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Abstract—In this work we introduce a novel QKD protocol
capable of smoothly transitioning, via user-tuneable parameter,
from classical to semi-quantum in order to help understand
the effect of quantum communication resources on secure key
distribution. We perform an information theoretic security anal-
ysis of this protocol to determine what level of “quantumness”
is sufficient to achieve security, and we discover some rather
interesting properties of this protocol along the way.

I. INTRODUCTION

A semi-quantum key distribution (SQKD) protocol’s goal is
similar to that of a quantum key distribution (QKD) protocol,
namely the establishment of a secret key between two parties,
Alice (A) and Bob (B), secure against an all-powerful ad-
versary Eve (E). Semi-quantum cryptography, first introduced
in 2007 by Boyer et al., in [1], imposes the restriction,
however, that one of the users (typically B), is limited to being
“classical” or “semi-quantum.” This restriction implies B is
limited to working only in the computational Z basis (spanned
by states |0〉 and |1〉). He may not measure or prepare states
in any other basis (we will discuss the exact capabilities of B
later in this paper).

The primary interest of these protocols is to help answer
the question “how quantum must a protocol be to gain an
advantage over a classical one?” We know that, if both parties
are classical, key distribution is impossible unless computa-
tional assumptions are made. Thus, the question semi-quantum
protocols seek to help answer is: what quantum resources are
required to attain unconditional security? However, besides
removing certain key quantum capabilities from the two users,
there has not been a semi-quantum protocol that can smoothly
transition from classical to quantum allowing us to study the
effects of quantum communication on secure key distribution.

In this paper, we propose such a protocol and analyze
its properties. We introduce a novel SQKD protocol with a
user-tuneable parameter α allowing one to, in a way, set the
level of “quantumness” of the entire protocol. Indeed, when
α = 0, the protocol collapses to a classical one (which is
insecure). As α increases, the protocol, in a way, becomes
more quantum (in that Alice, the quantum user, is allowed to
send and receive states which are less orthogonal). However,
Bob’s capabilities, being classical in nature, are not affected
by this α parameter. In fact, as the protocol becomes “more

quantum” Bob has more trouble determining A’s key bit since
B is always restricted to the computational {|0〉 , |1〉} basis.

Our protocol is purely of theoretical interest. We are in-
terested in devising a way to measure the effect of quantum
state generation and measurement on the security properties
of a key-distribution system where one user is forced to be
classical and as the other user varies in quantum capabilities.
We perform an information theoretic security analysis of our
protocol and look at how α affects the noise tolerance of
the protocol (i.e., how does the secure communication rate
change as A becomes more or less quantum, even when
an all-powerful adversary is attacking). Naturally, when α is
too small, the protocol is “too classical” to be secure - as
α increases the protocol can attain security for some noise
levels; however once α increases too much, then Alice is “too
quantum” for Bob to understand completely (i.e., he is unable
to correctly guess what key-bit A is trying to send to him).

We make several contributions in this work. We introduce
a novel SQKD protocol which is interesting theoretically as
it is the first such protocol, that we are aware of, to allow
researchers to gauge the effect of quantum state preparation
and measurement on a key-distribution protocol where one
user remains classical in nature. This protocol is also highly
restrictive in nature as A and B both have severe restrictions
placed on them, yet we are still able to prove security. Second,
we perform an information theoretic security analysis of this
protocol and our proof technique (which extends that of [2] but
to the highly restricted case where fewer noise statistics may
be observed) may be of independent interest and applicable
to other (S)QKD protocols where users are severely limited
in their ability to measure the noise in the quantum channel
(note that SQKD protocols require two-way quantum channels
allowing Eve two opportunities to attack each qubit - this,
in addition to the fact that A and B cannot observe all
noise statistics due to their restrictions, greatly increases the
complexity of the security analysis). Finally, we evaluate
our protocol, examining the effect of the α parameter for
various channels and noise scenarios, discovering interesting
properties along the way.

A. Notation and (S)QKD Security

We denote by Z to be the computational basis consisting
of states {|0〉 , |1〉}. We use H(p1, · · · , pn) to be the Shannon
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entropy of {pi} and H(x) to mean the binary Shannon entropy,
namely H(x) = H(x, 1− x). Note that all logarithms in this
paper are base two.

Given a density operator ρ (that is, a Hermitian positive
semi-definite operator of unit trace), we write S(ρ) to be the
von Neumann entropy of ρ defined as S(ρ) = −tr(ρ log ρ). If
ρ acts on Hilbert space HA⊗HB , we often write ρAB . In this
case, we define ρB to be the partial trace over the A system,
namely ρB = trAρAB . This notation extends to three or more
systems. To simplify notation, given |v〉 in some Hilbert space,
we will write [v] to mean |v〉 〈v|.

If ρAB acts on HA ⊗HB , then we write S(AB)ρ to mean
S(ρAB). We also write S(A|B)ρ to mean the conditional von
Neumann entropy defined to be S(A|B)ρ = S(ρAB)−S(ρB).
We will forgo writing the subscript “ρ” if the context is clear.

Any (S)QKD protocol requires both a quantum channel and
an authenticated classical channel and these protocols operate
in two stages. The first, called the quantum communication
stage, utilizes the quantum channel and authenticated classical
channel, over numerous iterations, to agree on a so-called raw-
key of size n-bits. Eve, who was attacking the quantum chan-
nel, and listening to the authenticated classical communication,
also has an ancilla partially entangled with A and B’s raw key.
At this point, the system (A and B’s raw key along with E’s
ancilla) may be represented by a classical-quantum state:

ρABE =
∑

a,b∈{0,1}n
P (a, b)[a]A ⊗ [b]B ⊗ ρ

(a,b)
E . (1)

From this, A and B run an error correction protocol (leaking
additional information to E) and a privacy amplification
protocol, shrinking the n-bit raw key to a secret key of size
`(n) on which E has negligible information (in an information
theoretic sense). In the asymptotic scenario as n → ∞,
which we consider here, E’s information, and also all failure
probabilities, go to zero. An important statistic in any security
proof is the key-rate: r = `(n)/n. For more information on
these general concepts and definitions, the reader is referred
to [3].

