial weight

of x = (x1, ..., xn) ∈ F
n
2 is the integer-valued map ωF defined

by

ωF (x) := min{|A|;A ⊂ F ,A is a covering of supp(x)}.

The distance defined as dF (x,y) := ωF(x − y) is called

F -combinatorial metric.

We denote by T S(n), P(n) and C(n) the sets of all TS-

metrics, poset and combinatorial, respectively. It is worth to

note that P(n), C(n) ⊂ T S(n).

B. Perfect codes

Given a metric d on F
n
2 , the ball of radius r and center

x is Bd(x, r) = {y ∈ F
n
2 ; d(x,y) ≤ r}. A code C ⊆ F

n
2

is a (d, r)-perfect code if
⋃

c∈C

Bd(c, r) = F
n
2 and Bd(c, r) ∩

Bd(c
′, r) = ∅, ∀c, c′ ∈ C, c 6= c′.

We approach now the first of our key definitions.

Definition 4: Given a subset S ⊆ F
n
2 , we say that S is

a TS-ball if S is a ball for some TS-metric, that is, S =
Bd(x, r), for some x ∈ F

n
2 , r > 0 and d ∈ T S(n). If C

is a (d, r)-perfect code for some d ∈ T S(n) we say that it

is a TS-perfect code. In case the radius r is not taken into

consideration, we say C is d-perfect.

C. Tiles, tilings and polyhedrominoes

We are interested in building perfect codes out of tilings of

the Hamming cube, so we need some basic definitions about

tilings and polyhedrominoes.

A path γ in F
n
2 , with initial point x and final point y, is a

sequence γ : x0,x1, ...,xt, where dH (xi,xi+1) = 1, x = x0

and y = xt. The length of γ is defined by |γ| = t. A path

γ is called a geodesic path if it is a path of minimum length

between the initial and final points. A path γ from x to y is

a geodesic path if, and only if, dH (x,y) = |γ|.

Definition 5: A set D ⊆ F
n
2 is a polyhedromino if for all

x,y ∈ D there is a (possibly not unique) geodesic path γ ⊂ D
connecting x to y.

We adopt the definition of tiling given in [1], since it makes

evident its relation to perfect codes. It is not difficult to see

that this is equivalent to the definition adopted in our main

reference [3].

Definition 6: A tiling of Fn
2 is a pair (D,C), where D,C ⊆

F
n
2 and C is a subset such that

⋃

c∈C

c+D = F
n
2 and (c+D) ∩ (c′ +D) = ∅,

∀c, c′ ∈ C, c 6= c′.

Despite the fact that the role of D and C are interchange-

able, we shall call D as a tile and C the code of the tiling,

since this is the role it will play in the context of coding theory.

In the case where D is a polyhedromino, we say (D,C) is a

poly-tiling of Fn
2 .

Since we are working with translation-invariant metrics, it

is always possible to translate all the elements of both D and

C in order to have 0 ∈ D and 0 ∈ C. Then, throughout this

paper, w.l.o.g., we may assume that 0 ∈ D and 0 ∈ C.

Notice that we are considering only translated copies of

D, which is very reasonable in the context of TS-metrics,

since in this case all the translated copies of the tile are

isometric. Also, as we shall see, it is also reasonable the use

of polyhedrominoes to tile F
n
2 .

Tilings and perfect codes are two distinct research areas.

Tilings are frequently studied in the context of graph theory

and notice that a particular case of graph is the Hamming

graph. Next proposition establishes a connection between

tilings and perfect codes.

Proposition 1: Given (D,C) a tiling of F
n
2 , suppose that

D = Bd(0, r) for some d ∈ T S(n). Then:

1) D is a polyhedromino;

2) C is a (d, r)-perfect code.

Proof: The proof follows directly from the definitions and

it is omitted due to lack of space.



In case the conditions of the proposition holds, we say that

the tiling (D,C) determines a TS-perfect code.

A trivial (and not interesting) way of obtaining a poly-tiling

is to consider I ⊂ [n], DI = {x = (x1, . . . , xn);xi = 0, i ∈
I} and CI = {x = (x1, . . . , xn);xi = 0, i ∈ [n] \ I}. It

is also trivial to see that given a tiling (D,C), we have that

|D| · |C| = |Fn
2 |.

