
ar
X

iv
:1

90
1.

00
84

4v
3

 [
cs

.D
C

]
 7

 A
pr

 2
02

0
1

Machine Learning at the Wireless Edge: Distributed

Stochastic Gradient Descent Over-the-Air
Mohammad Mohammadi Amiri, Student Member, IEEE, and Deniz Gündüz, Senior Member, IEEE

Abstract—We study collaborative/ federated machine learn-
ing (ML) at the wireless edge, where power and bandwidth-
limited wireless devices with local datasets carry out distributed
stochastic gradient descent (DSGD) with the help of a remote
parameter server (PS). Standard approaches assume separate
computation and communication, where local gradient estimates
are compressed and transmitted to the PS over orthogonal links.
Following this digital approach, we introduce D-DSGD, in which
the wireless devices employ gradient quantization and error accu-
mulation, and transmit their gradient estimates to the PS over the
underlying multiple access channel (MAC). We then introduce a
novel analog scheme, called A-DSGD, which exploits the additive
nature of the wireless MAC for over-the-air gradient computation,
and provide convergence analysis for this approach. In A-DSGD,
the devices first sparsify their gradient estimates, and then project
them to a lower dimensional space imposed by the available
channel bandwidth. These projections are sent directly over the
MAC without employing any digital code. Numerical results show
that A-DSGD converges faster than D-DSGD thanks to its more
efficient use of the limited bandwidth and the natural alignment
of the gradient estimates over the channel. The improvement
is particularly compelling at low power and low bandwidth
regimes. We also illustrate for a classification problem that, A-
DSGD is more robust to bias in data distribution across devices,
while D-DSGD significantly outperforms other digital schemes
in the literature. We also observe that both D-DSGD and A-
DSGD perform better by increasing the number of devices (while
keeping the total dataset size constant), showing their ability in
harnessing the computation power of edge devices. The lack of
quantization and channel encoding/decoding in A-DSGD further
speeds up communication, making it very attractive for low-
latency ML applications at the wireless edge.

I. INTRODUCTION

Many emerging technologies involve massive amounts of

data collection, and collaborative intelligence that can process

and make sense of this data. Internet of things (IoT), au-

tonomous driving, or extended reality technologies are prime

examples, where data from sensors must be continuously

collected, communicated, and processed to make inferences

about the state of a system, or predictions about its future

states. Many specialized machine learning (ML) algorithms

are being developed tailored for various types of sensor data;

however, the current trend focuses on centralized algorithms,

where a powerful learning algorithm, often a neural network,

is trained on a massive dataset. While this inherently assumes

M. Mohammadi Amiri was with the Department of Electrical and Electronic
Engineering, Imperial College London. He is now with the Department of
Electrical Engineering, Princeton University, Princeton, NJ 08544, USA (e-
mail: mamiri@princeton.edu).

D. Gündüz is with the Department of Electrical and Electronic En-
gineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
d.gunduz@imperial.ac.uk).

This work has been supported by the European Research Council (ERC)
through Starting Grant BEACON (agreement No. 677854).

the availability of data at a central processor, in the case of

wireless edge devices, transmitting the collected data to a

central processor in a reliable manner may be too costly in

terms of energy and bandwidth, may introduce too much delay,

and may infringe users’ constraints. Therefore, a much more

desirable and practically viable alternative is to develop collab-

orative ML techniques, also known as federated learning (FL),

that can exploit the local datasets and processing capabilities

of edge devices, requiring limited communications (see [1]

for a survey of applications of edge intelligence and existing

approaches to enable it). In this paper, we consider FL at the

wireless network edge, where devices with local datasets with

the help of a central parameter server (PS) collaboratively train

a learning model.

