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Abstract—A novel permutation decoding method for Reed-
Muller codes is presented. The complexity and the error cor-
rection performance of the suggested permutation decoding

approach are similar to that of the recursive lists decoder. It
is demonstrated that the proposed decoding technique can take
advantage of several early termination methods leading to a
significant reduction of the operations number required for the
decoding, with the error correction performance being the same.

I. INTRODUCTION

Reed-Muller (RM) codes are a family of error correcting

codes discovered by Muller [1] and shortly after by Reed

[2], who also proposed the first efficient decoding algorithm.

Recently it has been proven that RM codes achieve the

capacity on an erasure channel under maximum a posteriori

(MAP) decoding [3]. Unfortunately, practical usage of MAP

decoding is limited by its complexity. If it is not feasible to use

MAP decoding of RM codes, then sub-optimal algorithms, i.e.

a recursive lists decoder [4], can be used with a degradation

of the error correction performance of the code.

RM codes may be considered as polar codes with the appro-

priate selection of the frozen bits set [5]. Polar codes have been

shown to achieve the symmetric capacity of any binary-input

discrete memoryless channel under a low-complex successive

cancellation (SC) decoder [5]. However, the performance of

finite length polar codes under the SC decoder is quite poor.

A successive cancellation list (SCL) decoder allows getting

performance very close to that of maximum-likelihood decod-

ing [6]. Observe that SCL decoding is similar to the recursive

lists algorithm. Here we will consider RM codes from polar

codes point of view.

In the paper, a new permutation decoding method for RM

codes is proposed. This decoder has the complexity similar to

that of the SCL decoder, namely O(Ln logn), where n is the

code length and L is the list size. In contrast with the SCL

decoder, it does not use sorting operation, which is challenging

for the hardware implementation. It also benefits from several

early termination techniques, significantly decreasing the num-

ber of calculations in comparison with the SCL algorithm.

The error correction performance of the considered decoder

is similar to that of the SCL decoding. Moreover, a parallel

implementation of the proposed decoder is possible, leading

to the decoding latency O(n log n).

The rest of the paper is organized as follows. Section II

provides a general description of RM codes, polar codes,

and its decoding algorithm. In section III a new permutation

decoding method for RM codes is presented. In section IV

we propose three early termination methods for the proposed

decoder. Numerical results are presented in section V. We

conclude the paper in section VI.

II. RM AND POLAR CODES

(n, k) polar code [5] is a linear block code of length

n = 2m, where m is some positive integer, and dimension

k generated by k rows ji ∈ {0, 1, . . . , n− 1} \ F , 0 ≤ i < k
of the matrix

Am =

[
1 0
1 1

]⊗m

, (1)

where X⊗m denotes m-times Kronecker product of the matrix

X with itself. The set of frozen bits F is constructed as a set

of indices i maximizing error correction performance of the

code. For instance, Gaussian approximation (GA) for density

evolution [7] can be used to generate polar codes having

optimal error correction performance under the SC decoding

algorithm in the binary-input additive white Gaussian noise

(BI-AWGN) channel.

RM code with parameters r and m is a linear block code

of length n = 2m and dimension k generated by k rows

r0, r1, . . . rk−1 of the matrix Am such that ‖ri‖ ≥ 2m−r,

where ‖x‖ denotes Hamming weight. Since RM codes have

the same form of the generator matrix, they can be constructed

as polar codes with the specific choice of the frozen bits set.

Polar codes encoding and decoding procedures can be

efficiently implemented using the factor graph representation

[5]. The factor graph of a code of length 2m contains m layers

of operations. Let u0
i and um

i denotes information bit and

codeword bit respectively. The subscript denotes bit index.

Then information bits are processed layer by layer using

following update rules:

ul+1

i = ul
i ⊕ ul

i+2l
,

ul+1

i+2l
= ul

i+2l
,

i ∈

2
m−l−1

⋃

g=0

{
2l+1g, 2l+1g + 1, . . . , 2l+1g + 2l − 1

}
.

