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Abstract—The problem of communication over binary dirty
paper (DP) using nested polar codes is considered. An improved
scheme, focusing on low delay, short to moderate blocklength
communication is proposed. Successive cancellation list (SCL)
decoding with properly defined CRC is used for channel coding,
and SCL encoding without CRC is used for source coding. The
performance is compared to the best achievable rate of any
coding scheme for binary DP using nested codes. A well known
problem with nested polar codes for binary DP is the existence
of frozen channel code bits that are not frozen in the source
code. These bits need to be retransmitted in a second phase of
the scheme, thus reducing transmission rate. We observe that the
number of these bits is typically either zero or a small number,
and provide an improved analysis, compared to that presented in
the literature, on the size of this set and on its scaling with respect
to the blocklength when the power constraint parameter is
sufficiently large or the channel crossover probability sufficiently
small.

I. INTRODUCTION

Consider the problem of transmission over a side informa-
tion channel with non-causal side information, also known
as the Gelfand-Pinsker (GP) problem. Applications include
watermarking codes, memories with defects, write once mem-
ories and transmission over broadcast channels. In the GP
problem the encoder needs to send a message M reliably
over some memoryless channel W (y | x, s) where x ∈ X
is the input to the channel, y ∈ Y is the output, and s ∈ S
is the channel state. For each transmitted symbol, x, the state
s is obtained by i.i.d. sampling of some given source random
variable S ∈ S. The encoder observes the channel state vector,
s = (s0, s1, . . . , sN−1), non-causally, prior to transmission. It
then constructs a codeword x = (x0, x1, . . . , xN−1) which
is a function of the message m and the state vector s.
The decoder observes only the vector of channel outputs,
y = (y0, y1, . . . , yN−1) and constructs the decoded codeword
m̂ from y.

The binary dirty paper (DP) problem depicted in Figure 1
is a side information problem with X = S = Y = {0, 1}, S ∼
Ber(1/2) (Ber(q) denotes a Bernoulli (0, 1) random variable
with probabilities (1 − q, q)), and the channel W (y | x, s) is
defined by

Y = X ⊕ S ⊕ Z

where ⊕ denotes XOR, and Z ∼ Ber(p) for p ∈ (0, 1/2).
In this problem there is a “power constraint” which comes
in one of two possible forms. The first form is an average
power constraint: Given some D ∈ (0, 1/2), on average a
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Fig. 1. The binary dirty paper problem.

fraction at most D of the channel input bits, X , are ones.
That is, EwH(X)/N ≤ D where X is the codeword and wH()
denotes Hamming weight. The second form is an individual
codeword power constraint, which is stronger than the average
power constraint. In this case, each codeword, x, needs to
satisfy wH(x)/N ≤ D. An error event in the communication
happens when either the receiver does not decode the correct
transmitted message, or (under the individual codeword power
constraint) when the encoder cannot obtain a codeword that
satisfies the required power constraint. For D > p the capacity
of the binary DP problem is given by

CDP = h2(D)− h2(p)

where h2(·) is the binary entropy function (base 2). Following
[1], we will assume in this paper that D > p since for the other
case, D < p, the capacity as a function of D can be achieved
by time sharing with the point with D = 0 and R = 0.

In [1, Section VIII] Arikan’s polar codes [2] were extended
to the problem of binary DP using a polar nested codes
structure. Given some pair (p,D) such that 0 < p < D < 1/2
and blocklength N , one constructs two polar codes with
blocklength N . The first is a standard binary polar code, Cc,
with frozen set Fc, designed for reliable communication over
the binary symmetric channel, BSC(p). The second code, Cs,
with frozen set Fs, is a binary polar code for lossy source
coding (quantization) [1] of the source S with distortion D.
The design of Cs is very similar to the design of a polar
channel code for a BSC(D) channel, except for the threshold
defining its frozen set. The polar coding scheme for the binary
DP problem was formulated in [1] under an average power
constraint but it is also valid under an individual codeword
power constraint [3]. To describe the method, first assume that
Fc ⊆ Fs such that Cc and Cs are nested polar codes. As usual,
denote by u the message and frozen bits of a polar code,
and by c = uGN the corresponding polar codeword where
GN is the generating matrix defined in [2, Eq. (70)]. The
encoder first sets uFc