ML problems often require the minimization of the empir-

ical loss function

F (θ) =
1

|B|
∑

u∈B
f (θ,u) , (1)

where θ ∈ R
d denotes the model parameters to be optimized,

B represents the dataset with size |B|, and f(·) is the loss

function defined by the learning model. The minimization of

(1) is typically carried out through iterative gradient descent

(GD), in which the model parameters at the t-th iteration, θt,

are updated according to

θt+1 = θt − ηt∇F (θt) = θt − ηt
1

|B|
∑

u∈B
∇f (θt,u) , (2)

where ηt is the learning rate at iteration t. However, in the case

of massive datasets each iteration of GD becomes prohibitively

demanding. Instead, in stochastic GD (SGD) the parameter

vector is updated with a stochastic gradient

θt+1 = θt − ηt · g (θt) , (3)

which satisfies E [g (θt)] = ∇F (θt). SGD also allows paral-

lelization when the dataset is distributed across tens or even

hundreds of devices. In distributed SGD (DSGD), devices

process data samples in parallel while maintaining a globally

consistent parameter vector θt. In each iteration, device m
computes a gradient vector based on the global parameter

vector with respect to its local dataset Bm, and sends the

result to the PS. Once the PS receives the computed gradients

from all the devices, it updates the global parameter vector

according to

θt+1 = θt − ηt
1

M

∑M

m=1
gm (θt) , (4)

where M denotes the number of devices, and gm (θt) ,
1

|Bm|
∑

u∈Bm
∇f (θt,u) is the stochastic gradient of the cur-

http://arxiv.org/abs/1901.00844v3

2

rent model computed at device m, m ∈ [M], using the locally

available portion of the dataset, Bm.

While the communication bottleneck in DSGD has been

widely acknowledged in the literature [2]–[4], ML literature

ignores the characteristics of the communication channel, and

simply focus on reducing the amount of data transmitted from

each device to the PS. In this paper, we consider DSGD

over a shared wireless medium, and explicitly model the

channel from the devices to the PS, and treat each iteration

of the DSGD algorithm as a distributed wireless computation

problem, taking into account the physical properties of the

wireless medium. We will provide two distinct approaches for

this problem, based on digital and analog communications,

respectively. We will show that analog “over-the-air” compu-

tation can significantly speed up wireless DSGD, particularly

in bandwidth-limited and low-power settings, typically expe-

rienced by wireless edge devices.

A. Prior Works

Extensive efforts have been made in recent years to enable

collaborative learning across distributed mobile devices. In the

FL framework [5]–[7], devices collaboratively learn a model

with the help of a PS. In practical implementations, bandwidth

of the communication channel from the devices to the PS is

the main bottleneck in FL [5]–[12]. Therefore, it is essential to

reduce the communication requirements of collaborative ML.

To this end, three main approaches, namely quantization, spar-

sification, and local updates, and their various combinations

have been considered in the literature. Quantization methods

implement lossy compression of the gradient vectors by quan-

tizing each of their entries to a finite-bit low precision value

[2], [4], [13]–[18]. Sparsification reduces the communication

time by sending only some values of the gradient vectors [3],

[19]–[24], and can be considered as another way of lossy

compression, but it is assumed that the chosen entries of the

gradient vectors are transmitted reliably, e.g., at a very high

resolution. Another approach is to reduce the frequency of

communication from the devices by allowing local parameter

updates [5]–[12], [25], [26]. Although there are many papers

in the FL literature, most of these works ignore the physical

and network layer aspects of the problem, which are essential

for FL implementation at the network edge, where the training

takes place over a shared wireless medium. To the best of our

knowledge, this is the first paper to address the bandwidth and

power limitations in collaborative edge learning by taking into

account the physical properties of the wireless medium.

B. Our Contributions

Most of the current literature on distributed ML and FL

ignore the physical layer aspects of communication, and

consider interference-and-error-free links from the devices to

the PS to communicate their local gradient estimates, possibly

in compressed form to reduce the amount of information

that must be transmitted. Due to the prevalence of wireless

networks and the increasing availability of edge devices, e.g.,

mobile phones, sensors, etc., for large-scale data collection

and learning, we consider a wireless multiple access chan-

nel (MAC) from the devices to the PS, through which the

PS receives the gradients computed by the devices at each

iteration of the DSGD algorithm. The standard approach to

this problem, aligned with the literature on FL, is a separate

approach to computation and communication.

