
Coded Matrix Multiplication
on a Group-Based Model

Muah Kim
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

02mu-a21@kaist.ac.kr

Jy-yong Sohn
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

jysohn1108@kaist.ac.kr

Jaekyun Moon
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

jmoon@kaist.edu

Abstract—Coded distributed computing has been considered as
a promising technique which makes large-scale systems robust
to the “straggler" workers. Yet, practical system models for
distributed computing have not been available that reflect the
clustered or grouped structure of real-world computing servers.
Neither the large variations in the computing power and band-
width capabilities across different servers have been properly
modeled. We suggest a group-based model to reflect practical
conditions and develop an appropriate coding scheme for this
model. The suggested code, called group code, employs parallel
encoding for each group. We show that the suggested coding
scheme can asymptotically achieve optimal computing time in
regimes of infinite n, the number of workers. While theoretical
analysis is conducted in the asymptotic regime, numerical results
also show that the suggested scheme achieves near-optimal
computing time for any finite but reasonably large n. Moreover,
we demonstrate that the decoding complexity of the suggested
scheme is significantly reduced by the virtue of parallel decoding.

I. INTRODUCTION

In the era of big data, distributed computing has been
recognized as a solution for realizing large-scale machine
learning [1]. Unlike conventional centralized systems, a dis-
tributed computing system divides the computational work into
subtasks and distributes them over multiple nodes. This system
successfully supports large-scale machine learning by reducing
the computing time via parallel computing.

Yet, there is still a room for improvement as the system
is slowed down by the random nature of computing nodes,
where certain nodes are inevitably slower than others. In
particular, the distributed system is shown to be dramatically
degraded by the slowest workers, the “stragglers", whose
computational latency is realized by the tail probability [2].
Lee et al. suggested coded computation as a straggler-proof
scheme, which speeds up matrix multiplication by employing
redundancy with a maximum distance separable (MDS) code
[3]. Afterwards, it is shown that coded computation can
effectively improve the performance of computing system with
regards to: matrix-matrix multiplication [4]–[6], distributed
gradient descent [7], [8], convolution [9], Fourier transform
[10], and matrix sparsification [11], [12]. Moreover, regarding
the matrix multiplication, new models reflecting the practical
environment of computing systems such as the tree structure
and heterogeneity are suggested and analyzed [13], [14].

Figure 1: Computing Network Model: an (n,µ)−group system with
L groups. Group i has ni workers having i.i.d. completion time
distribution with statistical parameter µi for i ∈ [L].

In recent years, distributed cloud computing services such
as Amazon EC2 enable customers to deal with large-scale
computation [15]. The real distributed computing systems
generally adopt the multi-rack structure, where the computing
workers are grouped together in multiple racks [16]–[18].
Moreover, in the real world, the workers’ latency statistics are
heterogeneous due to a mixed use of hardwares with varying
performances or the dynamics of multiple user requests over
shared resources [19]. So far, the homogeneous grouped
structure has been considered in [14], and the heterogeneous
workers without grouped feature has been studied in [13].
However, system solutions which reflect both of the two
practical conditions−grouped structure and heterogeneity (in
terms of number of workers in each group as well as the
bandwidth of the communication links associated with the
groups)−are yet to be established.

A. Main Contributions

We design a group-based computing model as shown in
Fig. 1, where n workers are dispersed into L groups, each
having a different number of nodes and distinct computing
time statistics. We assume that group i has ni nodes, each of
which has a computing time given by an exponential random
variable with rate µi. This is a more practical model than the
existing ones because it resembles the tree-shaped (grouped)
distributed computing systems such as the Hadoop file system
while also considering the heterogeneity of the groups.

ar
X

iv
:1

90
1.

05
16

2v
1

 [
cs

.I
T

]
 1

6
Ja

n
20

19

Considering the scenario of computing k tasks in the
suggested model, we show that an (n, k)−MDS code achieves
the optimal computing time. Yet, this scheme requires a
prohibitive decoding complexity as k increases. In addition,
it is hard to obtain a closed-form expression for the optimal
computing time due to the heterogeneous nature of the model.

To address these issues, we propose a coding scheme called
group code which divides the total k tasks into L partitions and
then employs L distinct MDS codes. We show that a carefully
designed group code can asymptotically achieve the optimal
computing time as n goes to infinity. In addition, the suggested
group code can reduce the decoding complexity down to a
factor of (1

L)β compared to an (n, k)−MDS code, where
β > 1. Furthermore, we obtain a closed-form expression for
the expected optimal computing time, when the number of
workers n goes to infinity.

B. Related Works

Previous works on coded computation either achieves the
optimal computing time with a prohibitive decoding com-
plexity, or reduce the decoding complexity at the sacrifice of
the optimality in computing time. In addition, most of them
assume homogeneous workers. Applying an (n, k)−MDS
code in homogeneous systems is suggested by [3], which
achieves the optimal computing time but requires a huge
decoding complexity as k increases. Considering a system
model with heterogeneous workers, the authors of [13] sug-
gested a coding scheme which achieves an asymptotically
optimal computing time. However, the decoding process re-
quires the computational complexity of O(k3). Moreover,
the coding schemes suggested in [4], [6], [14] encode the
tasks along multiple dimensions, which can effectively reduce
the decoding complexities by the virtue of parallel decoding
or a peeling decoding scheme. However, these codes lose
the MDS property and thereby cannot achieve the optimal
computing time. Besides, these codes do not provide solutions
for practical systems with heterogeneous groups. Compared to
these existing works, our suggested scheme is shown to not
only asymptotically achieve the optimal computing time, but
also requires a low decoding complexity.

C. Notations

Here, we list mathematical notations used in this paper. For
a positive integer n, a set of positive integers less than or
equal to n is denoted by [n] = {1, 2, . . . , n}. For a matrix
A with multiple rows, A = [A1;A2] represents row-wise
division of A, i.e. AT = [AT

1 A
T
2]. We use CG(n,k) to

denote an (n,k)−group code and CMDS(n, k) to denote an
(n, k)−MDS code. The definition of (n,k)−group code is in
Section II-A. We denote the floor, ceil and round functions of
a real value x by bxc, dxe and bxe.