= 0 and uFs\Fc
= m where m denotes

the information bits that need to be transmitted. This defines
a polar source code that we denote by Cs (Fs,uFs(m)).
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The encoder then observes s and obtains a polar codeword
s′ ∈ Cs (Fs,uFs

(m)) that satisfies the power constraint (e.g.,
under the individual codeword power constraint, wH(s⊕s′) ≤
D) using a successive cancellation (SC) encoding algorithm
which is a randomized version of the standard SC decoding
algorithm [2] (as explained in [1], in practice the standard
SC decoding algorithm can be used by the encoder without
modification, but the proof requires the randomized version
of the algorithm). Now the encoder transmits x = s ⊕ s′.
The decoder receives y = x ⊕ s ⊕ z = s′ ⊕ z. Noting
that s′ ∈ Cc (Fc,uFc

= 0), and that Fc was designed to
obtain a good channel code for the BSC(p), the decoder can
decode ûF c

c
(F cc denotes the complementary of Fc) from y

using the SC decoding algorithm. The decoded message is
obtained as m̂ = ûFs\Fc

. The rate of this communication
scheme is R = (|Fs| − |Fc|)/N . Since for N large enough
|Fs|/N → h2(D) and |Fc|/N → h2(p), we have R → CDP.
That is, the scheme approaches capacity.

When the assumption Fc ⊆ Fs is violated, it was suggested
[1] to use a two phase transmission scheme. The first phase
is identical to the one described above. In the second phase,
we transmit uFc∩F c

s
(or accumulate the bits of uFc∩F c

s
of

many first phase transmissions and send them together). In
the second phase the transmitter ignores the power constraint
and transmits x = c⊕ s such that the state noise is canceled.
However, if |Fc ∩ F cs | is small then the damage to the power
constraint will be negligible (we can compensate by decreasing
the design distortion D of Cs). The decoder starts by decoding
uFc∩F c

s
from the second phase transmission, and then it can

apply the decoding described above for the case Fc ⊆ Fs.
Another possibility is to transmit in frames using the chaining
construction [4] as used in [5] for achieving Marton’s region
for broadcast channels. When using a sufficiently large number
of frames, the rate loss of the chaining construction becomes
negligible. However, the use of L frames increases latency
by a factor of L, and hence is not suitable for low delay
communications.

In this paper we propose an improved, low delay com-
munication scheme over binary DP using nested polar codes
[1], with CRC aided SC list (SCL) decoding [6] for channel
coding, and SCL encoding without CRC for source coding.
The performance is compared to the best achievable rate of any
coding scheme for binary DP using nested codes. We observed
that typically the set Fc ∩ F cs , that needs to be retransmitted
in the second phase of the scheme [1] is zero for D−p larger
than some small threshold. Our main theoretical contribution
is an improved analysis compared to that presented in [1] on
|Fc ∩ F cs | and on its scaling with respect to the blocklength
when D is sufficiently large or p sufficiently small.