As with almost all (S)QKD security proofs, we consider
collective attacks, whereby E attacks the channel in an i.i.d.
manner but is free to postpone her measurement of her ancilla
to any future point in time and, indeed, may later perform an
optimal coherent measurement of her entire ancilla. Usually,
proving security against collective attacks is sufficient to prove
security against general, arbitrary, attacks [4]–[6]. We suspect
this result also holds true for our protocol; however due to the
highly restrictive nature of A and B’s operation, a complete
proof of this is outside the scope of this paper and would make
for interesting future work.

Under a collective attack (in which case ρABE from Equa-
tion 1 may actually be written ρABE = σ⊗nABE for some
classical-quantum state σ), we may employ the Devetak-
Winter key-rate equation [7] which states:

r = lim
n→∞

`(n)

n
= inf[S(A|E)σ −H(A|B)],

where the infimum is over all collective attacks which induce
the observed statistics (e.g., the observed error rate, though one
may also look at other statistics such as mismatched events
[2], [8], [9]). It is this computation of r (in particular, the
computation of S(A|E) since the computation of H(A|B)
is generally trivial) that is the key element in any (S)QKD
security proof and our main focus in this work. From this,
one may look at a protocol’s noise tolerance - that is for what
noise levels does r remain positive.

In our security proof, we will make use of the following
result proven in prior work (though slightly generalized here):

Theorem 1. (From [2]): Given the classical-quantum state:

ρAE =
1

N
[0]A ⊗

(
M∑
i=1

[Ei]

)
+

1

N
[1]A ⊗

(
M∑
i=1

[Fi]

)
,

then:

S(A|E)ρ ≥
∑
i∈J

〈Ei|Ei〉+ 〈Fi|Fi〉
N

×
(
H

[
〈Ei|Ei〉

〈Ei|Ei〉+ 〈Fi|Fi〉

]
−H [λ(|Ei〉 , |Fi〉)]

)
,

where:

λ(|x〉 , |y〉) =
1

2

(
1 +

√
(〈x|x〉 − 〈y|y〉)2 + 4Re2 〈x|y〉

〈x|x〉+ 〈y|y〉

)
,

(2)
and J is any subset J ⊂ {1, · · · ,M}.

Proof. The proof for J = {1, · · · ,M} can be found in [2].
The result also follows for arbitrary subset J by noting that,
in the proof, the term:

H

[
〈Ei|Ei〉

〈Ei|Ei〉+ 〈Fi|Fi〉

]
−H [λ(|Ei〉 , |Fi〉)]

is the result of computing the conditional entropy of a
classical-quantum state which is known to be always non-
negative.

B. Semi-Quantum Cryptography and Related Work

Since the framework’s introduction in 2007 by Boyer et al.,
[1], [10], numerous SQKD protocols have been proposed [1],
[10]–[16] (just to list a few), some with information theoretic
proofs of security [2], [17], [18]. Often one is interested
in removing requirements on one or both users while still
attempting to attain security against an all-powerful adversary -
this is to study the effects of these resources and abilities on the
secure communication rate of the resulting protocol. However,
no prior SQKD protocols allow for the smooth transition from
a purely classical protocol to a semi-quantum one.

An SQKD protocol requires a two-way quantum channel,
allowing a qubit to travel from A to B (the forward direction)
and return from B to A (the reverse direction). A, the fully
quantum user, is allowed to prepare any arbitrary quantum
state and send it to the “classical” user B, who is allowed
only to directly work with the Z basis. In more detail, on
receiving a qubit, B may choose to do one of two operations:



1) Measure and Resend: If he chooses this option, he
performs a Z basis measurement on the qubit, resulting
in outcome |r〉, for r ∈ {0, 1}. He then resends the same
state |r〉 to A. Note that he can only measure and prepare
qubits in this single basis.

2) Reflect: In this case, B disconnects from the quantum
channel and reflects all qubits back to A. If this is
chosen, A is, essentially, communicating with herself.

When a qubit returns to A, she is allowed to perform any
quantum operation on it. Note that, under this scenario, Eve
is allowed two opportunities to attack every qubit.

II. THE PROTOCOL

Our protocol, being a semi-quantum one, requires a two-
way quantum channel and forces B to be “classical” in nature
as described in the previous section. We also place additional
restrictions on the quantum user A. On each iteration of the
quantum communication stage, A is allowed to send only one
of two possible states: either |0〉 or |a〉 = α |0〉+β |1〉, where
α ≥ 0 is a public, user-specified, parameter and β =

√
1− α2.

Bob is the classical user - as such, on receipt of a qubit from
A, he may only directly interact with it through the Z basis (by
choosing Measure and Resend), or he may simply ignore
the qubit and reflect it back to A (by choosing Reflect).

When a qubit returns to A, she will perform a measurement
using the three-outcome POVM Λ = {Λ0,Λa,Λ?} defined:
Λ0 = p |0〉 〈0| , Λa = p |a〉 〈a| , and where Λ? = I −Λ0−Λ1.
The parameter p, which is another public constant, must be
chosen to ensure Λ? ≥ 0. Furthermore, A wishes to maximize
p so that the probability she receives the indeterminate out-
come “?” is minimized. Some algebra reveals that the maximal
p that satisfies this is p ≤ 1

1+α . Note that, in this work, where
we only consider the asymptotic scenario, the actual choice of
p is not that important so long as 0 < p ≤ 1

1+α . In a finite
key analysis, this choice of p would be much more important,
but we leave this as future work.