III. OBTAINING PERFECT CODES OUT OF TILINGS

The starting point of this section is the work [3], where

tilings of F
n
2 with “small” tiles were classified, where a tile

D is called “small” if |D| ≤ 8. Since a tiling (D,C) satisfies

|D| · |C| = 2n, we must have |D| equals 1, 2, 4 or 8.

In Section III-A we obtain all small tilings (D,C) presented

in [3] and determine each of those C is a TS-perfect code;

In Section III-B we give necessary and sufficient conditions

for a tiling of large rank presented in [3] to determine a TS-

perfect code; In Section III-C, given a perfect code (D,C)
with respect to a metric d and with D ⊂ F

s
2, we present a

systematic way to extend d into a metric d∗ on F
n
2 which turns

the extension of (D,C) to F
n
2 to be a perfect code; Finally,

in Section III-D we classify all TS-metrics that turn D into a

ball or equivalently, turn C into a TS-perfect code.

A. Classifying small tiles that determine TS-perfect codes

We denote by ei ∈ F
n
2 the vector with supp(ei) = {i}.

Proposition 2: Let B = Bd(0, r) ⊆ F
n
2 be a TS-ball with 2

or 4 elements. Then, B is one of the following:

B1 = {0, ei} ,

B2 = {0, ei, ej , ek} , i, j, k distincts

B3 = {0, ei, ej , ei + ej} , i 6= j.

Proof: The tiles listed are all polyhedrominoes of this size

hence, by Proposition 1 these are all the possible candidates.

They are all realized by a poset metric, determined, respec-

tively, by the non-trivial sets of relations: {i � l; ∀l 6= i},

{t � l; ∀t ∈ {i, j, k}, l ∈ [n] \ {i, j, k}} and {t � l; ∀t ∈
{i, j}, l ∈ [n] \ {i, j}}.

The rank of V ⊂ F
n
2 is the dimension of the vector

subspace generated by V , i.e., rank(V ) = dim〈V 〉. Given

a tiling the rank of (D,C) is rank(D,C) = rank(D).
In [3] there is a complete classification of tilings of F

n
2 .

To obtain the first result of this section, Proposition 3, there

are two steps: first to reduce the list of classification in

[3] by considering equivalents tiles that can be obtained

by a simple permutation of the coordinates, obtaining 15
equivalence classes. We remark that, if D = Bd(0, r) is

a ball for some TS-metric and x ∈ Bd(0, r), then y ∈
Bd(0, r) for all y ∈ F

n
2 such that supp(y) ⊆ supp(x).

This simple remark makes possible to eliminate 9 of those

tiles, which do not satisfy this property. As an example, let

D = {0, e1, e2, e3, e4, e1 + e3, e1 + e4, e1 + e3 + e4} be

a tile. Note that supp(e3 + e4) ⊂ supp(e1 + e3 + e4) and

e3 + e4 /∈ D, then we have ω(e3 + e4) ≥ ω(e1 + e3 + e4).
Then, by the remark above, D cannot be a ball for any TS-

metric.

The remaining 6 tiles are presented in Tables I and II. They

are denoted by Ds
j , where s is the rank of the tile and j is a

counting index. Hence we have the following:

Proposition 3: If a tile is not equivalent to a tile presented

in Table I or II, there is no TS-metric that turns it into a ball.

To show that the remaining tiles give rise to a TS-perfect

code, we need to find a TS-metric which turns them into a

metric ball. The proof of the next theorem, Theorem 1, is

actually the last column of the tables, where we present a

poset metric (for Table I) or a combinatorial metric (for Table

II) that turns the tile into a ball.

Theorem 1: For each tile D in Tables I and II there exists a

TS-metric on F
s
2 for which D is a ball, where s = rank(D).

Proof: The proof consists in exhibiting a TS-metric for

each case. The last column of Tables I and II exhibits an

appropriate TS-metric for which D is a ball. Each case should

be directly verified.

Remark 1: The tiles D listed in Tables I and II are

considered as subsets of Fs
2, where s = rank(D). In Section

III-C we show a process used to extend them to F
n
2 , n ≥ s.