II. POLAR SCL CODING FOR BINARY DIRTY PAPER

We now discuss the design of an SCL coding scheme based
on the SCL decoder [6] and the nested polar coding scheme
of [1]. We first observe that lists are useful for improved lossy
source coding since the encoder can choose the least distorted
codeword from several possibilities. For example, using an

SCL encoder with Ls = 50 lists to encode a Ber(1/2) source
at rate 0.258, with a polar code with blocklength N = 1024,
the distortion was 0.217, compared to 0.226 when lists are not
used. The theoretical minimum distortion for this rate is 0.21.
Repeating the experiment with N = 4096 yielded a distortion
of 0.215 with Ls = 50 lists compared to a distortion of 0.223
without lists. Although the use of CRC verification provides a
significant reduction in the error rate for channel coding [6], it
is not helpful for lossy source coding. This is due to the fact
that in this problem we are only interested in the distortion
between the source vector and any codeword. Hence a range
of codewords which are sufficiently close to the source vector
can be used, rather than a single preferred codeword as in
the channel coding problem, making the CRC rule irrelevant.
Hence, we use SCL encoder with Ls lists and without CRC,
and SCL decoder with Lc lists and with CRC.

The other important design consideration relates to the
proper definition of the CRC code. In [6], r CRC bits are
computed from N − |Fc| − r information bits. The r CRC
bits are then appended to the N − |Fc| − r information bits.
For polar coding over side information channels it would be
problematic to compute the CRC this way since this would
impose a difficult constraint on the encoder side (how to
output a valid codeword for channel coding that satisfies the
required distortion bound). To solve this problem, we compute
the r CRC bits only from the message bits that need to
be transmitted to the decoder. Without using CRC there are
|Fs ∩ F cc | message bits. When using CRC we reduce this
number to |Fs ∩ F cc | − r and compute the r CRC bits from
these message bits. We then append the r CRC bits to the
|Fs ∩ F cc | − r message bits, and place them in Fs ∩ F cc (as
in [1] we set zeros in Fc). At the decoder side, in the last
decoding stage only those lists for which the CRC is satisfied
are considered as in [6].

As in [1, Eqs. (18)-(19)], the frozen sets of the codes Cs
and Cc are defined by

Fs =
{
i : Z

(i)
N (D) ≥ δN (D)

}
(1)

Fc =
{
i : Z

(i)
N (p) ≥ δN (p)

}
(2)

where Z(i)
N (D) (Z(i)

N (p), respectively) is the Bhattacharyya pa-
rameter of the i-th sub-channel after1 n = logN polarization
steps of a BSC(D) (BSC(p)) channel. In [1], δN (D) = 1−δ2N
and δN (p) = δN . Setting δN = δ/N , yields error probability
at most δ and, by [1, Lemmas 5, 6 and 7], average distortion at
most D+

√
2δ. Thus, to meet a required distortion constraint,

D, we design Fs using a BSC(D′) channel with D′ =
D −

√
2δ. A similar statement can also be made regarding

the individual codeword power constraint [3, Theorem 2]. In
practice we set the thresholds δN (p) (δN (D), respectively)
such that the performance of a polar code under SCL decoding
(encoding) with the set Fc (Fs) yields the required error rate
(distortion) performance.

1The basis of all the logarithms in this paper is 2.



III. ANALYSIS OF |Fc ∩ F cs |
As was explained above, for low delay communications with

polar codes using our SCL coding variant of the method in
[1], |Fc ∩ F cs | needs to be small (ideally zero).

Consider the definition of Fs and Fc in (1)-(2) and suppose
that δN (D) = 1− δ2N and δN (p) = δN as in [1]. Then

Fc∩F cs =
{
i : Z

(i)
N (p) ≥ δN and Z

(i)
N (D) < 1− δ2N

}
(3)

Define
F̃c =

{
i : Z

(i)
N (p) ≥ 1− δ2N

}

The analysis in [1] asserts the following

|Fc ∩ F cs | ≤
∣∣∣Fc \ F̃c

∣∣∣ = o(N)

where the inequality is due to the degradedness of the sub-
channel W (i)

N (D), corresponding to a BSC(D), with respect
to W

(i)
N (p), corresponding to a BSC(p) [1]. The equality is

due to the polarization of the BSC(p) channel. A more refined
argument, using scaling results of polar codes [7], [8] shows

|Fc ∩ F cs | ≤
∣∣∣Fc \ F̃c

∣∣∣ = O(N1−α) (4)

for α = (1 + 1/0.2127) = 0.175 (this can be verified using
the proofs of Theorem 1 and Theorem 2 in [8]).