We first follow this separation-based approach, and propose

a digital DSGD scheme, which will be called D-DSGD. In

this scheme, the devices first compress their gradient estimates

to a finite number of bits through quantization. Then, some

access scheme, e.g., time, frequency or code division multiple

access, combined with error correction coding is employed to

transmit compressed gradient estimates to the PS in a reliable

manner. In this work, to understand the performance limits of

the digital approach, we assume capacity-achieving channel

codes are utilized at the devices. The optimal solution for

this scheme will require carefully allocating channel resources

across the devices and the available power of each device

across iterations, together with an efficient gradient quantiza-

tion scheme. For gradient compression, we will consider state-

of-the-art quantization approaches together with local error

accumulation [21].

It is known that separation-based approaches to distributed

compression and computing over wireless channels are sub-

optimal in general [27], [28]. We propose an alternative analog

communication approach, in which the devices transmit their

local gradient estimates directly over the wireless channel,

extending our previous work in [29]. This scheme is motivated

by the fact that the PS is not interested in the individual

gradient vectors, but in their average, and the wireless MAC

automatically provides the PS with the sum of the gradients

(plus a noise term). However, the bandwidth available at each

iteration may not be sufficient to transmit the whole gradient

vector in an uncoded fashion. Hence, to compress the gradients

to the dimension of the limited bandwidth resources, we em-

ploy an analog compression scheme inspired by compressive

sensing, which was previously introduced in [30] for analog

image transmission over bandwidth-limited wireless channels.

In this analog computation scheme, called A-DSGD, devices

first sparsify their local gradient estimates (after adding the

accumulated local error). These sparsified gradient vectors are

projected to the channel bandwidth using a pseudo-random

measurement matrix, as in compressive sensing. Then, all the

devices transmit the resultant real-valued vectors to the PS

simultaneously in an analog fashion, by simply scaling them

to meet the average transmit power constraints. The PS tries to

reconstruct the sum of the actual sparse gradient vectors from

its noisy observation. We use approximate message passing

(AMP) algorithm to do this at the PS [31]. We also prove the

convergence of the A-DSGD algorithm considering a strongly

convex loss function.

Numerical results show that the proposed analog scheme

A-DSGD has a better convergence behaviour compared to

its digital counterpart, while D-DSGD outperforms the digital

schemes studied in [2], [16]. Moreover, we observe that the

performance of A-DSGD degrades only slightly by introduc-

ing bias in the datasets across the devices; while the degrada-

tion in D-DSGD is larger, it still outperforms other digital

3

approaches [2], [16] by a large margin. The performances

of both A-DSGD and D-DSGD algorithms improve with

the number of devices, keeping the total size of the dataset

constant, despite the inherent resource sharing approach for

D-DSGD. Furthermore, the performance of A-DSGD degrades

only slightly even with a significant reduction in the available

average transmit power. We argue that, these benefits of A-

DSGD are due to the inherent ability of analog communica-

tions to benefit from the signal-superposition characteristic of

the wireless medium. Also, reduction in the communication

bandwidth of the MAC deteriorates the performance of D-

DSGD much more compared to A-DSGD.

A similar over-the-air computation approach is also con-

sidered in parallel works [32], [33]. These works consider,

respectively, SISO and SIMO fading MACs from the devices

to the PS, and focus on aligning the gradient estimates received

from different devices to have the same power at the PS to

allow correct computation by performing power control and

device selection. Our work is extended to a fading MAC

model in [34]. The distinctive contributions of our work

with respect to [32] and [33] are i) the introduction of a

purely digital separate gradient compression and communica-

tion scheme; ii) the consideration of a bandwidth-constrained

channel, which requires (digital or analog) compression of

the gradient estimates; iii) error accumulation at the devices

to improve the quality of gradient estimates by keeping

track of the information lost due to compression; and iv)

power allocation across iterations to dynamically adapt to

the diminishing gradient variance. We also remark that both

[32] and [33] consider transmitting model updates, while

we focus on gradient transmission, which is more energy-

efficient as each device transmits only the innovation obtained

through gradient descent at that particular iteration (together

with error accumulation), whereas model transmission wastes

a significant portion of the transmit power by sending the

already known previous model parameters from all the devices.