(2)
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The same factor graph is used for log likelihood ratio (LLR)

based SC decoding [8]. Channel LLRs ymi are processed in a

recursive manner, namely

yl−1

i = f−
(
yli, y

l
i+2l−1

)
, (3a)

yl−1

i+2l−1 = f+
(
yli, y

l
i+2l−1 , û

l−1

i

)
, (3b)

where y0i and ymi denotes LLRs used for the informa-

tion bits evaluation and LLRs received from a channel re-

spectively, while the subscript denotes LLR index, i ∈
2
m−l

⋃

g=0

{
2lg, 2lg + 1, . . . , 2lg + 2l−1 − 1

}
. ûj

i is a bit value cal-

culated by the SC algorithm using (2). f− and f+ are defined

as

f−(x, y) , ln

(
ex+y + 1

ex + ey

)

, (4a)

f+(x, y, u) , (1− 2u)x+ y, (4b)

where x, y ∈ R, u ∈ {0, 1}. We will follow the approach

proposed in [8] and use the hardware-friendly approximation

of (4a), namely

f− (x, y) ≈ f̃− (x, y) , sign (x) sign (y)min {|x| , |y|} . (5)

III. PERMUTATION DECODER FOR RM CODES

Unlike polar codes, RM codes have the permutation group

which is isomorphic to the whole affine group GA(m) [9,

Sec. 13.9]. Recall that the permutation group of a code

contains permutations of the code positions that does not

change the set of codewords, i.e. transform any codeword of

the code to another or the same codeword. For simplicity,

we will consider only m! factor graph layers permutations

πl : (0, 1, . . . ,m− 1) →
(
πl (0) , πl (1) , . . . , πl (m− 1)

)

[10]. Let π be the corresponding bit indices permutation.

The suggested permutation decoding approach, as the SCL

decoding algorithm, returns a list of L codewords and then

some metric is used to choose the best one. The LLR based

metric considered in [8] is used, namely

M =
∑

i∈F

min
{
0,
(
1− 2û0

i

)
y0i
}
, (6)

where û0
i and y0i denote a bit estimation and an LLR value

respectively. They are obtained by the SC decoder, using (3a)

and (3b). The metric benefits from the following theorem.

Theorem 1: Consider a polar code of length n = 2m with

the frozen bits set F . Let ym0 , ym1 , . . . , ymn−1 denote received

channel LLRs. Then

∑

i∈F

min
{
0,
(
1− 2û0

i

)
y0i
}
=

n−1∑

i=0

min {0, (1− 2ûm
i ) ymi } ,

(7)

where ûj
i and y0i are obtained using (3a) and (3b) after the

finish of the SC decoding procedure. û0
i denotes a frozen bit

value, while ûm
i is a codeword bit.

The proof of the theorem is given in the appendix.

Here the following permutation decoding approach is pro-

posed. Firstly, L random permutations are generated. Then,

the SC algorithm process L permuted versions of the received

channel LLRs, and return L decoded codewords with corre-

sponding metrics. Finally, the codeword with the best metric

is returned as the output of the algorithm.

Since computational complexity of the SC decoder equals

O(n logn) [5], the complexity of the considered permutation

decoder equals that of L SC decoders, namely O(Ln logn).
Unlike the SCL decoder, the presented permutation decoder

can return less than L unique codewords. However, simulation

results demonstrate that the error correction performance of the

proposed algorithm is similar to that of the SCL decoder for

large list size. Moreover, this fact can be used to significantly

decrease the number of calculations, with the error correction

performance degradation being negligible.

Another benefit of the proposed method is that it does

not use the sorting operation. Thus, it is more feasible for

hardware implementation than the SCL algorithm. Moreover,

all copies of the SC decoder can be run in parallel, leading to

the decoding latency O(n log n).