However, we observed that for small to moderate values of
N , in the above bound of [1] (now formulated in terms of
general threshold values, δN (D) and δN (p)),

|Fc ∩ F cs | ≤
∣∣∣F̂c
∣∣∣ ∆
=
∣∣∣
{
i : δN (p) ≤ Z(i)

N (p) < δN (D)
}∣∣∣

|F̂c| is quite large for actual practical thresholds, δN (D)
and δN (p), in the definitions of Fs and Fc. Fortunately, we
have observed empirically that even though |F̂c| tends to be
relatively large, |Fc ∩ F cs | tends to be much smaller, and it
vanishes for sufficiently large D or sufficiently small p. For
example, consider the case where Lc = Ls = 8 and frozen
set thresholds designed for block error rate below 0.001 for
channel crossover p, and average distortion below D. Then for
N = 1024 and p ∈ {0.11, 0.21, 0.31} we have Fc ∩ F cs = ∅
for D − p ≥ 0.1. For larger values of N , |Fc ∩ F cs | vanishes
even starting from smaller values of D−p. On the other hand,
|F̂c| is much larger, e.g. for p = 0.11 and D = 0.25, 0.45 we
have |F̂c/N | = 0.175, 0.207 for blocklength N = 1024, and
|F̂c/N | = 0.157, 0.18 for N = 2048.

We now study the behavior of the set Fc ∩ F cs , which
represents the deviation from perfect code nestedness, and
prove that for p sufficiently small or D sufficiently large,
|Fc ∩ F cs | = O(Nξ) where ξ > 0 can be chosen arbitrarily
small, thus improving (4) significantly for the case of suffi-
ciently small p or sufficiently large D. In fact, we prove this
result for any pair of binary memoryless symmetric (BMS)
channels, W (p) and W (D), with Bhattacharyya parameters
Z(p) and Z(D), without requiring degradedness of W (D)
with respect to W (p), which is important for the generalization
of the results for side information channels beyond binary DP.

Consider the random processes Zn(p) and Zn(D), n =
0, 1, . . . , logN . They both follow the same sequence of
Arikan’s channel transformations, defined by [2, Eq. (22)]
if Bn = 0 and by [2, Eq. (23)] if Bn = 1, where
〈B1, B2, . . . , BlogN 〉 defines the index of some polar sub-
channel. Initially Z0(p) = Z(p) and Z0(D) = Z(D). Denote

ε1,n
∆
= Zn(p), ε2,n

∆
= 1− Zn(D) (5)

In particular, ε1,0 = Z(p) and ε2,0 = 1 − Z(D). Now, if
Bn+1 = 1 then

(ε1,n+1, ε2,n+1) =
(
ε21,n, 1− (Zn(D))2

)

=
(
ε21,n, 1− (1− ε2,n)2

)
=
(
ε21,n, 2ε2,n − ε22,n

)
(6)

If Bn+1 = 0 then

(ε1,n+1, ε2,n+1) ≤
(
2ε1,n − ε21,n, ψ(ε2,n)

)
(7)

ψ(x)
∆
= 1− (1− x)

√
1 + 2x− x2

where the inequality actually denotes two inequalities, one for
each term. These inequalities follow from the following well
known relations, e.g. [2], [7, Eq. (13)], for Bn+1 = 0,

Zn+1(p) ≤ 2Zn(p)− Zn(p)2 (8)

Zn+1(D) ≥ Zn(D)
√
2− (Zn(D))2 (9)

Lemma 1. Consider the process (ε̃1,n, ε̃2,n) defined by ε̃1,0 =
Z(p), ε̃2,0 = 1− Z(D), and, for n = 1, 2, . . . , logN ,

(ε̃1,n+1, ε̃2,n+1) =

{ (
ε̃21,n, 2ε̃2,n − ε̃22,n

)
if Bn+1 = 1(

2ε̃1,n − ε̃21,n, ψ(ε̃2,n)
)

if Bn+1 = 0
(10)

For n = logN we have N possible realizations of the process
corresponding to all possible sub-channels. The number of
realizations for which both ε̃1,logN ≥ δN (p) and ε̃2,logN >
1− δN (D) is an upper bound on |Fc ∩ F cs |.