II. SYSTEM MODEL AND TARGET PROBLEM

A. System Model

Consider the n workers that are spread into L groups
as shown in Fig. 1. Here, group i has ni workers whose

!"
!#
!$
!%
!&

(3,2)-MDS code!" = !"
(")

!# = !#
(")

*!"#
*!##
*!$#
*!%(#)

Task Allocation

+" = 2

+# = 3

." = 3

.# = 4

Group 1

Group 2

(4,3)-MDS code

Master *!"
(")

*!#
(")

*!$(")

!$ = !"
(#)

!% = !#(#)

!& = !$(#)

Figure 2: Illustration of (n,k) = ([3, 4], [2, 3])−group code. The
matrix is split into two submatrices following the task allocation
vector k = [2, 3], and then the submatrices are encoded with MDS
code group-wise.

response times are described by i.i.d. random variables with
a parameter of µi. We define this system as an (n,µ)−group
system, where n = [n1, n2, . . . , nL] and µ = [µ1, µ2, . . . , µL].
For simplicity, we call the jth worker in group i as w(i, j)
for i ∈ [L] and j ∈ [ni]. We implement a matrix-vector
multiplication Ax on this system, where A ∈ Rm×d is a work
matrix and x ∈ Rd×1 is an input vector for some positive
integers m and d. Now, the work matrix A is divided into
equal-sized k submatrices as A = [A1;A2; · · · ;Ak], where
k is a positive integer that can divide m, and Ar ∈ Rm

k ×d for
r ∈ [k].

The task of computing Ax is distributed to n workers
as below. First, we define k = [k1, k2, . . . , kL] as a task
allocation vector, where the elements are positive integers sat-
isfying

∑L
i=1 ki = k. The set of submatrices {Ar}kr=1 is now

partitioned into L disjoint subsets {Si}Li=1 such that |Si| = ki
holds for i ∈ [L]. We denote the elements in set Si as Si =

{A(i)
j }

ki
j=1. Afterwards, the ki elements of Si are encoded with

an (ni, ki)−MDS code and we denote the set of ni coded sub-
matrices by S̃i = {Ã(i)

j }
ni
j=1. Worker w(i, j) now stores Ã

(i)
j

and computes Ã
(i)
j x when it receives the input vector x from

the master. We call this coding scheme as an (n,k)−group
code, denoted by CG(n,k). Fig. 2 illustrates an example of
an (n,k)−group code when n = [3, 4] and k = [2, 3]. The
matrix A = [A1;A2; . . . ;A5] is divided into two sets of
submatrices, {A1,A2} and {A3,A4,A5}. Then, by applying
a (3, 2)−MDS code and a (4, 3)−MDS code, respectively,
we obtain {Ã(1)

1 , Ã
(1)
2 , Ã

(1)
3 } and {Ã(2)

1 , Ã
(2)
2 , Ã

(2)
3 , Ã

(2)
4 }.

Each worker individually transmits its computational result
Ã

(i)
j x to the master when its computation is finished. To

obtain the computational output Ax, the master needs at least
ki computational results from each group i to decode the
(ni, ki)−MDS code. Note that this model can be directly
applied to the matrix-matrix multiplication, where the input
vector x is replaced by a matrix B ∈ Rd×c.

We adopt the exponential distribution model for the com-
pletion time of a worker, which is defined as the time taken
for both the computation and the transmission of the computed
result to the master. This model has also been assumed in other
papers on coded computation [4], [14]. Unlike these papers,

however, a worker in group i has the distribution parameter of
µi, where µi varies among different groups. More precisely,
the completion time T (i)

j of worker w(i, j) is defined by its
cumulative distribution function as Pr[T

(i)
j ≤ t] = 1 − ekµit

for time t ≥ 0. Here, the completion time has the rate of
kµi since the number of rows in the submatrix Ar ∈ Rm

k ×d

becomes smaller as k increases.

B. Target Problem

This paper mainly aims at analyzing the total execution
time Texec of (n,k)−group codes, which refers to the entire
time taken for computing and decoding. The computing time
Tcomp is the time taken for the master to gather computational
subtasks from the workers, while the decoding time Tdec is
the time taken to recover the original task of computing Ax
from the gathered subtasks. In this paper, we assume that the
encoding time complexity is negligible compared to Tcomp and
Tdec. This is because we focus on the scenarios of multiplying
varying input vectors with the same work matrix A, which is
encoded once prior to the computation. Thus, we have

Texec(C) = Tcomp(C) + Tdec(C),

when code C is applied to the system.
We focus on analyzing the computing time of (n,k)−group

codes, which is denoted by Tcomp(CG(n,k)). Recall that the
computing time of an (n,k)−group code is equivalent to
the time when every group i has at least ki workers which
finish their tasks. Let T (i)

ki:ni
be the kthi smallest value among

{T (i)
j }

ni
j=1. Then, Tcomp(CG(n,k)) can be expressed as

Tcomp(CG(n,k)) = max(T
(1)
k1:n1

, T
(2)
k2:n2

, . . . , T
(L)
kL:nL

).

Since it is hard to find a closed-form expression for
E[Tcomp(CG(n,k))] when n is finite, we set our main problem
as to obtain the expected value as n goes to infinity, i.e.

Pmain : compute lim
n→∞

E[Tcomp(CG(n,k))].

Here, we assume k = Θ(n) and ni = Θ(n) for i ∈ [L].

III. OPTIMAL COMPUTING TIME ANALYSIS

Here we find the optimal computing time of a given
(n,µ)−group system. Theorem 1 states that applying an
(n, k)−MDS code achieves the optimal computing time. We
consider an (n, k)−MDS code is applied to the k subma-
trices {A1,A2, . . . ,Ak}, resulting in n coded submatrices
{Ã1, Ã2, . . . , Ãn}. Then, the n coded submatrices are dis-
tributed to n workers regardless of the groups they belong.
Here we denote the computing time of an (n, k)−MDS code
as Tcomp(CMDS(n, k)).

Theorem 1. Consider computing k tasks on (n,µ)−group
systems. Then, an (n, k)−MDS code achieves the optimal
computing time. In other words, for arbitrary (n, k) linear
code C ∈ C(n, k),

Tcomp(CMDS(n, k)) ≤ Tcomp(C).