Our work can easily be combined with the federated averaging

algorithm in [6], where multiple SGD iterations are carried

out locally before forwarding the models differences to the

PS. We can also apply momentum correction [3], which

improves the convergence speed of the DSGD algorithms with

communication delay.

C. Notations

R represents the set of real values. For positive integer i, we

let [i] , {1, . . . , i}, and 1i denotes a column vector of length

i with all entries 1. N
(

0, σ2
)

denotes a zero-mean normal

distribution with variance σ2. We denote the cardinality of set

A by |A|, and l2 norm of vector x by ‖x‖. Also, we represent

the l2 induced norm of a rectangular matrix A by ‖A‖.

II. SYSTEM MODEL

We consider federated SGD at the wireless edge, where M
wireless edge devices employ SGD with the help of a remote

PS, to which they are connected through a noisy wireless MAC

(see Fig. 1). Let Bm denote the set of data samples available

at device m, m ∈ [M], and gm (θt) ∈ R
d be the stochastic

Fig. 1: Illustration of the FL framework at the wireless edge.

gradient computed by device m using local data samples. At

each iteration of the DSGD algorithm in (4), the local gradient

estimates of the devices are sent to the PS over s uses of a

Gaussian MAC, characterized by:

y(t) =
∑M

m=1
xm(t) + z(t), (5)

where xm(t) ∈ R
s is the length-s channel input vector

transmitted by device m at iteration t, y(t) ∈ R
s is the channel

output received by the PS, and z(t) ∈ R
s is the independent

additive white Gaussian noise (AWGN) vector with each entry

independent and identically distributed (i.i.d.) according to

N
(

0, σ2
)

. Since we focus on DSGD, the channel input vector

of device m at iteration t is a function of the current parameter

vector θt and the local dataset Bm, and more specifically the

current gradient estimate at device m, gm (θt), m ∈ [M].
For a total of T iterations of DSGD algorithm, the following

average transmit power constraint is imposed per eache device:

1

T

∑T

t=1
||xm(t)||22 ≤ P̄ , ∀m ∈ [M], (6)

averaged over iterations of the DSGD algorithm. The goal

is to recover the average of the local gradient estimates
1
M

∑M
m=1 gm (θt) at the PS, and update the model parameter

as in (4). However, due to the pre-processing performed at

each device and the noise added by the wireless channel, it

is not possible to recover the average gradient perfectly at

the PS, and instead, it uses a noisy estimate to update the

model parameter vector; i.e., we have θt+1 = φ(θt,y(t)) for

some update function φ : Rd ×R
s → R

d. The updated model

parameter is then multicast to the devices by the PS through an

error-free shared link. We assume that the PS is not limited in

power or bandwidth, so the devices receive a consistent global

parameter vector for their computations in the next iteration.

The transmission of the local gradient estimates, gm (θt),
∀m ∈ [M], to the PS with the goal of PS reconstructing

their average can be considered as a distributed function

computation problem over a MAC [28]. We will consider both

a digital approach treating computation and communication

separately, and an analog approach that does not use any

coding, and instead applies gradient sparsification followed by

a linear transformation to compress the gradients, which are

then transmitted simultaneously in an uncoded fashion.

We remark that we assume a simple channel model (Gaus-

sian MAC) for the bandwidth-limited uplink transmission from

4

the devices to the PS in this paper in order to highlight the

main ideas behind the proposed digital and analog collabo-

rative learning. The digital and analog approaches proposed

in this paper can be extended to more complicated channel

models as it has been done in the follow up works [34]–[37].