The proof follows from (6)-(7) and the fact that all the
functions that appear in (10), including ψ(), are monotonically
increasing for ε̃i,n ∈ (0, 1), i = 1, 2.

We note that the bound provided by Lemma 1 on |Fc ∩
F cs | is monotonically increasing in Z(p) and monotonically
decreasing in Z(D). We used Lemma 1 to compute bounds
on |Fc ∩ F cs | for some p and D values, and compare with
the actual value of |Fc ∩ F cs |. δN (p) and δN (D) were set to
obtain a block error probability 0.001, and average distortion
D with Lc = 8 and Ls = 8. As an example, for N = 1024
and p = 0.11 (p = 0.21, respectively), |Fc ∩ F cs | vanishes for
D−p ≥ 0.1 (D−p ≥ 0.1) while the bound requires D−p ≥
0.16 (D − p ≥ 0.14). For N = 2048 and p = 0.11 (same
results for p = 0.21), |Fc ∩ F cs | vanishes for D − p ≥ 0.08
while the bound requires D − p ≥ 0.14.

We proceed the analysis by defining ε̂1,n, ε̂2,n by

ε̂1,n
∆
= Zn(p), ε̂2,n

∆
= 1− (Zn(D))

2



such that ε̂1,n = ε1,n (see (5)). Similarly to (6) we have that
if Bn+1 = 1 then

(ε̂1,n+1, ε̂2,n+1) =
(
ε̂21,n, 1− (Zn(D))4

)
=(

ε̂21,n, 1− (1− ε̂2,n)2
)
=
(
ε̂21,n, 2ε̂2,n − ε̂22,n

)

Similarly to (7), if Bn+1 = 0 then

(ε̂1,n+1, ε̂2,n+1) ≤
(
2ε̂1,n − ε̂21,n, ε̂22,n

)

The inequality for the left terms is due to (8) and the inequality
for the right terms is due to (9) that can be rewritten as

(Zn+1(D))
2 ≥ (Zn(D))

2
(
2− (Zn(D))

2
)

Thus we have

(ε̂1,n+1, ε̂2,n+1)

{
=
(
ε̂21,n, 2ε̂2,n − ε̂22,n

)
if Bn+1 = 1

≤
(
2ε̂1,n − ε̂21,n, ε̂22,n

)
if Bn+1 = 0

(11)
We now claim the following key lemma.

Lemma 2.
ε̂1,nε̂2,n < γ ∀n

where γ = γ(Z(p), Z(D)) becomes arbitrarily small for Z(p)
sufficiently small or Z(D) sufficiently large.

Proof. For notational convenience, denote by ε̂1
∆
= ε̂1,n,

ε̂2
∆
= ε̂2,n, and

Rn
∆
= log

ε̂1
1− ε̂1

+ log
ε̂2

1− ε̂2
Hence,

Rn+1





= log
ε̂21

1−ε̂21
+ log

2ε̂2−ε̂22
(1−ε̂2)2 if Bn+1 = 1

≤ log
2ε̂1−ε̂21
(1−ε̂1)2 + log

ε̂22
1−ε̂22

if Bn+1 = 0
(12)

We will first show that for all n, if Rn ≤ A, where A < 0, then
Rn+1 ≤ A. For that, it is sufficient to consider the first case
in (12) (Bn+1 = 1), since the same proof holds for the other
case, Bn+1 = 0. Now, the first case in (12) can be written as