Notice that, when α = 0, the protocol “collapses” to a
purely classical communication system where A sends |0〉 and
|1〉 only and where she is always measuring in the Z basis
(since p approaches 1 as α decreases and so Λ0 = |0〉 〈0|,
Λa = |1〉 〈1| , and Λ? ≡ 0). Of course, B is classical regardless
of the choice of α since he is only able to measure and
send in the Z basis (or disconnect from the quantum channel,
thus causing A to simply “talk to herself”). For α > 0, the
protocol is inherently quantum - but the question is, how far
from classical (α = 0) must the communication be before we
start attaining secure communication? Our protocol in detail
is described in Protocol 1.

The reader will observe that, for α > 0, our protocol always
has some noise in the raw key, even when no adversary is
present! Indeed, unless the protocol is purely classical (α = 0),
the classical user B will be unable to determine exactly the
information that A is trying to send. The issue is exacerbated
when an adversary comes into play (adding additional noise).
As mentioned in the introduction, the protocol is purely a
theoretical one studied for its theoretical interest to help study

Protocol 1 α-SQKD
Public, User-Defined, Parameters: α, the level of “quantum-
ness” of the protocol; p ∈ (0, 1/(1+α)], the POVM parameter
as discussed in the text; q ∈ (0, 1), the probability that B
chooses Measure and Resend on any particular iteration
(in the asymptotic scenario, which we consider in this work,
this value may be set arbitrarily close to 1 as is done for other
(S)QKD protocols to improve efficiency [17], [19]).

Quantum Communication Stage: The quantum communi-
cation stage repeats the following process using the two-way
quantum channel and the authenticated classical channel:

1. A chooses a bit kA uniformly at random. If kA = 0, she
sends |0〉 to B; otherwise she sends |a〉 = α |0〉+β |1〉, where
β =
√

1− α2.
2. B chooses randomly to Measure and Resend (with
probability q) or to Reflect (with probability 1− q). If he
chooses Measure and Resend, he will save his measure-
ment result as kB ∈ {0, 1}.
3. Finally, with probability q, A will simply discard the qubit;
otherwise, she will measure using POVM Λ, as discussed in
the text, saving the outcome (which is one of “0,” “a,” or “?”).
4. Using the authenticated classical channel, B will disclose
his choice of operation (either Measure and Resend or
Reflect) and A will disclose whether she chose to mea-
sure or not. For all iterations where A chose to measure
the returning qubit, A will send to B her preparation and
measurement outcomes (these iterations will be used only
to test the quantum channel and not for key distillation).
For all other iterations (where A did not measure) and if B
chose Measure and Resend, then A and B will use their
respective kA and kB values to contribute towards their raw
key.

Classical Reconciliation Stage: Following the quantum com-
munication stage, assuming the channel noise is low enough
(to be discussed), A and B will run error correction and
privacy amplification, resulting in a secret key.

the “gap” between classical and quantum communication. We
do not expect this protocol to ever be implemented in practice
(unless some faulty hardware forces this protocol to be used).
Note that we are also not concerned with practical attacks
such as photon loss or multi-photon states [3], [20], [21] -
though interesting, these issues are outside the scope of this
theoretical analysis.

We are interested in two questions: Given an observed noise
level Q, for what α is the protocol secure? Of course when
α = 0, the protocol will never be secure. Secondly, what is
an optimal choice of α? That is, how “far” from the classical
case of α = 0 must the communication be to optimize the
secure transfer of information between A and B when faced
with a quantum adversary E.



III. SECURITY ANALYSIS

Our goal in this section is to compute our protocol’s key-rate
(specifically S(A|E)) as a function of α and those observable
parameters that A and B may measure in the channel (which
are very few). We begin by deriving a density operator descrip-
tion of a single “successful” iteration of the protocol (where by
“successful” we mean an iteration leading to the distillation of
a raw key bit). For now we assume collective attacks whereby
Eve attacks each iteration in an i.i.d. manner. In this case, as
shown in [22], for SQKD protocols, it suffices to only prove
security against so-called restricted collective attacks. These
restricted attacks consist of an isometry F : HT → HT ⊗HE
applied in the forward channel (connecting A to B) and a
unitary operator UR applied in the reverse channel and acting
on HT ⊗HE . Here we use HT to denote the two-dimensional
space modeling the qubit in transit and HE is Eve’s ancilla.
The action of F is simply:

F |0〉T = q0 |0, 0〉TE + q1 |1, e〉TE (3)
F |1〉T = q2 |0, f〉TE + q3 |1, 0〉TE ,

where qi ∈ R≥0 subject to q2
0 + q2

1 = q2
2 + q2

3 = 1 and where
|e〉 and |f〉 are arbitrary, normalized, vectors in HE . There are
some additional restrictions that may be made on this attack
(in particular |e〉 and |f〉 may exist with a two-dimensional
subspace of HE spanned by |0〉E and a second basis vector);
however, this notation is sufficient for the discussion at hand.
For further information on the restricted attack, and the proof
that security against such attacks implies security against
arbitrary collective attacks, the reader is referred to [22]. Note
that, by linearity of F , we also have the following:

F |a〉 = |0〉T ⊗ (q0α |0〉E + q2β |f〉E) (4)
+ |1〉T ⊗ (q1α |e〉E + q3β |0〉E).