IV. EARLY TERMINATION METHODS

In the section, several methods aiming to decrease the

number of f+ and f̃− operations in the considered permutation

decoding algorithm are proposed. They benefit from the metric

used, knowledge about signal-to-noise ratio (SNR) in a BI-

AWGN channel, and the fact that several copies of the SC

decoder can return the same codeword.

A. Branch and bounds method

The goal of the considered permutation decoding technique

is to find a codeword with the best, i.e. the biggest, metric. If

the instances of the SC decoder are running sequentially, then

one can use knowledge of the best metric found so far. Note

that the SC decoder process bits sequentially. Let Mi denotes

a value of metric (6) after processing û0
0, û

0
1, . . . û

0
i−1. Observe

that if i < j, then Mi ≤ Mj . So, it is possible to adopt the

branch and bounds method, namely if the current metric has

been already smaller than the best one found so far, then one

can stop the decoding process under the current permutation

without the error correction performance degradation.

B. SNR based approach

Although the previous early termination method benefits

from its simplicity, it cannot be used for a parallel implemen-

tation of the permutation decoding algorithm. To decrease the

decoder latency, one can run SC decoding for all permutations

in parallel and then choose the codeword with the best metric.

Thus, the first estimation of the best metric value will be

obtained after the decoding is finished. The problem can be

partially solved by dividing the permutations into groups and

running the SC algorithm in parallel for each group, with

groups being processed sequentially. However, the modifica-

tion affects both the decoder latency and the early termination

gain.

The issue can be solved for a BI-AWGN channel using

Theorem 1 and information about the channel noise variance



Input: A vector of LLRs ŷl, a vector of bits û0, a set of the

frozen bits F , an index of outer code g, a layer index l,
a metric threshold Mt.

Output: A current metric value M , a vector of bits ûl. If

M < Mt, −∞ is returned.

1: function SC(ŷl, û0,F , g, l,Mt)

2: Set ûl to be all zeros vector of size 2l

3: if l = 0 then

4: if g ∈ F then

5: û0[g]← 0, ûl[0]← 0
6: M ← min

{
0, ŷl[0]

}

7: else

8: if ŷl[0] ≤ 0 then

9: û0[g]← 1, ûl[0]← 1
10: else

11: û0[g]← 0, ûl[0]← 0
12: end if

13: M ← 0
14: end if

15: return M , ûl

16: end if

17: Set ŷl−1 to be all zeros vector of size 2l−1

18: for i = 0 to 2l−1 − 1 do

19: ŷl−1[i]← f̃−
(
ŷl[i], ŷl[i+ 2l−1]

)

20: end for

21: M, ûl−1 ← SC

(
ŷl−1, û0,F , 2g, l− 1,Mt

)

22: if M < Mt then

23: return −∞, ûl

24: end if

25: for i = 0 to 2l−1 − 1 do

26: ûl[i]← ûl−1[i]
27: ŷl−1[i]← f+

(
ŷl[i], ŷl[i+ 2l−1], ûl−1[i]

)

28: end for

29: M ′, ûl−1 ← SC

(
ŷl−1, û0,F , 2g + 1, l − 1,Mt

)

30: M ←M +M ′

31: if M < Mt then

32: return −∞, ûl

33: end if

34: for i = 0 to 2l−1 − 1 do

35: ûl[i]← ûl[i]⊕ ûl−1[i]
36: ûl[i+ 2l−1]← ûl−1[i]
37: end for

38: return M , ûl

39: end function

Fig. 1: Recursive calculations used in the SC algorithm.