Proof. Given an arbitrary realization of the completion times
{T (i)

j }i∈[L],j∈[ni] of workers, we can think of their order
statistics T1:n < T2:n < · · · < Tn:n. Recall that (n, k) linear
code C cannot recover the original message if there are more
than n− k erasures, which leads to Tcomp(C) ≥ Tk:n. By the
MDS property, we have Tcomp(CMDS(n, k)) = Tk:n, which
completes the proof.

IV. COMPUTING TIME ANALYSIS

In this section, we provide the computing time analysis
when the workers are dispersed into L = 2 groups.

A. Computing Time for an Arbitrary Task Allocation k
For simplicity, we denote the task allocation vector as

k = [k1, k2] = [k1, k − k1]. The computing time of
an (n,k)−group code for L = 2 can be expressed
as Tcomp(CG(n,k)) = max(T

(1)
k1:n1

, T
(2)
k2:n2

) by definition.
Lemma 1 provides the expected computing time of an
(n,k)−group code when n goes to infinity.

Lemma 1. Consider an (n,µ)−group system with L = 2
groups. Then, the expected computing time of an (n,k)−group
code satisfies the following:

lim
n→∞

E[Tcomp(CG(n,k))] = lim
n→∞

E[max(T
(1)
k1:n1

, T
(2)
k2:n2

)]

= max(lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k2:n2

])

= max

(
− 1

kµ1
log(1− k1

n1
),− 1

kµ2
log(1− k2

n2
)

)
. (1)

Proof. We set aside the proof at Appendix A.

This lemma illustrates that in the asymptotic regime of large
n, the expected computing time of an (n,k)−group code can
be easily obtained for given n, µ and k.

Now, we aim at optimizing task allocation rule k which
minimizes the computing time of an (n,k)−group code. We
define the optimal task allocation vector by

k∗ := arg min
k

E[Tcomp(CG(n,k))], (2)

whose elements are denoted by k∗ = [k∗1 , k
∗
2 , . . . , k

∗
L]. Be-

fore finding k∗, we state a relationship between Tk:n and
{T (i)

ki:ni
}Li=1 in the following Lemma. Recall that Tk:n is

equivalent to Tcomp(CMDS(n, k)), and the maximum among
{T (i)

ki:ni
}Li=1 corresponds to Tcomp(CG(n,k)) by definition.

Lemma 2. Under the scenario of computing k tasks on
an (n,µ)−group system with L = 2 groups, consider
applying an (n,k)−group code where n = [n1, n2] and
k = [k1, k−k1]. Given an arbitrary realization of completion
time {T (i)

j }i∈[2],j∈[ni] of workers, let Tk:n be the kth smallest
value among {T (i)

j }i∈[2],j∈[ni]. Meanwhile, T (i)
ki:ni

denotes the
kthi smallest value among {T (i)

j }
ni
j=1. Then, we have

min(T
(1)
k1:n1

, T
(2)
k−k1:n2

)≤ Tk:n≤ max(T
(1)
k1:n1

, T
(2)
k−k1:n2

). (3)

Proof. Let U = {T (i)
j : T

(i)
j ≤ Tk:nfori ∈ [2], j ∈ [ni]}.

Consider a subset U1 of set U such that U1 = {T (1)
j : T

(1)
j ≤

Tk:nforj ∈ [n1]} and its complementary set UC1 = {T (2)
j :

T
(2)
j ≤ Tk:nforj ∈ [n2]}. Here, we define k′1 := |U1|. Notice

that |UC1 | = k−k′1. Then, we may write T (2)
k−k′1−1:n2

< Tk:n <

T
(1)
k′1+1:n1

. When k′1 < k1, we have Tk:n < T
(1)
k′1+1:n1

≤ T (1)
k1:n1

.

Similarly, we have Tk:n > T
(2)
k−k′1−1:n2

≥ T
(2)
k−k1:n2

, which

leads to T
(2)
k−k1:n2

≤ Tk:n ≤ T
(1)
k1:n1

. When k′1 > k1, we
have T

(1)
k1:n1

≤ Tk:n ≤ T
(2)
k−k1:n2

using the same method as
above. For k′1 = k1, it is obvious that min(T

(1)
k1:n1

, T
(2)
k−k1:n2

) <

Tk:n = max(T
(1)
k1:n1

, T
(2)
k−k1:n2

). This completes the proof.

In the following theorem, we find the optimal task allo-
cation k∗, and show that the expected computing time of an
(n,k∗)−group code converges to that of an (n, k)−MDS code
for sufficiently large n.

Theorem 2. Consider a scenario of computing k tasks on
an (n,µ)−group system with L = 2 groups, where an
(n,k)−group code is applied. In the asymptotic regime of
large n, the optimal task allocation k∗ = [k∗1 , k − k∗1] can be
obtained1 by solving

k∗1 + n2 − n2
(

1− k∗1
n1

)µ2
µ1

= k. (4)

Moreover, the expected computing time of an (n,k∗)−group
code satisfies the following:

lim
n→∞

E[Tcomp(CG(n,k∗))] = lim
n→∞

E[Tcomp(CMDS(n, k))].

(5)

Proof. Combining (1) and (2), we obtain

lim
n→∞

k∗1 = arg min
k1∈[k]

{
lim
n→∞

max(E[T
(1)
k1:n1

],E[T
(2)
k−k1:n2

])
}

= arg min
k1∈[k]

{
max

(
− 1

kµ1
log(1− k1

n1
),

− 1

kµ2
log(1− k − k1

n2
)
)}
.

Note that the first variable of the max function is a strictly
increasing convex function of k1, while the second one is a
strictly decreasing convex function. Thus, taking the maximum
of the two variables results in a convex function of k1.
Therefore, as n grows to infinity, the minimizer k∗1 coincides
with the intersection point of the two functions, i.e.,

lim
n→∞

E[T
(1)
k∗1 :n1

] = lim
n→∞

E[T
(2)
k−k∗1 :n2

]. (6)

From (1) and (6), we obtain (4) by simple algebraic operations.
Now we move on to the proof of (5). First, by taking lim

n→∞ E[·]
on (3) and applying Lemma 1, we obtain

min
(

lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k−k1:n2

]
)
≤ lim
n→∞

E[Tk:n]

1Here we assume that k∗1 is an integer since the task allocation vector
k consists of integers. However, in case of k∗1 not an integer, the optimal
allocation rule is either k = [dk∗1e, k−dk∗1e] or k = [bk∗1c, k−bk∗1c], since
E[Tcomp(CG(n,k))] is a convex function of k1, as in the proof.