To build the desired density operator, we trace the evolution
of an iteration of the protocol. Following A’s preparation
(randomly sending |0〉 or |a〉), and Eve’s first attack F , and
after B measures in the Z basis (recall, we are currently only
interested in a key-distillation iteration and so we condition
on the event that B chooses Measure and Resend), the
joint state is found to be:

1

2
[0]A ⊗ ([0]B ⊗ q

2
0 [0,0]TE + [1]B ⊗ q

2
1 [1, e]TE)

+
1

2
[1]A ⊗ ([0]B ⊗ P (q0α |0, 0〉TE + q2β |0, f〉TE)

+ [1]B ⊗ P (q1α |1, e〉TE + q3β |1, 0〉TE)),

where P (|z〉) = [z] = |z〉 〈z|. Following this, the qubit returns
to A; however, before arriving, Eve has a second opportunity to
attack using operator UR. We write the action of UR abstractly
as:

UR |0, 0〉TE = |0, e0〉+ |1, e1〉 UR |1, 0〉 = |0, e2〉+ |1, e3〉
(5)

UR |1, e〉TE = |0, f0〉+ |1, f1〉 UR |0, f〉 = |0, f2〉+ |1, f3〉 .

Above, the states |ei〉 and |fi〉 are arbitrary states in HE
(though, unitarity of UR imposes some restrictions on them
which will be important momentarily).

Following the application of this attack, the qubit returns to
A who simply discards it (recall, we are conditioning on an
iteration that leads to a raw-key bit). Thus, we may simply
trace out the Transit space following the application of UR.
The final density operator, therefore, is found to be:

ρABE =
1

2
[0]A ⊗ ([0]B ⊗ q

2
0([e0] + [e1]) (6)

+ [1]B ⊗ q
2
1([f0] + [f1]))

+
1

2
[1]A ⊗ ([0]B ⊗ [P (q0α |e0〉+ q2β |f2〉)

+ P (q0α |e1〉+ q2β |f3〉)])

+
1

2
[1]A ⊗ ([1]B ⊗ [P (q1α |f0〉+ q3β |e2〉)

+ P (q1α |f1〉+ q3β |e3〉)]).

To clean up the notation, we define the following vectors:

|g0〉 = q1α |f1〉+ q3β |e3〉 |g1〉 = q1α |f0〉+ q3β |e2〉
|g2〉 = q0α |e1〉+ q2β |f3〉 |g3〉 = q0α |e0〉+ q2β |f2〉

From this, we may then use Theorem 1 to derive the following
lower-bound:

S(A|E)ρ ≥
q2
0 〈e0|e0〉+ 〈g0|g0〉

2
(7)

×
(
H

[
q2
0 〈e0|e0〉

q2
0 〈e0|e0〉+ 〈g0|g0〉

]
−H [λ(q0 |e0〉 , |g0〉)]

)

+
q2
0 〈e1|e1〉+ 〈g1|g1〉

2

×
(
H

[
q2
0 〈e1|e1〉

q2
0 〈e1|e1〉+ 〈g1|g1〉

]
−H [λ(q0 |e1〉 , |g1〉)]

)

+
q2
1 〈f0|f0〉+ 〈g2|g2〉

2

×
(
H

[
q2
1 〈f0|f0〉

q2
1 〈f0|f0〉+ 〈g2|g2〉

]
−H [λ(q1 |f0〉 , |g2〉)]

)

+
q2
1 〈f1|f1〉+ 〈g3|g3〉

2

×
(
H

[
q2
1 〈f1|f1〉

q2
1 〈f1|f1〉+ 〈g3|g3〉

]
−H [λ(q1 |f1〉 , |g3〉)]

)
.

Though, by setting J = {0} from the theorem, we also have
the following (weaker) lower-bound:

S(A|E)ρ ≥
q2
0 〈e0|e0〉+ 〈g0|g0〉

2
(8)

×
(
H

[
q2
0 〈e0|e0〉

q2
0 〈e0|e0〉+ 〈g0|g0〉

]
−H [λ(q0 |e0〉 , |g0〉)]

)
.

It is this lower-bound we will actually consider. To compute
S(A|E) (giving us the key-rate), we need to compute, or



bound, the inner-products appearing in the above expression,
based only on statistics we may observe.

Note that q0 and q1 are both observable parameters. Indeed,
let pA→B0,i be the probability that B measures |i〉 (for i ∈
{0, 1}) if A initially sent |0〉. This is one of the few statistics A
and B actually can estimate and is, in fact, the only observable
noise statistic in the forward channel (they cannot measure, for
example, pA→B1,i when α > 0). It is not difficult to see, from
Equation 3, that q2

0 = pA→B0,0 and q2
1 = pA→B0,1 . Note that, by

definition of the restricted attack, it is sufficient to consider
non-negative qi [22].

As mentioned, the users cannot directly observe q2 and
q3. However, they can estimate it by considering pA→Ba,1 , the
probability that B measures |1〉 if A initially sent |a〉 (this is
something that may be observed). Note that, from Equation 4,
we have:

pA→Ba,1 = ||q1α |e〉+ q3β |0〉 ||2

= q2
1α

2 + q2
3β

2 + 2q1q3αβRe 〈0|e〉

= pA→B0,1 α2 + q2
3β

2 + 2
√
pA→B0,1 q3αβRe 〈0|e〉 . (9)

Of course, | 〈0|e〉 | ≤ 1. We are constrained by the fact that
q3 ≥ 0 (since, for the restricted attack, each qi are non-negative
real numbers [22]). We therefore have the following solution
for q3, looking for the smallest positive root of the above
quadratic equation, assuming pA→Ba,1 ≥ α2pA→B0,1 (which it will
be in our evaluations):

1 ≥ q3 ≥
1

β

(√
pA→Ba,1 − α

√
pA→B0,1

)
. (10)

We therefore have values, or bounds, for all qi (note
that q2 =

√
1− q2

3). It is clear that we may observe
〈e0|e0〉 , 〈e1|e1〉 , 〈f0|f0〉, and 〈f1|f1〉. Indeed, let pA→Ai,j,k de-
note the probability that A’s measurement observes “k”
conditioned on the event A initially sent |i〉 and B chose
Measure and Resend and actually observed |j〉. Of
course, i ∈ {0, a}, j ∈ {0, 1} and k ∈ {0, a, ?}. It is
not difficult to see, then, that pA→A0,0,0 = p · 〈e0|e0〉 where
p is the POVM parameter as described in Protocol 1; as
discussed, we assume p > 0. By unitarity we also have
〈e1|e1〉 = 1− 〈e0|e0〉. Similarly, we have pA→A0,1,0 = p · 〈f0|f0〉
and 〈f1|f1〉 = 1− 〈f0|f0〉. To simplify notation, at this point
we will assume a symmetric attack and define the following:

pA→A0,0,0 = p · (1−QR) ⇒ 〈e0|e0〉 = 1−QR
⇒ 〈e1|e1〉 = QR

pA→A0,1,0 = p ·QR ⇒ 〈f0|f0〉 = QR

⇒ 〈f1|f1〉 = 1−QR.