σ2. Assume that all zeros codeword of length n = 2m has been

transmitted over a BI-AWGN channel with the noise variance

σ2, using binary phase-shift keying modulation, and LLRs

ym0 , ym1 , . . . ymn−1 are received. Then ymi is sampled from a

Gaussian random variable with mean 2/σ2 and variance 4/σ2

[11, Sec. 7.3]. For simplicity, (7) can be rewritten as

M =

n−1∑

i=0

min {0, ymi } . (8)

Let F be the cumulative distribution function (CDF) of the

normal distribution with mean 2/σ2 and variance 4/σ2. Then

each element of sum (8) is sampled from a random variable

with the CDF

F̃ (x) =

{

F (x) , if x < 0

1, otherwise.
(9)

Using (9) and central limit theorem, it is possible to approxi-

mate the CDF of the sum (8) by the CDF of normal distribution

with mean nµ̃ and variance nσ̃2, where µ̃ and σ̃2 are mean

and variance of a random variable with the CDF given by (9)

correspondingly. Based on the distribution, one can estimate a

metric threshold, which will be exceeded during SC decoding

with a small probability. The precise value of the threshold

can be evaluated in a recursive manner using the following

theorem.

Theorem 2: Let X̃ be a random variable with the CDF F̃
defined by (9). Let f̃ (x) be the PDF of X̃ defined on the

interval (−∞, 0). Let F̃n denotes the CDF of the sum of n
independent and identically distributed random variables X̃ .

Then

F̃n(z) =







→0∫

→z

f̃a(x)F̃b(z − x)dx

+ F̃a(z) + (1− F̃a(0−))F̃b(z)

, z < 0

1, otherwise,
(10)

where
→0∫

→z

f(x)dx = lim
u→z+

lim
v→0−

v∫

u

f(x)dx, f̃a (x) is a-fold

convolution of function f̃ (x) with itself, a and b are some

positive integers such that n = a+ b.

The proof of the theorem is given in the appendix.

Example: Consider that a codeword of length 512 is trans-

mitted over a BI-AWGN channel with noise variance σ2 =
0.5. Then the PDF of the sum (8) can be approximated by the

normal distribution with mean −50.95 and variance 106.1. Let

the threshold value be exceeded with probability 10−4. Then

the threshold equals F−1
(
10−4

)
= −89.77, where F is the

CDF of the normal distribution, used for the approximation.

If (10) is used, then the threshold value equals −96.68. Note

that the value obtained using central limit theorem is greater

than the value evaluated using Theorem 2.

The formal description of the proposed permutation decod-

ing method with both early termination techniques is given in

Figs. 1 – 2. Our modification of the SC decoding algorithm

supposes that frozen bits equal zero. It also evaluates metric

(6). It is assumed that the branch and bounds method have no

information about the metric threshold Mt. In contrast, SNR

based approach improves the first early termination method

by setting Mt before the algorithm starts. If the instances of

the SC decoder run in parallel, then the threshold value can be

used to decrease computational complexity. Note that the block

error rate (BLER) of the permutation decoder will be lower

bounded by the probability that has been used to evaluate a



Input: A code length n, a set of the frozen bits F , a vector

of received channel LLRs ŷ, a set of permutations P of

size L, a metric threshold Mt.

Output: A vector of decoded bits û, a decoded codeword

metric M .

1: function PERMDECODING(n,F , ŷ,P , L,Mt)

2: M ←Mt

3: m = log2 n
4: Set û to be all zeros vector of size n
5: for all π ∈ P do

6: Set û0 to be all zeros vector of size n
7: M ′, ûm ← SC

(
π (ŷ) , û0,F , 0,m,Mt

)

8: if M ′ > M then

9: M ←M ′

10: û← π−1
(
û0

)

11: end if

12: end for

13: return û,M
14: end function

Fig. 2: The permutation decoding algorithm.

threshold value. Also, it is possible to use both techniques

together.

C. Repetition handling approach

It has been observed that the correct codeword can be

returned by several instances of the SC decoder used in the

considered permutation decoding method. So, if a codeword

is returned by Lc copies of the SC decoder and it has the best

metric found so far, then it is proposed to stop the decoding

procedure and return the codeword found.