B. Classifying tiles with large rank that determine TS-perfect

codes

In [3], the authors proved that a set Dn(x) = {ei; i ∈
[n]} ∪ {0,x} , for some x ∈ F

n
2 with ωH(x) ≥ 2 is a tile if,

and only if, ωH(x) /∈ {n − 1, n − 2}. We shall determine a

necessary and sufficient condition for it to define a TS-perfect

code.

Proposition 4: Suppose that (Dn(x), Cn(x)) is a tiling of

F
n
2 . Then, there is a TS-metric that turns it into a perfect code

if, and only if, ωH(x) = 2.

Tile Rank Elements Radius Non trivial relations of the Poset

D3

1
3 0, e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3 3 P1 : 1 � 2 � 3,

D7

1
7 0, e1, e2, e3, e4, e5, e6, e7 1 P2 : only trivial relations

Table I – Tiles of type 2

Tile Rank Elements Radius Combinatorial metric

D4

1
4 0, e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4 1 F1 = {{1, 2}, {1, 3}, {1, 4}}

D4

2
4 0, e1, e2, e3, e4, e1 + e2, e1 + e3, e2 + e3 1 F2 = {{1, 2}, {1, 3}, {2, 3}, {4}}

D5

1
5 0, e1, e2, e3, e4, e5, e1 + e4, e1 + e5 1 F3 = {{1, 4}, {1, 5}, {2}, {3}}

D6

1
6 0, e1, e2, e3, e4, e5, e6, e1 + e2 1 F4 = {{1, 2}, {3}, {4}, {5}, {6}}

Table II – Tiles of type 2



Proof: If ωH(x) > 2, then Dn(x) cannot be a ball in

a metric that respects support, since in this case there would

be some subset A ⊂ supp(x) with 1 < |A| < ωH(x) and

the vector xA defined by supp(xA) = A is not contained in

Dn(x). For ωH(x) = 2, we have that x = ej + ek, for some

j 6= k and we define F = {{i}; i ∈ [n]} ∪ {{j, k}} and we

have that Dn(x) = BdF
(0, 1) and, by Proposition 1 we have

that (Dn(x), Cn(x)) is a dF -perfect code.

C. Extending tilings from F
s
2 to F

n
2

Given a = (a1, a2, ..., an) ∈ F
n
2 and b = (b1, b2, ..., bm) ∈

F
m
2 , a | b = (a1, a2, ..., an, b1, b2, ..., bm) and A | B = {a |

b; a ∈ A, b ∈ B}.

In the previous section we considered tilings (D,C) of Fs
2

where s = rank(D). Since Fs
2 can be seen as a linear subspace

of Fn
2 for n ≥ s, we can extend this to a tiling (D∗, C∗) of Fn

2 .

We denote 0l the null element in F
l
2 and let D∗ = D | 0n−s

and C∗ = C | Fn−s
2 . As can be found in [3] we have that

(D∗, C∗) is a tiling of Fn
2 . We remark that |D∗| = |D|.

If (D,C) is a tiling of F
s
2 and d ∈ T S(s) turns D into

a metric ball Bd(0, r) in F
s
2 (or equivalently, turns C into a

d-perfect code), we wish to extend d to a metric d∗ which

turns D∗ into a metric ball Bd∗(0, r′) in F
n
2 .

Theorem 2: Given D = Bd(0, r), d ∈ T S(s), there is d∗ ∈
T S(n) such that D∗ = Bd∗(0, r).

Proof: Given a weight ω on F
s
2, let M(ω) =

max{ω(x);x ∈ F
s
2}. We define, for x ∈ F

n
2 , n ≥ s

ωn,s(x) =

{

ω(x) if supp(x) ⊂ [s]

M(ω) + 1 otherwise
.

It is not difficult to see that ωn,s(x) is a weight. Let d and

dn,s be the metrics determined by ω and ωn,s respectively. It

is not difficult to prove that d respects the support of vectors

if, and only if, dn,s does it. Moreover,

Bdn,s
(0, r) = Bd(0, r) | {0n−s}

for every r ≤ M(ω). So, if (D,C) determines a perfect code,

so does (D∗, C∗).

Remark 1: In the two cases considered in Table I, where the

metrics were determined by a poset P over [s], it is possible

to extend it to a metric defined by a poset P ∗ over [n] as

follows: P ∗
1 is defined by the (non-trivial) relations 1 � 2 � 3

and 3 � i for all i ≥ 4. The poset P ∗
2 is defined by the (non-

trivial) relations i � j for all i ≤ 7 < j. These are actually

the minimal poset metrics which extend the original ones and

it is not difficult to classify all the poset extensions that do it.