(Note we use QR to denote the noise in the Reverse channel,
from B to A.)

This assumption that the observable noise is symmetric
in this manner (which may be enforced by A and B and
is a common assumption in (S)QKD security proofs) is not
necessary, and our analysis below follows without it; we only
use this to simplify notation. Note that, if there is no noise

in the forward channel (in which case pA→A0,1,0 is technically
undefined since we are conditioning on an event which never
occurs), then 〈f0|f0〉 and 〈f1|f1〉 never show up in any of our
computations and so we may define pA→A0,1,0 arbitrarily; thus we
assume pA→A0,1,0 = p ·QR in this case regardless.

We also claim 〈gi|gi〉 may be observed. Consider the case
that A sends |a〉, B chooses Measure and Resend and
observes |0〉. From Equation 4, we see the state collapses to:

|0〉 (q0α |0〉E + q2β |f〉E)√
pA→Ba,0

.

After Eve attacks the returning qubit, the state is found to be
(before A measures):

|0, g3〉+ |1, g2〉√
pA→Ba,0

.

Then, it follows that when A measures we have: pA→Aa,0,0 = p ·
〈g3|g3〉 /pA→Ba,0 . Furthermore, due to unitarity of Eve’s attack,
it holds that 〈g2|g2〉+ 〈g3|g3〉 = pA→Ba,0 . Repeating the above
analysis conditioning on B observing |1〉, we conclude:

〈g3|g3〉 =
pA→Ba,0 pA→Aa,0,0

p
= pA→Ba,0 (1−QR) (11)

〈g2|g2〉 = pA→Ba,0

(
1−

pA→Aa,0,0

p

)
= pA→Ba,0 QR

〈g1|g1〉 =
pA→Ba,1 pA→Aa,1,0

p
= pA→Ba,1 QR

〈g0|g0〉 = pA→Ba,1

(
1−

pA→Aa,1,0

p

)
= pA→Ba,1 (1−QR).

Note that, above, we assumed pA→Ba,0,0 = p · (1 − QR) and
pA→Ba,1,0 = p ·QR. This symmetry assumption (which also may
be enforced by the users) is not necessary but only done
to simplify our notation. Also, as before, if, for instance,
pA→Ba,1 = 0, then |g0〉 and |g1〉 technically never appear in
ρ and so they may be arbitrary; in this case we may simply
define pA→Aa,1,0 = p ·QR. Similarly for the case if pA→Ba,0 = 0.

Finally, to compute our bound on S(A|E), we will also
need to compute the inner product appearing in the λ function,
namely Re2 〈e0|g0〉. As we are interested in the worst-case,
we actually want to find a lower-bound on this inner-product
(which, as can be seen from Equation 2, minimizes S(A|E)).
It is not difficult to see that:

Re2 〈e0|g0〉 = (q1α 〈e0|f1〉+ q3β 〈e0|e3〉)2 (12)

≥
[
max

(
0, q3β 〈e0|e3〉 − q1α

√
〈e0|e0〉 〈f1|f1〉

)]2
≥
[
max

(
0, q3β 〈e0|e3〉 − α

√
pA→B0,1 (1−QR)

)]2
,

where, above, we used the fact that | 〈e0|f1〉 | ≤√
〈e0|e0〉 〈f1|f1〉.



We thus reduced the problem to bounding 〈e0|e3〉. To attain
this, we must look at several more statistics. First, consider
〈g1|g1〉 = pA→Ba,1 pA→Aa,1,0 /p. Expanding 〈g1|g1〉 yields:

pA→Ba,1 pA→Aa,1,0

p
= q2

1α
2 〈f0|f0〉+ q2

3β
2 〈e2|e2〉

+ 2q1q3αβRe 〈f0|e2〉 .

⇒q2
3β

2
(√
〈e2|e2〉

)2

+ 2q1q3αβ
√
QR
√
〈e2|e2〉 cos θ

+ q2
1α

2QR − pA→Ba,1 pA→Aa,1,0 /p = 0.

Above, we used the fact that Re 〈f0|e2〉 =√
〈e2|e2〉

√
〈f0|f0〉 cos θ =

√
〈e2|e2〉

√
QR cos θ, for some θ

(this follows from the Cauchy-Schwarz inequality). Solving
the above quadratic, and taking the maximal root over all θ
(note that 〈e2|e2〉 represents the probability of a |1〉 flipping
to a |0〉, however this noise value is not observable and so we
can only bound it based on values we can observe), we find:√

〈e2|e2〉 ≤
1

q3β

(
q1α
√
QR +

√
pA→Ba,1 pA→Aa,1,0 /p

)
(13)

=
1

q3β

(
q1α
√
QR +

√
pA→Ba,1 QR

)
Similarly, we can bound 〈f3|f3〉 by considering 〈g2|g2〉 =
pA→Ba,0 QR. Solving the resulting quadratic, we find:√

〈f3|f3〉 ≤
1

q2β

(
q0α
√
QR +

√
pA→Ba,0 QR

)
. (14)

We now have upper-bounds on the “hidden” noise of the
channel.