300 600 900 1200n
0

0.2

0.4

0.6

0.8

E
[T

co
m

p]

MDS Code: C
MDS

(n,k)

Group Code: C
G

(n,k*)

Group Code: C
G

(n,keven)

Figure 3: Simulated average computing time E[Tcomp] of an MDS
code and two types of group codes. Parameters are set to (n,µ) =(
[3
4
n, 1

4
n], [1, 2]

)
and k = 100.

≤ max
(

lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k−k1:n2

]
)
.

When k1 = k∗1 , the upper and lower bounds have the same
value as in (6). Thus, by squeeze theorem, we have

lim
n→∞

E[Tk:n] = lim
n→∞

E[T
(1)
k∗1 :n1

] = lim
n→∞

E[T
(2)
k−k∗1 :n2

].

Therefore, we obtain (5) by using Tcomp(CMDS(n, k)) = Tk:n
and Tcomp(CG(n,k)) = max

i∈[L] T
(i)
ki:ni

.

Recall that an (n, k)−MDS code achieves the optimal
computing time as stated in Theorem 1. The above theorem
implies that an (n,k)−group coded system can asymptotically
achieve the optimal computing time by using the optimal
task allocation rule k = k∗. Note that (4) can be easily
solved when µ1/µ2 = 2 by using the quadratic formula. The
following corollary provides the optimal task allocation k∗

and the corresponding E[Tcomp(CG(n,k∗))] when µ1 = 2µ2.

Corollary 1. Consider the scenario of computing k tasks on
an (n,µ)−group system with L = 2 and µ = [2µ2, µ2].
Under the scenario of applying an (n,k)−group code on
this system, the optimal task allocation k∗ = [k∗1 , k − k∗1]
is obtained as

k∗1 = k − n2 −
n22
2n1

+

√
(n2 +

n22
2n1

)2 − k

n1
n22. (7)

Moreover, the expected value of the corresponding computing
time E[Tcomp(CG(n,k∗))] can be calculated as

lim
n→∞

E[Tcomp(CG(n,k∗))]

=
1

kµ2
log

(√
(1 +

n2
2n1

)2 − k

n1
− n2

2n1

)−1
. (8)

Proof. When µ1 = 2µ2, the equation (4) reduces to (7). In
addition, inserting (7) into (1) results in (8).

B. Numerical Results when the Number of Nodes are Finite

Here, we provide simulation results on the computing
time of an (n,k)−group code when the number of nodes
n is finite. Fig. 3 illustrates the expected computing time
of an (n, k)−MDS code E[Tcomp(CMDS(n, k))] and that of
(n,k)−group code E[Tcomp(CG(n,k))], for various n. We
consider two types of group codes: one with the optimal
task allocation k∗ = [k∗1 , k − k∗1], and the other with an
even task allocation keven = [12k,

1
2k]. For a fixed number

of tasks k = 100, we assume that n workers are divided
into two groups as n = [n1, n2] = [34n,

1
4n]. Moreover,

the average computing time of a worker doubles in the first
group, i.e., µ = [µ1, µ2] = [1, 2]. For the estimation, we
employ Monte Carlo methods with 104 random samples. The
simulation result demonstrates that the expected computing
time of an (n,k∗)−group code approaches to that of an
(n, k)−MDS code in the asymptotic regime of large n, as
proved in Theorem 2. Moreover, the average computing times
of two group codes − the optimal group code CG(n,k∗)
and a naive group code CG(n,keven) − have a significant
gap, which supports the necessity of a careful task allocation
considering the heterogeneity of groups.

V. COMPUTING TIME ANALYSIS FOR GENERAL L

A. Computing Time for an Arbitrary Task Allocation k

This section provides the expected computing time of an
(n,k)−group code for an arbitrary number of groups, i.e. L ≥
2. The following lemma provides a numerical way to obtain
Tcomp(CG(n,k)) as n grows to infinity.

Lemma 3. Consider an (n,µ)−group system with L groups.
Then, the expected computing time of an (n,k)−group code
satisfies the following:

lim
n→∞

E[Tcomp(CG(n,k))] = lim
n→∞

E[max
i∈[L]

T
(i)
ki:ni

]

= max
i∈[L]

(lim
n→∞

E[T
(i)
ki:ni

])

= max
i∈[L]

(
− 1

kµi
log(1− ki

ni
)

)
. (9)

Proof. The proof is located at Appendix B.

This lemma signals that the expected computing time of an
(n,k)−group code can be easily obtained when n,k and µ
are given.

B. Optimizing Task Allocation

In this subsection, we present the optimal task allocation
rule k∗ for given parameters n,µ and k. Before optimizing
the task allocation vector k, we provide a relationship between
order statistics Tk:n and {T (i)

ki:ni
}Li=1.

Lemma 4. Under the scenario of computing k tasks on an
(n,µ)−group system with L groups, consider applying an
(n,k)−group code where n = [n1, n2, . . . , nL] and k =
[k1, k2, . . . , kL]. Given an arbitrary realization of completion
time {T (i)

j }i∈[L],j∈[ni] of workers, let Tk:n be the kth smallest
value among {T (i)

j }i∈[L],j∈[ni]. Meanwhile, T (i)
ki:ni

denotes the
kthi smallest value among {T (i)

j }
ni
j=1. Then, we have

min
i∈[L]

T
(i)
ki:ni

≤ Tk:n ≤ max
i∈[L]

T
(i)
ki:ni

.

Proof. The proof can be found at Appendix C

Here we recall that Tk:n is the computing time of an
(n, k)−MDS code and the upper bound max

i∈[L] T
(i)
ki:ni

is the
computing time of an (n,k)−group code. Now, Theorem 3

2 3 4 5 6
L, the number of groups

0

0.1

0.2

0.3

0.4

de
c

Scenario 1
Scenario 2
Minimum Achievable

dec

Trend Line

Figure 4: ρdec versus L for three different scenarios; an imbalanced,
a balanced and the best ones.

specifies the optimal task allocation k∗ defined as (2) when
there are L groups. Moreover, the computing time of an
(n,k∗)−group code and an (n, k)−MDS code is compared.