Rn+1 = Rn + log
ε̂1(2− ε̂2)

(1 + ε̂1)(1− ε̂2)
(13)

Since Rn < A < 0, we have
ε̂1

1− ε̂1
· ε̂2
1− ε̂2

< 1

Hence, ε̂1 + ε̂2 < 1. Therefore,
2− ε̂2
1− ε̂2

= 1 +
1

1− ε̂2
< 1 +

1

ε̂1
=
ε̂1 + 1

ε̂1

Using this inequality in (13) yields Rn+1 < Rn ≤ A as
claimed. We conclude that if R0 = A < 0 then Rn ≤ R0

for all n, so that

log ε̂1,n + log ε̂2,n < Rn ≤ R0 =

log
Z(p)

1− Z(p)
+ log

1− Z2(D)

Z2(D)

∆
= log γ(Z(p), Z(D))

where the first inequality follows from the fact that 1− ε̂i,n <
1, for i = 1, 2. Note that γ(Z(p), Z(D)) can be made

arbitrarily small by choosing Z(p) sufficiently small or Z(D)
sufficiently large.

We can now state and prove our main result for the nested
codes property.

Theorem 1. Consider the case where W (p) and W (D)
are BMS channels with Bhattacharyya parameters Z(p) and
Z(D). Given 0 < Z(p) < Z(D) < 1, suppose either a small
enough Z(p) or a large enough Z(D). Then, |Fc ∩ F cs | =
O(Nξ) where ξ > 0 can be set arbitrarily small.

Proof. By (11) we have

ε̂1,n+1ε̂2,n+1 ≤
{
ε̂21,nε̂2,n(2− ε̂2,n) if Bn+1 = 1
ε̂1,n(2− ε̂1,n)ε̂22,n if Bn+1 = 0

Hence,

ρn
∆
=
ε̂1,n+1ε̂2,n+1

ε̂1,nε̂2,n
≤
{
ε̂1,n(2− ε̂2,n) if Bn+1 = 1
ε̂2,n(2− ε̂1,n) if Bn+1 = 0

Now, since by Lemma 2 either ε̂1,n <
√
γ or ε̂2,n <

√
γ, we

conclude that w.p. 1/2, ρn ≤ 2 and w.p. 1/2, ρn ≤ 2
√
γ. That

is,
ε̂1,n+1ε̂2,n+1

ε̂1,nε̂2,n
≤
{

2 if B̃n+1 = 0

2
√
γ if B̃n+1 = 1

where, similarly to {Bi}, the random variables {B̃i} are
independent, binary, uniformly distributed (i.e., B̃i = (0, 1)
w.p. (1/2, 1/2)).

Following [2, Section IV.B], define, for η ∈ (0, 1/2), the
event

Un(η)
∆
=

{
n∑

i=1

B̃i > (
1

2
− η)n

}

Using the same argument as in [2, Section IV.B] we know that
if the event Un(η) holds then

ε̂1,nε̂2,n ≤ ζ ·
[
20.5+ηζ0.5−η

]n
(14)

for ζ = 2
√
γ. It is also known [2, Section IV.B], by Chernoff’s

bound, that

P (Un(η)) ≥ 1− 2−n[1−h2(0.5−η)]

Now, (14) implies that

min(ε̂1,n, ε̂2,n) ≤
√
ζ ·
[
20.5+ηζ0.5−η

]n/2

Setting n = logN we obtain

P
(
min

(
ZlogN (p), 1− Z2

logN (D)
)
≤ N−a

)
≥ 1−N−1+ξ

where ξ = h2(0.5 − η). Furthermore, ξ > 0 can be made
arbitrarily small by setting η → 0.5−. Recall that if either
Z(p) is small enough or Z(D) large enough, then γ can
be made as small as desired. Hence a can be set as large
as desired (any a > 2 is sufficient to prove the theorem).
Recalling the connection between the random process Zn(p)
(Zn(D), respectively) for n = logN and the values of the
sub-channels, Z(i)

N (p) (Z(i)
N (D)) [2], we obtain

∣∣∣
{
i : Z

(i)
N (p) > N−a and Z

(i)
N (D) <

√
1−N−a

}∣∣∣ < Nξ

Combining this with (3) concludes the proof (since we can
take a > 2).