For the cases in Table II, the extension follows by directly

applying Theorem 2.

D. Classifying the TS-metrics which turn a tiling into a perfect

code

If (D,C) determines a perfect code, there is d ∈ T S(n)
that turns D into a metric ball. Actually, there are infinitely

many such metrics, so when we wish to classify all such

metrics, we mean up to an equivalence relation. The most

natural equivalence relation in the context of coding theory is

to say that two metrics on F
n
2 are equivalent if they determine

the same minimum distance decoding for every code C ⊂ F
n
2

and every received message x ∈ F
n
2 . To be more precise:

Definition 7: Two metrics (or distances) d1 and d2 defined

over Fn
2 are decoding equivalent, denoted by d1 ∼ d2, if

arg min{d1(x, c) : c ∈ C} = arg min{d2(x, c) : c ∈ C},

for any code C ⊆ F
n
2 and any x ∈ F

n
2 .

It is not difficult to see that d1 ∼ d2 if, and only if,

d1(x,y) < d1(x, z) ⇐⇒ d2(x,y) < d2(x, z), for all

x,y, z ∈ F
n
2 . Details about this equivalence relation can be

found in [5] and [6].

Let M ⊂ F
N
2 × F

N
2 , N = 2n be a distance matrix where

mx,y = d(x,y) and d ∈ T S(n). Our goal is to determine

necessary and sufficient conditions (on the matrix M ) to

determine a TS-metric that turns a tiling (D,C) into a perfect

code. This is what is done in the next theorem.

Theorem 3: Let (D,C) be a tiling of F
n
2 . Let d be a TS-

metric for which D = Bd(0, r). Let M = (mx,y) ⊂ F
N
2 ×F

N
2

be a N × N matrix, with N = 2n, satisfying the following

conditions:

C1) mx,0 = d(x,0) for x ∈ D.

C2) mx,0 > r for x /∈ D.

C3) mx,y = my−x,0 for all x,y ∈ F
N
2 .

Then, the following holds:

i) The matrix M defines a distance which is decoding-

equivalent to a metric dM that is a translation-invariant

metric.

ii) The tile D is a metric ball of the metric dM , to be more

precise, D = BdM
(0, r).

iii) It is possible to choose the values of mx,y > r for

x /∈ D in such a way that the metric dM ∈ T S(N);
iv) Any TS-metric d′ which turns D into a metric ball

is equivalent to a metric described by a matrix M
satisfying conditions C1, C2, C3.

Proof: We briefly sketch the main steps in the proof. The

existence of a metric follows from the symmetry of the matrix

(since on a binary space x − y = y − x) and the fact that

on a finite space any distance is equivalent to a metric (see

[4, Chapter 1.1]). The translation invariance follows from the

fact that the first row determines all the others. Second item

follows from the fact that mx,0 ≤ r if, and only if, x ∈ D.

The third is done constructively and the last one follows from

the algorithm presented in [5] to obtained a reduced form of

a metric.

IV. CONCATENATION OF TILINGS: EXTENDING PERFECT

CODES TO LARGER DIMENSIONS

In this section, we present some constructions to obtain new

perfect codes out of a given pair of perfect codes. The principal

tool to achieve the mentioned goal is the concatenation of tiles.

We present here two main results. In Theorem 4 we consider



concatenation of tiles that are balls of same radius of two

arbitrary TS-metrics and in Theorem 5 we may consider balls

of different radii.

Since we are working with poly-tilings, the first step is to

prove that the concatenation of poly-tilings results in a poly-

tiling. That is what is stated in the next two results. The proof

of both will be omitted due to space limitations, but they

follow directly from the definitions.

Proposition 5: Let D1 ⊆ F
n
2 and D2 ⊆ F

m
2 and let

D = D1 | D2 ⊂ F
n+m
2 be the concatenation of D1 and

D2. Then, D is a polyhedromino if, and only if, D1 and D2

are polyhedrominoes.