Theorem 3. Consider the scenario of computing k tasks on an
(n,µ)−group system with L groups, where an (n,k)−group
code is applied. In the asymptotic regime of large n, the op-
timal task allocation k∗ = [k∗1 , k

∗
2 , · · · , k∗L] can be obtained2

by solving the following equations for i ∈ [L]:

k∗i +
∑
j 6=i

nj

(
1−

(
1− k∗i

ni

)µj
µi

)
= k. (10)

Moreover, the corresponding expected computing time of an
(n,k∗)−group code is equal to that of an (n, k)−MDS code
as n goes to infinity, i.e.

lim
n→∞

E[Tcomp(CG(n,k∗))] = lim
n→∞

E[Tcomp(CMDS(n, k))].

Proof. We prove this theorem at Appendix D.

Recall that an (n, k)−MDS code is optimal in terms
of computing time. The above theorem illustrates that an
(n,k)−group code can asymptotically achieve the optimal
computing time when the tasks are optimally allocated, i.e.
k = k∗.

VI. DECODING TIME ANALYSIS

Now we compare the decoding complexity of the suggested
(n,k)−group code to that of an (n, k)−MDS code. We
assume that the decoding complexity of an (n, k)−MDS code
is O(kβ) for β > 13. Then, the suggested (n,k)−group code
has a decoding complexity of O((kmax)β) by the virtue of
parallel decoding, where kmax = max

i∈[L] ki. Note that decoding
complexities of two schemes grow with different orders. For
a comparison, we define the ratio of the two orders as

ρdec =

(
kmax

k

)β
.

Note that the ratio ρdec can be minimized down to (1/L)β

when we have kmax = k/L.

2Here we assume that k∗i is an integer for i ∈ [L] since task allocation
vector k consists of integer values. However, in the case of k∗i not an integer,
we can use the round function to set k∗ = [bk∗1e, bk∗2e, · · · , bk∗Le]. For
reasonably large n and k, this rounding function has a negligible impact on
the overall performance.

3According to the recent works [20], [21] on decoding algorithms, practical
scenarios satisfy β > 1.

Table I: Code parameters and decoding complexities of various
coding schemes used for the simulation.

Code
Decoding Code

Complexity Parameters

MDS O(kβ) (n, k) = (900, 400)

Product O((
√
k)β+1) (

√
n,
√
k)2 = (30, 20)2

Group O(kβmax)
n = [180, 170, 160, 140, 130, 120]

k = k∗ = [71, 71, 70, 65, 63, 60]

Fig. 4 illustrates ρdec under two different scenarios for given
n = 240 and k = 120. In both scenarios, n and µ are ran-
domly generated. Moreover, the task allocations for both sce-
narios are selected as the optimal k∗, depending on the given
parameters of n and µ. Motivated by the practical setting
where the size of each group and the average computing time
of each worker are bounded, we set n ∼ unif(0.7nL , 1.3

n
L)

and µ ∼ unif(1, 2) with uniform distributions. Scenarios 1
and 2 differ in the rule of ordering the elements of n and µ,
as illustrated below. For scenario 1, we sort the elements of
n and µ in ascending and descending order, respectively. In
other words, ni ≤ nj and µi ≥ µj hold for all i < j. This is
the scenario when a group with less average response time has
less workers. In the case of scenario 2, both n and µ are sorted
in ascending order, i.e., ni ≥ nj and µi ≥ µj hold for i < j.
This is the scenario when a group with less average response
time has more workers. Under these scenarios, we obtain the
average values of ρdec for 104 samples when β = 2. The
simulations on two scenarios are compared to the minimum
achievable ρdec = (1/L)β . Moreover, we plotted the trend
line, which is set to stretch from the point of Scenario 2 for
L = 2 and grow by a factor of (1/L)β .

Fig. 4 delineates that ρdec diminishes along with the trend
line under any scenarios as L grows. Combining this with
the definition of ρdec, we can remark that kmax is inversely
proportional to L in practical scenarios. Moreover, the pro-
posed group code provides a significant decoding complexity
reduction in both scenarios. For example, when L = 4, an
(n,k)−group code already achieves roughly 10x reduced
decoding complexity compared to an (n, k)−MDS code.

Now we compare the total execution time of the suggested
group code to existing schemes by using a simulation. We
represent the total execution time as Texec = Tcomp + αTdec,
where the coefficient α ≥ 0 indicates a relative weight of the
decoding complexity compared to the computing time. We
simulate the computing of k = 400 tasks on an (n,µ)−group
system with n = [180, 170, 160, 140, 130, 120] and µ =
[1.25, 1.35, 1.45, 1.55, 1.65, 1.75], which leads to n = 900
with L = 6 groups. For varying α, we observe the execution
times of the MDS code, the product code, and the suggested
group code with parameters listed on Table I. The decoding
complexity of the product code is O((

√
k)β+1) because the

decoding procedure consists of decoding 2
√
k MDS codes,

where the dimension of each MDS code is
√
k. For the group

code, we use the optimal task allocation rule k = k∗. For the
decoding complexity, we use a parameter of β = 2.

10-10 10-9 10-8

10-3

E
[T

ex
ec

]

MDS
Product
Suggested

(a) Low-α regime

10-10 10-8 10-6 10-4

10-2

100

E
[T

ex
ec

]

MDS
Product
Suggested

(b) Large-α regime

Figure 5: Simulated results of E[Texec] under various coding schemes.

Fig. 5(a) and Fig. 5(b) show the simulated execution times
for different regimes of α. Fig. 5(a) illustrates the situation
where the computing time is dominant, i.e. α is small. When
α is the lowest in Fig. 5(a), the MDS code gives the smallest
execution time, followed by the group code and then the
product code. This coincides with the two mathematical results
shown above: the optimality of the MDS code in Lemma 1
and the asymptotic optimality of the group code in Theorem
3. Note that the coding scheme that gives the best execution
time changes as α varies. Meanwhile, Fig. 5(b) represents
the situation where the decoding complexity dominates the
execution time. Notice that the execution time of the MDS
code becomes inferior to other schemes due to its huge
decoding complexity as α grows. On this computing system,
the group code gives the best execution time for all regime of
α. In general, the order of kmax determines which of the group
code or the product code has a better decoding complexity.
Recall that the decoding complexity of the group code and
the product code are O(kβmax) and O((

√
k)β+1), respectively.