Next, let us consider the statistic pA→Aa,R,a which we use
to denote the probability that, conditioning on the event A
sends |a〉, B chooses to Reflect, and A chooses to measure
using POVM Λ (see Protocol 1), that the outcome of this
measurement is “a”.

It is straight-forward (though slightly tedious) algebra, to
find that:

URF |a〉 = |a〉 (|Va,0,a〉+ |Va,1,a〉) + |ā〉 |Eā〉 , (15)

where:

|Va,0,a〉 = q0α
2 |e0〉+ q2αβ |f2〉+ q0αβ |e1〉+ q2β

2 |f3〉
(16)

|Va,1,a〉 = q1α
2 |f0〉+ q3αβ |e2〉+ q1αβ |f1〉+ q3β

2 |e3〉 ,
(17)

and where |Eā〉 is a sub-normalized vector in HE , the exact
state of which may be found by tracing the action of linear
operator URF , though its state is irrelevant to our discussion.
From this, we find:

pA→Aa,R,a = p|| |Va,0,a〉+ |Va,1,a〉 ||2

= p(〈Va,0,a|Va,0,a〉+ 〈Va,1,a|Va,1,a〉+ 2Re 〈Va,0,a|Va,1,a〉).
(18)

At this point, we must consider additional mismatched
measurements. Consider pA→Aa,0,a which we use to denote the

probability that, conditioning on A sending |a〉, B choosing
Measure and Resend and actually observing |0〉, and
A choosing to measure, that she receives outcome “a”. To
compute this probability, we trace the evolution of the qubit
as it travels:

|a〉 → |0〉 (q0α |0〉+ q2β |f〉)√
pA→Ba,0

→ q0α(|0, e0〉+ |1, e1〉) + q2β(|0, f2〉+ |1, f3〉)√
pA→Ba,0

=
|a〉 |Va,0,a〉√

pA→Ba,0

+ |ā〉 |E′〉E ,

where |E′〉E is some irrelevant, sub-normalized, state in E’s
ancilla. Note that, from the above expression, the choice of
notation for |Va,0,a〉 is clear and we find:

pA→Aa,0,a = p· 〈Va,0,a|Va,0,a〉
pA→Ba,0

⇒ 〈Va,0,a|Va,0,a〉 =
pA→Ba,0 pA→Aa,0,a

p
.

(19)
Repeating the above but considering the event when B ob-
serves |1〉, we find:

〈Va,1,a|Va,1,a〉 =
pA→Ba,1 pA→Aa,1,a

p
. (20)

Substituting this into Equation 18 and also expanding
Re 〈Va,0,a|Va,1,a〉, we find:

pA→Aa,R,a = pA→Ba,0 pA→Aa,0,a + pA→Ba,1 pA→Aa,1,a (21)

+ 2p ·Re(q0q1α
4 〈e0|f0〉+ q0q3α

3β 〈e0|e2〉)
+ 2p ·Re(q0q1α

3β 〈e0|f1〉+ q0q3α
2β2 〈e0|e3〉)

+ 2p ·Re(q1q2α
3β 〈f0|f2〉+ q2q3α

2β2 〈e2|f2〉)
+ 2p ·Re(q1q2α

2β2 〈f1|f2〉+ q2q3αβ
3 〈e3|f2〉)

+ 2p ·Re(q0q1α
3β 〈e1|f0〉+ q0q3α

2β2 〈e1|e2〉)
+ 2p ·Re(q0q1α

2β2 〈e1|f1〉+ q0q3αβ
3 〈e1|e3〉)

+ 2p ·Re(q1q2α
2β2 〈f0|f3〉+ q2q3αβ

3 〈e2|f3〉)
+ 2p ·Re(q1q2αβ

3 〈f1|f3〉+ q2q3β
4 〈e3|f3〉).

(Note that, above, we used the fact that Re 〈x|y〉 = Re 〈y|x〉.)
We may simplify the above equation slightly by taking advan-
tage of the unitarity of UR. Namely, we have the following
restrictions (see Equation 5):

〈e0|e2〉+ 〈e1|e3〉 = 0 〈f0|f2〉+ 〈f1|f3〉 = 0

〈e0|f0〉+ 〈e1|f1〉 = 0 〈e2|f2〉+ 〈e3|f3〉 = 0.

Using this, Equation 21 becomes:

pA→Aa,R,a = pA→Ba,0 pA→Aa,0,a + pA→Ba,1 pA→Aa,1,a (22)

+ 2p ·Re(q0q1[α4 − α2β2] 〈e0|f0〉)
+ 2p ·Re(q0q3[α3β − αβ3] 〈e0|e2〉)
+ 2p ·Re(q1q2[α3β − αβ3] 〈f0|f2〉)
+ 2p ·Re(q2q3[α2β2 − β4] 〈e2|f2〉)
+ 2p ·Re(q0q3α

2β2[〈e0|e3〉+ 〈e1|e2〉])



+ 2p ·Re(q0q1α
3β[〈e0|f1〉+ 〈e1|f0〉])

+ 2p ·Re(q1q2α
2β2[〈f0|f3〉+ 〈f1|f2〉])

+ 2p ·Re(q2q3αβ
3[〈e2|f3〉+ 〈e3|f2〉]).

Consider the following inner-product:

Re 〈g1|g3〉 = q0q1α
2Re 〈e0|f0〉+ q1q2αβRe 〈f0|f2〉

+ q0q3αβRe 〈e0|e2〉+ q2q3β
2Re 〈e2|f2〉 .

Then the above equation for pA→Aa,R,a simplifies to:

pA→Aa,R,a = pA→Ba,0 pA→Aa,0,a + pA→Ba,1 pA→Aa,1,a (23)

+ 2p(α2 − β2)Re 〈g1|g3〉
+ 2p ·Re(q0q3α

2β2[〈e0|e3〉+ 〈e1|e2〉])
+ 2p ·Re(q0q1α

3β[〈e0|f1〉+ 〈e1|f0〉])
+ 2p ·Re(q1q2α

2β2[〈f0|f3〉+ 〈f1|f2〉])
+ 2p ·Re(q2q3αβ

3[〈e2|f3〉+ 〈e3|f2〉]).