IV. SIMULATION RESULTS

We now present results for our polar SCL scheme to the bi-
nary DP problem. All the results presented here were achieved
without the need to use retransmission, i.e., Fs ∩ F sc = ∅ in
all the reported cases.

Figure 2 presents our results for p = 0.11 and D ∈
0.21, 0.31, 0.41. We used Lc = 8 lists and CRC of size 8
in the decoder, and Ls ∈ {1, 50} in the encoder. For each
experiment the figure shows the maximum polar SCL rate un-
der the constraint of error rate below εp = 0.001 and average
distortion below D. It can be seen how increasing the number
of lists in the source encoder increases the achievable rate. The

Fig. 2. Distortion vs. rate for the binary DP problem with p = 0.11 and
D ∈ {0.21, 0.31, 0.41}. Simulation used Lc = 8 and various blocklengths
and Ls values. Block error rate is at most 10−3 for all experiments.

figure also shows the approximated maximum achievable rate
of any nested coding scheme for binary DP. It was obtained
using the approximated maximum achievable channel coding
rate, and minimum achievable lossy compression rate in a
finite blocklength regime, in [9, Theorem 52] and [10, Eqs.
(1), (11) and (93)] respectively. Since the code is nested, its
approximated binary DP maximum achievable rate is obtained
by subtracting these two approximations from [9] and [10]. Let
N be the blocklength. Denote by εp the block error rate, and
by εD the distortion constraint violation rate. Then

RGP (N,D, p, εp, εD) = RD −Rp

RD ≈ 1− h2(D) +

√
V (D)

N
Q−1 (εD)

V (D) = D log2D + (1−D) log2(1−D)− h22(D)

Rp ≈ 1− h2(p) +
logN

2N

−
√
p(1− p)
N

log

(
1− p
p

)
Q−1 (εp)

where Q−1() is the inverse of the standard Gaussian comple-
mentary cumulative distribution function. The approximated
bounds in Fig. 2 were obtained by setting εp = 0.001 and
εD = 0.5, which means that we are taking the standard rate
distortion bound for the lossy source coding part (since in this
experiment we only set an average distortion constraint, as in

[1]). Repeating the same experiment with εD = 0.01 yields an
even smaller gap between the achievable rates using the SCL
polar coding scheme and the bounds.

We have also compared our polar SCL coding scheme to
the superposition coding scheme in [11] for long blocklength
codes, using LDPC codes for channel coding and convolu-
tional codes for source coding. In [11] the blocklength was
N=100,000. In our experiments we used both N = 217 =
131,072 and N = 216 = 65,536. The results, shown in
Table I, show comparable results for long blocklength codes.
The SCL results were tested 100 times as in [11]. We note
that the method in [11] required considerable computational
resources (150–200 belief propagation iterations and 10–15
BCJR iterations with 1024 states in the decoding trellis).
Results for shorter blocklengths are not reported in [11].

TABLE I
LDPC V.S. SCL BINARY DP PERFORMANCE, p = 0.1, D = 0.3

Description Block size DP Rate Bit Error Rate
LDPC scheme 100K 0.36 1.28× 10−5

SCL, Lc = 4, Ls = 1 130K 0.353 5.9× 10−6

SCL, Lc = 8, Ls = 8 130K 0.357 5.6× 10−6

SCL, Lc = 16, Ls = 50 130K 0.362 5.0× 10−6

SCL, Lc = 16, Ls = 50 65K 0.356 1.2× 10−5

Capacity 0.42
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