Thus, we can say that the decoding complexity of the group
code is better than the product code when

kmax = O((
√
k)1+

1
β) (11)

holds. Remind that kmax is inversely proportional to L under
practical scenarios as shown in Fig. 4. Thus, the condition in

(11) reduces to L = Ω

(
1

(
√
k)1+

1
β

)
. This implies that when

a system has sufficiently large number of groups, the group
code outperforms the product code in terms of the decoding
complexity.

VII. CONCLUSION

In this paper, we propose a coded computation scheme
appropriate for a practical model, which reflects the tree-
shaped structure and the heterogeneity of groups. Precisely,
we consider systems with L heterogeneous groups that have
distinct computing time statistics and a different number of
workers. We prove that the suggested group-coded scheme
can asymptotically achieve the optimal computing time as n
grows to infinity. In the regime of finite n, numerical results
show that the suggested scheme also provides a near-optimal
computing time. Moreover, the suggested scheme can reduce

the decoding complexity down to a factor of (1
L)β , where

β > 1, compared to the existing MDS coded scheme. Finally,
the total execution time−the sum of the computing time and
the decoding time−of the suggested scheme is numerically
shown to outperform other existing state-of-the-art coding
schemes.

APPENDIX A
PROOF OF LEMMA 1

We first show that max(T
(1)
k1:n1

, T
(2)
k2:n2

) is determined as one
of T (1)

k1:n1
and T (2)

k2:n2
for sufficiently large n, and thereby the

expected value of max(T
(1)
k1:n1

, T
(2)
k2:n2

) is determined as the
maximum among the expected values of T (1)

k1:n1
and T (2)

k2:n2
.

First, consider the kth order statistic of i.i.d. n random
variables Tk:n, whose probability distribution function (PDF)
and cumulative distribution function (CDF) are denoted by
f(·) and F (·). We represent an empirical CDF obtained with
n samples as F̃n(·). According to [22], Tk:n can be represented
as

Tk:n = ξ − F̃n(ξ)− k/n
f(ξ)

+Rn, (12)

where ξ = F−1(k/n) and the third term Rn satisfies
n1/2Rn

p−→ 0. In [22], it is shown that n1/2(Tk:n − ξ)
d−→ X ,

where X ∼ N
(

0,
(k/n)(1− k/n)

f2(ξ)

)
. Thus, we have Tk:n

d−→

N

(
ξ,

(k/n)(1− k/n)

nf2(ξ)

)
.

Now, we examine the convergence of T (1)
k1:n1

− T (2)
k2:n2

by
using (12). Let f(i) and F(i) be the PDF and CDF of an
exponential random variable with rate kµi, and define ξ(i)

as ξ(i) = F−1(i) (ki/ni) for i = 1, 2, i.e.

ξ(i) = F−1(i) (ki/ni) = − 1

kµi
log

(
1− ki

ni

)
(13)

Then, we can think of the asymptotic distribution of the
T

(1)
k1:n1

− T (2)
k2:n2

as follows:

T
(1)
k1:n1

− T (2)
k2:n2

− (ξ(1) − ξ(2))

= n−
1
2n

1
2 [(T

(1)
k1:n1

− ξ(1))− (T
(2)
k2:n2

− ξ(2))] d−→ n−
1
2ZV ,

where ZV ∼ N(0, V) for V =
k1
n1

(1− k1
n1

)

f2(1)(ξ
(1))

+
k2
n2

(1− k2
n2

)

f2(2)(ξ
(2))

.

By the definition of convergence in distribution, for any ε > 0,
we have

lim
n→∞

Pr{T (1)
k1:n1
−T (2)

k2:n2
−(ξ(1)−ξ(2)) ≤ ε} = lim

n→∞
Φ

(
ε

√
n

V

)
.

Then, the convergence of T (1)
k1:n1

− T (2)
k2:n2

into ξ(1) − ξ(2) can
be derived as follows.

lim
n→∞

Pr
(
|T (1)
k1:n1

− T (2)
k2:n2

− (ξ(1) − ξ(2))| ≥ ε
)

= lim
n→∞

2

(
1− Φ

(
ε

√
n

V

))
= 0. (14)

This means T (1)
k1:n1

− T (2)
k2:n2

converges in probability towards
the constant ξ(1) − ξ(2) as n→∞, i.e.

T
(1)
k1:n1

− T (2)
k2:n2

p−→ ξ(1) − ξ(2).

It illustrates that for sufficiently large n, the order of two
independent order statistics is maintained corresponding to
their mean values due to the convergence. Consequently, the
sign of T (1)

k1:n1
−T (2)

k2:n2
loses randomness and is determined in

asymptotic regime of large n. Therefore, we can claim that

lim
n→∞

1
T

(1)
k1:n1

>T
(2)
k2:n2

= 1ξ(1)>ξ(2) . (15)

This equation indicates that in asymptotic regime of large n,
the random variable 1

T
(1)
k1:n1

>T
(2)
k2:n2

, which has cumbersome
distribution, can be substituted with 1ξ(1)>ξ(2) , which is a
binary number that can be easily calculated.

Now we prove the statement of Lemma 1 by using (15) as
follows.

lim
n→∞

E
[
max

(
T

(1)
k1:n1

, T
(2)
k2:n2

)]
(a)
= E

[
lim
n→∞

max
(
T

(1)
k1:n1

, T
(2)
k2:n2

)]
= E

[
lim
n→∞

T
(1)
k1:n1

· lim
n→∞

1
T

(1)
k1:n1

≥T (2)
k2:n2

+ lim
n→∞

T
(2)
k2:n2

· lim
n→∞

1
T

(1)
k1:n1

<T
(2)
k2:n2

]
(b)
=E

[
lim
n→∞

T
(1)
k1:n1

· 1ξ(1)≥ξ(2) + lim
n→∞

T
(2)
k2:n2

· 1ξ(1)<ξ(2)
]

=E
[

lim
n→∞

T
(1)
k1:n1

]
· 1ξ(1)≥ξ(2) + E

[
lim
n→∞

T
(2)
k2:n2

]
· 1ξ(1)<ξ(2)