Solving for the term involving Re 〈e0|e3〉 (which is the quan-
tity we are currently interested in bounding) yields:

q0q3α
2β2Re 〈e0|e3〉 (24)

=
1

2p
(pA→Aa,R,a − pA→Ba,0 pA→Aa,0,a − pA→Ba,1 pA→Aa,1,a )

− (α2 − β2)Re 〈g1|g3〉 − χ

where:

χ = Re(q0q1α
3β[〈e0|f1〉+ 〈e1|f0〉])

+Re(q0q3α
2β2 〈e1|e2〉)

+Re(q1q2α
2β2[〈f0|f3〉+ 〈f1|f2〉])

+Re(q2q3αβ
3[〈e2|f3〉+ 〈e3|f2〉]).

A and B do not have sufficient quantum capabilities to fully
bound χ; however we can bound it based on what we already
know and using the Cauchy-Schwarz inequality, namely:

|χ| ≤ q0q1α
3β[(1−QR) +QR] (25)

+ q0q3α
2β2
√
QR 〈e2|e2〉

+ q1q2α
2β2
√
QR 〈f3|f3〉

+ q1q2α
2β2
√

(1−QR)(1− 〈f3|f3〉)
+ q2q3αβ

3
√
〈e2|e2〉 〈f3|f3〉

+ q2q3αβ
3
√

(1− 〈e2|e2〉)(1− 〈f3|f3〉).

(Note that, above, we used the fact that 〈e3|e3〉 = 1− 〈e2|e2〉
and 〈f2|f2〉 = 1 − 〈f3|f3〉.) Upper-bounds on 〈e2|e2〉 and
〈f3|f3〉 were already derived in Equations 13 and 14.

Finally, we claim A and B can observe Re 〈g1|g3〉 by
considering the statistic pA→Aa,R,0 ; that is, the probability that
A’s measurement produces outcome “0” conditioned on the
event she initially sent |a〉 and B chose Reflect. Indeed,
tracing the qubit in this case, it is not difficult to see that:

URF |a〉 = |0〉 (|g1〉+ |g3〉) + |1〉 (|g0〉+ |g2〉),

from which we attain:

pA→Aa,R,0 = p|| |g1〉+ |g3〉 ||2

= p(〈g1|g1〉+ 〈g3|g3〉+ 2Re 〈g1|g3〉)

⇒ Re 〈g1|g3〉 =
1

2

(
pA→Aa,R,0

p
− 〈g1|g1〉 − 〈g3|g3〉

)
. (26)

Since 〈gi|gi〉 are all observable (see Equation 11), this com-
pletes our bound.

This completes our lower-bound on S(A|E). To summarize,
given as input α along with those observable statistics as
utilized above, one must simply minimize Equation 8 over
all q3, 〈e2|e2〉, and 〈f3|f3〉, as enforced by Equations 10,
13, and 14. For any particular choice of these values, one
may compute a bound on χ from Equation 25; one may also
compute a bound on Re 〈e0|e3〉 using Equation 24. This then
allows one to bound Re2 〈e0|g0〉, using Equation 12 which
gives a possible value of S(A|E). Minimizing over 〈e2|e2〉,
〈f3|f3〉, and q3 gives a worst-case lower-bound on S(A|E)
over all attacks which induce the observed statistics. This is
a simple minimization problem allowing one to evaluate the
key-rate numerically.

Note that if α = 0 (i.e., the protocol is classical), then
it is easy to check that Equation 24 becomes simply 0 = 0,
regardless of the choice of 〈e0|e3〉 (i.e., Eve may set this inner-
product arbitrarily and Equation 24 will be satisfied). It is also
clear that 〈e0|g0〉 = q3 〈e0|e3〉. Thus, Eve may set 〈e0|e3〉 = 0
in this case resulting in the entropy S(A|E) = 0 as expected.
That is, in the classical case, Eve has no uncertainty on A and
B’s raw key and so the protocol is insecure. The interesting
question is what happens when α > 0?

To finish the key-rate computation (and answer this ques-
tion), we also need H(A|B), however this value is easily
found:

H(A|B) (27)

= H

(
q2
0

2
,
q2
1

2
,
〈g0|g0〉+ 〈g1|g1〉

2
,
〈g2|g2〉+ 〈g3|g3〉

2

)
−H

(
q2
0 + 〈g2|g2〉+ 〈g3|g3〉

2

)

= H

(
pA→B0,0

2
,
pA→B0,1

2
,
pA→Ba,1

2
,
pA→Ba,0

2

)

−H

(
pA→B0,0 + pA→Ba,0

2

)
thus completing the key-rate computation.

IV. EVALUATION

To evaluate our protocol, and more importantly to see the
effect of α on the secure key-rate, we must put values to
those observable statistics pA→B·,· and pA→A·,·,· . We will assume
a symmetric attack parameterized by noise values QF (in the



forward channel), QR (in the reverse), and QX (for the “loop”
channel when B reflects), where:

pA→B0,0 = 1−QF pA→B0,1 = QF

pA→A0,0,0 /p = 1−QR pA→A0,1,0 /p = QR

pA→Aa,0,0 /p = 1−QR pA→Aa,1,0 /p = QR

pA→Aa,R,a/p = 1−QX .

and where p = 1
1+α , the maximal allowed value as discussed

earlier.
To put values to the mismatched events, we model the

channel as a depolarization channel, a common approach when
evaluating (S)QKD protocols. This is not a requirement of our
security proof of course, simply a way to put realistic (i.e.,
physically realizable) numbers to the observable parameters in
order to evaluate the key-rate. A depolarization channel with
parameter Q is simply the map:

EQ(ρ) = (1− 2Q)ρ+Q · I.