It is an open question, how to compute Lc for a given

list size L. On the one hand, if Lc is too small, then early

termination gain will be enormous, but the error correction

performance of the decoder can be degraded. On the other

hand, if Lc is too large, then there will be no performance

degradation, but the early termination gain will also be neg-

ligible. Here simulations are used to determine Lc value.

Lc = 8 demonstrates almost no error correction performance

degradation for L = 256, with the early termination gain being

significant. Note that the approach cannot be used for a parallel

implementation of the permutation decoding algorithm.

V. SIMULATION RESULTS

RM codes of length 256 and different orders are considered.

It is assumed that transmission is performed over BI-AWGN

channel. All simulations are performed till BLER 10−3. The

comparison of the SCL decoder with the proposed permutation

decoding approach is presented in Fig. 3. The list of size

256 is used for both decoders. Since list size is quite large,

the repetition handling approach stops the decoding procedure

after eight identical codewords are returned by different copies

of the SC decoder. It guarantees that decoding will not stop

before the correct codeword is found. The metric threshold has

been evaluated using (10) as F̃−1

256(5 · 10
−4). It can be seen

−5 −4 −3 −2 −1 0 1
10−3

10−2

10−1

100

SNR

B
L

E
R

SCL

Branch and bounds method

SNR based approach

Repetition handling approach

Fig. 3: The error correction performance of the RM code of

dimension 93 and length 256 under SCL decoding and the

proposed permutation decoder. List size equals 256.
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Fig. 4: The early termination gain of the branch and bounds

method.

that the considered permutation decoding method has a similar

error correction performance to that of the SCL algorithm.

Moreover, the early termination techniques have a negligible

effect on the decoder performance.

Let q be the number of operations f+ and f̃− required by the

original version of the proposed permutation decoding method

and let qet be the number of the same operations after applying

an early termination technique. Note that q can be calculated

as q = Ln log2 n, where n is the code length and L is the

list size, while qet is estimated using simulations. The early

termination gain, calculated as q/qet, is depicted in Figs. 4

– 6. The largest gain is obtained using repetition handling

approach. The permutation decoding algorithm with this early

termination technique requires 23 times fewer calculations for
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Fig. 5: The early termination gain of the SNR based approach.

the high rate codes in high SNR region in comparison with

the original approach.

The branch and bounds method also demonstrates the best

result for the high rate code, with the early termination gain

being equal to 1.86. The number of operations required for

decoding with the branch and bounds method is decreasing

with the code rate increase.

The worst results are shown by SNR based approach, with

the maximum early termination gain being equal to 1.18. Note

that the gain can be further improved by a proper choice of

the threshold. For the experiment, the threshold value has

been fixed for BLER 5 · 10−4, while it can be dynamically

chosen based on the decoder performance. This can lead to a

greater early termination gain in the cost of the error correction

performance. Also, it is the only method that can be used for

the fully parallel implementation of considered permutation

decoding.

VI. CONCLUSION

A new permutation decoding method for RM codes is

presented. It has a similar error correction performance to

that of the SCL decoding algorithm while having the same

complexity. Since sorting operations are not used, it is more

feasible for hardware implementation. Also, a parallel imple-

mentation of the proposed permutation decoding algorithm

is possible, leading to latency improvement. Moreover, it

benefits from several early termination techniques, decreasing

the number of operations up to 23 times.

APPENDIX

Proof of Theorem 1: Observe that

n−1∑

i=0

min
{
0, y0i

(
1− 2û0

i

)}
=

∑

i∈F

min
{
0, y0i

(
1− 2û0

i

)}
.
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Fig. 6: The early termination gain of the repetition handling

approach.

So, to prove (7), one needs to show that

n−1∑

i=0

min
{
0, yli

(
1− 2ûl

i

)}

=

n−1∑

i=0

min
{
0, yl−1

i

(
1− 2ûl−1

i

)}
,

then the statement of the theorem is followed by recursion.