=E
[

lim
n→∞

T
(1)
k1:n1

]
· 1E

[
lim
n→∞ T

(1)
k1:n1

]
≥E

[
lim
n→∞ T

(2)
k2:n2

]
+ E

[
lim
n→∞

T
(2)
k2:n2

]
· 1E

[
lim
n→∞ T

(1)
k1:n1

]
<E

[
lim
n→∞ T

(2)
k2:n2

]
= max

(
E
[

lim
n→∞

T
(1)
k1:n1

]
,E
[

lim
n→∞

T
(2)
k2:n2

])
= max

(
lim
n→∞

E
[
T

(1)
k1:n1

]
, lim
n→∞

E
[
T

(2)
k2:n2

])
= max

(
− 1

kµ1
log(1− k1

n1
),− 1

kµ2
log(1− k2

n2
)

)
Equality (a) holds since limit and expectation can be inter-
changed when the random variable is non-negative, which is
satisfied because max(T

(1)
k1:n1

, T
(2)
k2:n2

) ≥ 0. Equality (b) holds
by (15). Note that this proof can be directly applied to the
min function of two independent order statistics instead of
max function.

APPENDIX B
PROOF OF LEMMA 3

We prove the statement by using the mathematical induc-
tion. For the base step, we already prove the statement for
L = 2 in Lemma 1. Now, we show if the statement is
true for an arbitrary L > 2, then the statement still holds
for L + 1. Before moving onto the proof, we provide the
convergence of max function, which is necessary for the
proof. Recall that equation (15) shows the order of two

independent order statistics is determined by their expectation
values for sufficiently large n. Thus, we can claim for arbitrary
γ, δ ∈ [L], the following statement is true.

lim
n→∞

1
T

(γ)
kγ :nγ

>T
(δ)
kδ :nδ

= 1ξ(γ)>ξ(δ)

This leads to

lim
n→∞

max
i∈[L]

T
(i)
ki:ni

= T
(imax)
kimax :nimax

, (16)

where imax = arg max
i∈[L]

ξ(i). In other words, the maximum of

L independent order statistics is determined as the one that
has the largest expectation value for sufficiently large n.

We here move on to the inductive step, assuming the
statement holds for L = L′ as

lim
n→∞

E[max
i∈[L′]

T
(i)
ki:ni

] = max
i∈[L′]

(E[lim
n→∞

T
(i)
ki:ni

]). (17)

Now, we examine the statement holds for L′ + 1 as well:

lim
n→∞

E[max
i∈[L′+1]

T
(i)
ki:ni

]

= lim
n→∞

E[max(max
i∈[L′]

T
(i)
ki:ni

, T
(L′+1)
kL′+1:nL′+1

)]

= E[lim
n→∞

max(max
i∈[L′]

T
(i)
ki:ni

, T
(L′+1)
kL′+1:nL′+1

)]

(c)
= E[lim

n→∞
max(T

(imax)
kimax :nimax

, T
(L′+1)
kL′+1:nL′+1

)]

(d)
= max(E[lim

n→∞
T

(imax)
kimax :nimax

],E[lim
n→∞

T
(L′+1)
kL′+1:nL′+1

])

(e)
= max(E[lim

n→∞
max
i∈[L′]

T
(i)
ki:ni

],E[lim
n→∞

T
(L′+1)
kL′+1:nL′+1

])

= max(lim
n→∞

E[max
i∈[L′]

T
(i)
ki:ni

],E[lim
n→∞

T
(L′+1)
kL′+1:nL′+1

])

= max(max
i∈[L′]

(E[lim
n→∞

T
(i)
ki:ni

]),E[lim
n→∞

T
(L′+1)
kL′+1:nL′+1

])

= max
i∈[L′+1]

(E[lim
n→∞

T
(i)
ki:ni

])

= max
i∈[L′+1]

(lim
n→∞

E[T
(i)
ki:ni

]).

Equality (c) holds since max
i∈[L′]

T
(i)
ki:ni

becomes the one whose

expectation value is the largest for sufficiently large n as
shown in (16). We can lead to equality (d) by Lemma 1 since
it is equivalent to the case when L = 2. Equality (e) holds by
the assumption (17). Thus, we have

lim
n→∞

E[max
i∈[L′+1]

T
(i)
ki:ni

] = max
i∈[L′+1]

(lim
n→∞

E[T
(i)
ki:ni

]),

which completes the whole proof of this lemma. Similarly, we
can show

lim
n→∞

E[min
i∈[L′]

T
(i)
ki:ni

] = min
i∈[L′]

(lim
n→∞

E[T
(i)
ki:ni

]).

APPENDIX C
PROOF OF LEMMA 4

Imagine there are three groups. Then, for arbitrary realiza-
tion of {T (i)

j }i∈[3],j∈[ni], the following inequalities hold by

Lemma 2.

min
(
T

(1)
k1:n1

,max(T
(2)
k2:n2

, T
(3)
k3:n3

)
)
≤ Tk:n

≤ max
(
T

(1)
k1:n1

,max(T
(2)
k2:n2

, T
(3)
k3:n3

)
)
.

We can change the lower bound by using an apparent inequal-
ity min(T

(2)
k2:n2

, T
(3)
k3:n3

) ≤ max(T
(2)
k2:n2

, T
(3)
k3:n3

) to have

min
(
T

(1)
k1:n1

,min(T
(2)
k2:n2

, T
(3)
k3:n3

)
)
≤ Tk:n

≤ max
(
T

(1)
k1:n1

,max(T
(2)
k2:n2

, T
(3)
k3:n3

)
)
.

Thus, we have

min(T
(1)
k1:n1

, T
(2)
k2:n2

, T
(3)
k3:n3

) ≤ Tk:n
≤max(T

(1)
k1:n1

, T
(2)
k2:n2

, T
(3)
k3:n3

).

We can also prove the statement for an arbitrary L ≥ 2 by
repeating this process. Thus, we have

min
i∈[L]

T
(i)
ki:ni

≤ Tk:n ≤ max
i∈[L]

T
(i)
ki:ni

.

APPENDIX D
PROOF OF THEOREM 3

We first prove that the best task allocation rule k∗ satisfies
that the following equations:

lim
n→∞

E[T
(i)
k∗i :ni

] = lim
n→∞

E[T
(j)
k∗j :nj

] for i, j ∈ [L]. (18)

Then, we show the an (n,k∗)−group code achieves the same
computing time as an (n, k)−MDS code in an asymptotic
region of large n. Afterwards, we provide the proof of the
existence and the uniqueness of k∗.