From this, we find:

pA→Ba,0 = (1− 2QF )α2 +QF

pA→Ba,1 = (1− 2QF )β2 +QF

pA→Aa,0,a /p = (1− 2QR)α2 +QR

pA→Aa,1,a /p = (1− 2QR)β2 +QR

pA→Aa,R,0/p = (1− 2QZ)α2 +QZ .

As expected, the noise tolerance of this protocol is low,
however we are able to attain positive key-rates as shown in
Figures 1, 2, and 3. It is clear from these figures that the
forward channel noise is the most important statistic - indeed,
as shown in Figure 1, the protocol can tolerate a high level
of reverse and “loop” noise (approaching 10%). However, as
shown in Figure 3, if the forward channel increases too much
(even by a small amount), there are only a few choices for α
where a positive key-rate can be attained (and that key-rate is
still low). Unless the reverse channel noise is very large, the
optimal choice for α ranged between 0.175 and 0.2 for those
evaluations we performed. For small QF and high QR and
QX , as in Figure 1, the optimal value of α is slightly lower,
ranging between 0.13 and 0.16.

Despite the low noise tolerance, we still consider this a
positive, and interesting, result as this protocol was designed
specifically to smoothly transform from classical to quantum
communication and to allow research in investigating how this
affects secure communication. Of course, our key-rate is a
lower bound, so the actual security rate can only be higher.
Further studying this would make interesting future work.

V. COMMENTS ON FURTHER RESTRICTIONS

One natural question for future work is: can the require-
ments of this protocol be reduced even further? That is, can A
have even more restrictions placed on her quantum abilities?
One clear direction is to attempt to remove A’s POVM and
replace it with a single basis measurement, measuring in the

Fig. 1. Key-rate when the forward channel noise is close to zero (10−5) and
the reverse and loop noise levels are high. We see that the forward channel
noise is the most critical for this protocol.

Fig. 2. Key-rate for low forward channel noise (though higher than Figure
1) and increasing reverse and loop noise.

Fig. 3. Key-rate when the forward channel noise is increased - only a small
window of α values exist in this case when the protocol attains a positive
key-rate.



Fig. 4. An intercept-resend attack against an even more restricted protocol
than the one we analyzed here. This attack induces no observable noise in
the quantum channel; Eve simply measures in the same basis that A will. If
she observes |a〉, she will guess that the raw key is 1; otherwise she guesses
it is 0 (for α = 0 this gives Eve full information).

A = {|a〉 , |ā〉} basis (where 〈ā|a〉 = 0). However, this
removes certain key statistics that we relied on in our security
proof. While we attempted to analyze this protocol, a full
security proof remains elusive.

We do, however, conjecture that this even more restricted
protocol is secure. To provide at least some evidence in support
of this, we were able to analyze a particular intercept-resend
attack and show that the protocol is secure against this. The
attack we consider is one which induces no additional noise
in the channel (that is, it is undetectable). To remain hidden
from A and B, Eve simply measures the reverse channel in
the A basis (the same basis A uses, thus E will have the
same information as A does from the reverse channel - but,
importantly, not the forward channel). If this measurement
results in outcome |a〉, E guesses the raw key bit is 1;
otherwise she guesses it is 0 (note that if α = 0 this guess is
always correct and so, in that case, the protocol is insecure as
expected). We compute the values pAEi,j for i, j ∈ {0, 1} which
we use to denote the probability that A’s raw key bit is i and
E’s guess is j assuming she uses this attack. From this we
can compute the key-rate equation for any α.

The attack schematic is shown in Figure 4; the key-rate for
various α is shown in Figure 5. We notice that the key-rate is
positive for all α ∈ (0, 1) (of course it is insecure if α = 0 or
1). The optimal choice for α in this event is α = 0.5 (contrast
this with the “full” protocol we analyzed in this paper where
the optimal was usually around 0.2). Also note the asymmetry
in the key-rate graph.

Of course this is only showing some evidence that this
further restriction (i.e., removing A’s ability to use POVM Λ
as we considered in our protocol in this work) may result in
a secure protocol. A complete analysis we leave as interesting
future work.

VI. CLOSING REMARKS

In this paper, we developed a new SQKD protocol with
a tuneable parameter α allowing one to gauge the effect of
the secure communication rate, based on “how quantum” the

Fig. 5. Showing how the parameter α affects this further restricted protocol’s
key-rate r (where POVM Λ is replaced with only a single basis measurement)
when E uses the intercept-resend attack discussed in the text. Note the slight
asymmetry in the graph.

protocol is. When α is set to zero, the communication is purely
classical and thus the protocol is insecure. As α increases,
security can be attained for certain optimal choices and for
certain channels. Studying the protocol further may help to
shed light on the “gap” between quantum and classical secure
communication. Furthermore, our proof approach may be
applicable to other (S)QKD protocols where users are highly
restricted in their quantum capabilities (either intentionally or
due, perhaps, to hardware faults).

Many interesting future problems remain open. Obviously
the noise tolerance of our protocol is very low - though,
we stress that we are only interested in this protocol from a
theoretical perspective and in discovering when, or even if, this
protocol can be secure (and our answer is in the affirmative).
However, it would be interesting to try to improve on this.
Our bound may be improved by attempting to bound all terms
appearing in Equation 7 (we only used the lower bound from
Equation 8). Other mismatched statistics may help here. Also,
studying the effect of α against different forms of attacks
(e.g., practical intercept-resend attacks) may also be highly
beneficial and interesting.

Another interesting question is whether we can reduce the
resource requirements of the users even further. As commented
on in the previous section, we attempted to analyze the case
where A’s measurement capabilities are further reduced than
what we used in this paper; so far, however, a full proof of
security in that case remains an open problem.
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