In [3, proof of Theorem 7.5], it was shown that given two

tilings (D1, C1) and (D2, C2) of F
n
2 and F

m
2 , respectively,

the concatenation between (D1, C1) and (D2, C2) results in a

tiling (D,C) of Fn+m
2 . The same holds for poly-tilings. From

this and Proposition 5, we have the following:

Corollary 1: Let (D1, C1) and (D2, C2) be poly-tilings of

F
n
2 and F

m
2 , respectively. Then, (D1 | D2, C1 | C2) is a poly-

tiling if, and only if, (D1, C1) and (D2, C2) are poly-tilings.

Notice that the concatenation of two sets can be seen as

a direct product between them. Then, it would be natural

to consider the product metric. But, in a general case, the

concatenated tile D is not a metric ball in the product metric.

For that reason, we define other metrics to accomplish our

goal. From here on, given x ∈ F
n+m
2 , express x := x1 | x2,

where x1 ∈ F
n
2 , x2 ∈ F

m
2 .

Lemma 1: Consider two metrics d1, d2 defined on

F
n
2 and F

m
2 respectively and define dmax(x,y) :=

max{d1(x1,y1), d2(x2,y2)}. Then dmax is a metric on

F
n+m
2 and d1 ∈ T S(n), d2 ∈ T S(m) implies dmax ∈

T S(m+ n).
The proof follows directly from the definition of a metric

and it will be omitted due to lack of space.

Now we consider the concatenation of two balls with same

radius.

Theorem 4: Let (D1, C1), (D2, C2) be poly-tilings of F
n
2

and F
m
2 , respectively. Suppose that D1 = Bd1

(0, r) and D2 =
Bd2

(0, r), where d1, d2 are TS-metrics. Let (D,C) = (D1 |
D2, C1 | C2). Then, (D,C) is a poly-tiling of F

n+m
2 and

D = Bdmax
(0, r).

Proof: By Corollary 1 we have that (D,C)
is a poly-tiling. If x ∈ D then dmax(x,0) =
max{d1(x1,0), d2(x2,0)} ≤ r, since x1 ∈ D1 = Bd1

(0, r)
and x2 ∈ D2 = Bd2

(0, r). Thus, x ∈ Bdmax
(0, r). If

x = x1 | x2 /∈ D we have that x1 /∈ D1 or x2 /∈ D2,

so that d1(x1,0) > r or d2(x2,0) > r. But this implies

that dmax(x,0) = max{d1(x1,0), d2(x2,0)} > r and

x /∈ Bdmax
(0, r). Therefore, D = Bdmax

(0, r).

In Theorem 4 we show that the concatenation D = D1 | D2

of two TS-balls (which are poly-tilings) of same radius (pos-

sibly determined by different metrics) is a TS-ball. A natural

question arises: is it possible to have different radii and D be

a ball? To answer this question we start constructing a TS-

weight, made out of a conditional sum of weights.

Lemma 2: Let ω1 and ω2 be TS-weights on F
m
2 and F

n
2

respectively. Given r ≤ m, s ≤ n, let D1 = Bd1
(0, r),

D2 = Bd2
(0, s) and D = D1 | D2, where di is the metric

determined by ωi. For r ≤ s we define the s-sum

ω1 ⊕
r
s ω2(x) =

{

ω1(x1) + ω2(x2), if x ∈ D

r + s+ 1, otherwise.

Then, ω1 ⊕r
s ω2 is a weight and it respects support.

The proof follows directly from the definition of a weight

and it will be omitted due to space limitations.

Theorem 5: Let (D1, C1), (D2, C2) be TS-perfect codes.

Then, (D,C) = (D1 | D2, C1 | C2) is a TS-perfect code.

Proof: The hypothesis of the theorem ensures that D1 =
Bd1

(0, r) and D2 = Bd2
(0, s), where d1, d2 are TS-metrics,

determined by weights ω1, ω2.

Corollary 1 ensures that (D,C) is a poly-tiling of F
n+m
2 .

We assume r ≤ s. Let ω1 ⊕r
s ω2 be defined as in Lemma

2. From the lemma, all is left to prove is that D = {x ∈
F
n+m
2 ;ω1⊕r

s ω2(x) ≤ r+s}. From the definition of ω1⊕r
s ω2

we have that x ∈ D if, and only if, ω1 ⊕r
s ω2(x) ≤ r + s.
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