First, we rewrite the the statement (9) of Lemma 3 w.r.t.
lim
n→∞ E[T

(j)
kj :nj

] for j ∈ [L] as follows:

lim
n→∞

E[Tcomp(CG(n,k))] = max
i∈[L]

(lim
n→∞

E[T
(i)
ki:ni

])

= max(lim
n→∞

E[T
(j)
kj :nj

],max
i 6=j

(lim
n→∞

E[T
(i)
ki:ni

]))

= max(− 1

kµj
log(1− kj

nj
),max

i 6=j
(lim
n→∞

E[T
(i)
ki:ni

])).

Note that the first variable of the max function is a
strictly increasing convex function with kj , whereas the second
variable max

i6=j (lim
n→∞ E[T

(i)
ki:ni

]) is a strictly deceasing convex
function with kj because it is equivalent to the time for
computing k−kj tasks by using a group code with L−1 groups
by (9). Hence, taking max of the two variables results in a
convex function that has the minimum value at the intersection
of the two variables. Hence, the optimal value of kj = k∗j
satisfies

max
i6=j

(lim
n→∞

E[T
(i)
ki:ni

]) = lim
n→∞

E[T
(j)
k∗j :nj

].

We may write as below:

lim
n→∞

E[T
(i)
ki:ni

] ≤ lim
n→∞

E[T
(j)
k∗j :nj

].

To satisfy the above inequality for all i 6= j and j ∈ [L], the
optimal tast allocation k∗ must satisfy the equation (18).

Next, we consider the following bounds, which obtained
by taking lim

n→∞ E[·] of the bounds suggested in Lemma 4 and
applying Lemma 3:

min
i∈[L]

(lim
n→∞

E[T
(i)
ki:ni

]) ≤ lim
n→∞

E[Tk:n] ≤ max
i∈[L]

(lim
n→∞

E[T
(i)
ki:ni

]).

For k = k∗, the above lower and upper bounds
have an equal value by (18). Hence, lim

n→∞ E[Tk:n] and
max
i∈[L] (lim

n→∞ E[T
(i)
k∗i :ni

]) have the same value, which correspond
to lim

n→∞ E[Tcomp(CMDS(n, k))] and lim
n→∞ E[Tcomp(CG(n,k∗))]

respectively. Thus, we prove

lim
n→∞

E[Tcomp(CG(n,k∗))] = lim
n→∞

E[Tcomp(CMDS(n, k))].

Lastly, we move on to the proof of the existence and the
uniqueness of k∗. Remark that the interval of k∗i is confined
as k∗i ∈ [max(0, k−n+ni),min(ni, k)] due to the conditions
ki ≤ ni and k ≤ n. By inserting equation (13) to (18), the
following equation is obtained for i, j ∈ [L]:

k∗j = nj

(
1−

(
1− k∗i

ni

)µj
µi

)
Thus, we may write the following equation which consists of
a single variable k∗i .

k =
∑
i∈[L]

k∗i = k∗i +
∑
j 6=i

nj

(
1−

(
1− k∗i

ni

)µj
µi

)
.

For simplicity, we denote the right-hand side by h(k∗i). Note
that h(k∗i) is a strictly increasing function with k∗i . thus we can
complete the proof if we show h(k∗i) starts from a value lower
than k and reaches to another value greater than k in the given
interval. Firstly, when the lower bound max(0, k−n+ni) is 0,
it is obvious that h(0) = 0. The other case, when k−n+ni >
0, is also easily proved as,

h(k − n+ ni)

=k − n+ ni +
∑
j 6=i

nj

(
1−

(
1− k − n+ ni

ni

)µj
µi

)

=k −
∑
j 6=i

nj

(
n− k
ni

)µj
µi

< k.

Similarly, when the upper bound min(ni, k) is ni, one can
easily show that h(ni) = n > k. The other case of
min(ni, k) = k, i.e. k < ni, also satisfies h(k) > k as follows.

h(k) = k +
∑
j 6=i

nj

(
1−

(
1− k

ni

)µj
µi

)

= k +
∑
j 6=i

nj

(
1−

(
ni − k
ni

)µj
µi

)
> k.

We complete the proof by showing that h(k∗i) < k for the

lower bound k∗i = max(0, k− n+ ni) and h(k∗i) > k for the
upper bound k∗i = min(ni, k), which guarantees the existence
of the one intersection between a strictly increasing function
h(k∗i) and a constant function k with k∗i .

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[4] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Information Theory (ISIT), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 2418–2422.

[5] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[6] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” 2018.

[7] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient cod-
ing from cyclic mds codes and expander graphs,” arXiv preprint
arXiv:1707.03858, 2017.

[8] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[9] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in Information Theory
(ISIT), 2017 IEEE International Symposium on, pp. 2403–2407.

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier
transform,” in Communication, Control, and Computing (Allerton), 2017
55th Annual Allerton Conference on. IEEE, 2017, pp. 494–501.

[11] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016, pp. 2100–2108.

[12] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in Communication, Control, and Computing (Allerton),
2017 55th Annual Allerton Conference on. IEEE, 2017, pp. 1271–1278.

[13] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr,
“Coded computation over heterogeneous clusters,” arXiv preprint
arXiv:1701.05973, 2017.

[14] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon, “Hierarchical coding
for distributed computing,” arXiv preprint arXiv:1801.04686, 2018.

[15] [Online]. Available: https://aws.amazon.com/ec2/?nc1=h_ls
[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[17] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters.” in USENIX Annual Technical Conference, 2014, pp. 1–12.

[18] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and
S. Radhakrishnan, “Scale-out networking in the data center,” Ieee Micro,
vol. 30, no. 4, pp. 29–41, 2010.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.” in
Osdi, vol. 8, no. 4, 2008, p. 7.

[20] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using reed-solomon codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2027–2031.

[21] W. Halbawi, Z. Liu, and B. Hassibi, “Balanced reed-solomon codes for
all parameters,” in Information Theory Workshop (ITW), 2016 IEEE.
IEEE, 2016, pp. 409–413.

[22] H. A. David and H. N. Nagaraja, “Order statistics, hoboken,” NJ: John
Wiley & Sons, vol. 7, pp. 159–61, 2003.