For simplicity, we will show that

min {0, y0 (1− 2 (u0 ⊕ u1))}+ min {0, y1 (1− 2u1)}

= min
{

0, f̃− (y0, y1) (1− 2u0)
}

+ min {0, f+ (y0, y1, u0) (1− 2u1)} ,

(11)

where u0, u1 ∈ {0, 1} and y0, y1 ∈ R. To show that (11)

holds, we will consider two cases, namely

sign (y0) sign (y1) = 1− 2u0

sign (y0) sign (y1) = (1− 2 (u0 ⊕ 1)) .

If

sign (y0) sign (y1) = 1− 2u0,

then min
{

0, f̃− (y0, y1) (1− 2u0)
}

= 0 and y0 (1− 2u0), y1
are both positive or negative. Thus,

min {0, y0 (1− 2 (u0 ⊕ u1))}+ min {0, y1 (1− 2u1)}

= min {0, y0 (1− 2u0) (1− 2u1)}+ min {0, y1 (1− 2u1)}

= min {0, y0 (1− 2u0) (1− 2u1) + y1 (1− 2u1)}

= min {0, y0 (1− 2 (u0 ⊕ u1)) + y1 (1− 2u1)}

= min {0, f+ (y0, y1, u0) (1− 2u1)}

and the statement holds.



Consider the second case, i.e. y0 (1− 2u0) and y1 have

different signs. To prove it, we need to consider four cases,

namely

y0 (1− 2 (u0 ⊕ u1)) < 0, |y0| > |y1| ,

y0 (1− 2 (u0 ⊕ u1)) < 0, |y0| ≤ |y1| ,

y0 (1− 2 (u0 ⊕ u1)) ≥ 0, |y0| > |y1| ,

y0 (1− 2 (u0 ⊕ u1)) ≥ 0, |y0| ≤ |y1| .

Here we prove the first case. All the others are proved in a

similar way.

Assume that y0 (1− 2 (u0 ⊕ u1)) < 0. Then

min {0, y0 (1− 2 (u0 ⊕ u1))}+ min {0, y1 (1− 2u1)}

= y0 (1− 2 (u0 ⊕ u1)) .

Let |y0| > |y1|, then

min {0, f+ (y0, y1, u0) (1− 2u1)}

= min {0, y0 (1− 2 (u0 ⊕ u1)) + y1 (1− 2u1)}

= y0 (1− 2 (u0 ⊕ u1)) + y1 (1− 2u1) ,

min
{

0, f̃− (y0, y1) (1− 2u0)
}

= |y1| (1− 2 (u0 ⊕ 1)) (1− 2u0) = − |y1| .

Since y1 (1− 2u1) >= 0, it follows that y1 (1− 2u1) =
|y1|, and the statement holds.

Proof of Theorem 2: Recall that
→0∫

→z

f(x)dx =

lim
u→z+

lim
v→0−

v∫

u

f(x)dx. To prove Theorem 2 we need the fol-

lowing lemma.

Lemma 1: Let f̃ (x) be the PDF of a normal distribution de-

fined on the interval (−∞, 0). Let us define n-fold convolution

of function f̃ (x) with itself as f̃n(x). Then

f̃n(z) =

→0∫

→z

f̃a(x)f̃b(z − x)dx,

a and b are some positive integers such that n = a+ b.

Proof: Let ∗ denotes the convolution operation. Convo-

lution of two functions [12, eq. (6.39)] is defined as

(

f̃ ∗ g̃
)

(z) =

∞∫

−∞

f̃(x)g̃(z − x)dx,

but, since the considered function f̃(x) is defined on the

interval (−∞, 0), we will use the following modification

(

f̃ ∗ g̃
)

(z) =

→0∫

→z

f̃(x)g̃(z − x)dx.

To prove the statement of the lemma ones require to show

that the considered convolution operation is associative. Then
((

f̃ ∗ g̃
)

∗ h̃
)

(t)

=

→0∫

→t

(

f̃ ∗ g̃
)

(x)h̃(t− x)dx

=

→0∫

s=→t





→0∫

u=→s

f̃ (u) g̃ (s− u) du



h (t− s) ds

=

→0∫

s=→t

→0∫

u=→s

f̃ (u) g̃ (s− u)h (t− s) duds

=

→0∫

u=→t

→u∫

s=→t

f̃ (u) g̃ (s− u)h (t− s) dsdu

=

→0∫

u=→t

→0∫

s=→t−u

f̃ (u) g̃ (s)h (t− s− u)dsdu

=

→0∫

u=→t

f̃ (u)





→0∫

s=→t−u

g̃ (s)h (t− s− u) ds



 du

=

→0∫

u=→t

f̃ (u) (g ∗ h) (t− u)du =
(

f̃ ∗
(

g̃ ∗ h̃
))

(t) .

Using this property, it is easy to see that

f̃n (z) =







(

f̃ ∗ f̃ ∗ · · · ∗ f̃
)

︸ ︷︷ ︸

n−1

∗f̃







(z)

=







(

f̃ ∗ f̃ ∗ · · · ∗ f̃
)

︸ ︷︷ ︸

n−2

∗f̃ ∗ f̃







(z)

=



f̃ ∗ f̃ ∗ · · · ∗ f̃
︸ ︷︷ ︸

a

∗ f̃ ∗ f̃ ∗ · · · ∗ f̃
︸ ︷︷ ︸

b



 (z)

=
(

f̃a ∗ f̃b

)

(z) =

→0∫

→z

f̃a(x)f̃b(z − x)dx.

Let z ≥ 0. Observe that F̃ (0) = 1 Then F̃n (0) = 1. Since

F̃n (x) ≤ F̃n (x+ ǫ) , ǫ > 0, if follows that F̃ (z) = 1, z ≥ 0
Consider the case z < 0. Let f , g be the PDF of random

variables X and Y respectively. Then the CDF of the sum of

two random variables X and Y [12, eq. (6.37)] is defined as

F (z) =

∫ ∫

x+y≤z

f (x) g (y) dxdy.

Since a random variable defined by the considered CDF is of

mixed type, we need to consider two cases. First, when both

random variables take negative values. Second, when one of



the random variables is negative, while another equals zero.

Let f̃n(x) be n-fold convolution of function f̃ (x) with itself

and let

tab (z) = F̃b(z)
(

1− F̃a(0−)
)

+ F̃a(z)
(

1− F̃b(0−)
)

.

Then

F̃n(z) =

z∫

−∞

f̃n(x)dx + tab (z)

=

z∫

y=−∞





→0∫

x=→y

f̃a(x)f̃b(y − x)dx



 dy + tab (z)

=

z∫

y=−∞

→0∫

x=→y

f̃a(x)f̃b(y − x)dxdy + tab (z)

=

z∫

y=−∞

→0∫

x=→z

f̃a(x)f̃b(y − x)dxdy

+

z∫

y=−∞

lim
u→y+

lim
v→z+

v∫

x=u

f̃a(x)f̃b(y − x)dxdy + tab (z)

=

→0∫

x=→z

z−x∫

y=−∞

f̃a(x)f̃b(y)dydx

+ lim
v→z+

v∫

x=−∞

→0∫

y=−∞

f̃a(x)f̃b(y)dydx+ tab (z)

=

→0∫

→z

F̃b (z − x) f̃a(x)dx

+ lim
v→z+

v∫

x=−∞

F̃b (0−) f̃a(x)dx + tab (z)

=

→0∫

→z

F̃b (z − x) f̃a(x)dx + F̃a (z) F̃b (0−) + tab (z)

=

→0∫

→z

F̃b (z − x) f̃a(x)dx + F̃b(z)
(

1− F̃a(0−)
)

+ F̃a(z)

and this concludes the proof of Theorem 2.
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