III. DIGITAL DSGD (D-DSGD)

In this section, we present DSGD at the wireless network

edge utilizing digital compression and transmission over the

wireless MAC, referred to as the digital DSGD (D-DSGD)

algorithm. Since we do not know the variances of the gradient

estimates at different devices, we allocate the power equally

among the devices, so that device m sends xm(t) with power

Pt, i.e., ||xm(t)||22 = Pt, where Pt values are chosen to satisfy

the average transmit power constraint over T iterations

1

T

∑T

t=1
Pt ≤ P̄ . (7)

Due to the intrinsic symmetry of the model, we assume that the

devices transmit at the same rate at each iteration (while the

rate may change across iterations depending on the allocated

power, Pt). Accordingly, the total number of bits that can

be transmitted from each of the devices over s uses of the

Gaussian MAC, described in (5), is upper bounded by

Rt =
s

2M
log2

(

1 +
MPt

sσ2

)

, (8)

where MPt/s is the sum-power per channel use. Note that

this is an upper bound since it is the Shannon capacity of the

underlying Gaussian MAC, and we further assumed that the

capacity can be achieved over a finite blocklength of s.

Remark 1. We note that having a distinct sum power MPt at

each iteration t enables each user to transmit different num-

bers of bits at different iterations. This corresponds to a novel

gradient compression scheme for DSGD, in which the devices

can adjust over time the amount of information they send to

the PS about their gradient estimates. They can send more

information bits at the beginning of the DSGD algorithm when

the gradient estimates have higher variances, and reduce the

number of transmitted bits over time as the variance decreases.

We observed empirically that this improves the performance

compared to the standard approach in the literature, where the

same compression scheme is applied at each iteration [21].

We will adopt the scheme proposed in [21] for gradient

compression at each iteration of the DSGD scheme. We

modify this scheme by allowing different numbers of bits to be

transmitted by the devices at each iteration. At each iteration

the devices sparsify their gradient estimates as described

below. In order to retain the accuracy of their local gradient

estimates, devices employ error accumulation [4], [38], where

the accumulated error vector at device m until iteration t is de-

noted by ∆m(t) ∈ R
d, where we set ∆m(0) = 0, ∀m ∈ [M].

Hence, after the computation of the local gradient estimate

for parameter vector θt, i.e., gm (θt), device m updates its

estimate with the accumulated error as gm (θt) + ∆m(t),
m ∈ [M]. At iteration t, device m, m ∈ [M], sets all

but the highest qt and the smallest qt of the entries of its

gradient estimate vector gm (θt) + ∆m(t), of dimension d,

to zero, where qt ≤ d/2 (to have a communication-efficient

scheme, in practice, the goal is to have qt ≪ d, ∀t). Then,

it computes the mean values of all the remaining positive

entries and all the remaining negative entries, denoted by

µ+
m(t) and µ−

m(t), respectively. If µ+
m(t) > |µ−

m(t)|, then it

sets all the entries with negative values to zero and all the

entries with positive values to µ+
m(t), and vice versa. We

denote the resulting sparse vector at device m by gq
m (θt),

and device m updates the local accumulated error vector as

∆m(t+ 1) = gm (θt) + ∆m(t) − gq
m (θt), m ∈ [M]. It

then aims to send gq
m (θt) over the channel by transmitting

its mean value and the positions of its non-zero entries. For

this purpose, we use a 32-bit representation of the absolute

value of the mean (either µ+
m(t) or |µ−

m(t)|) along with 1

bit indicating its sign. To send the positions of the non-

zero entries, it is assumed in [21] that the distribution of the

distances between the non-zero entries is geometrical with

success probability qt, which allows them to use Golomb

encoding to send these distances with a total number of bits

b∗ + 1

1−(1−qt)2
b∗

, where b∗ = 1 +

⌊

log2

(

log((
√
5−1)/2)

log(1−qt)

)⌋

.

However, we argue that, sending log2
(

d
qt

)

bits to transmit

the positions of the non-zero entries is sufficient regardless

of the distribution of the positions. This can be achieved by

simply enumerating all possible sparsity patterns. Thus, with

D-DSGD, the total number of bits sent by each device at

iteration t is given by

rt = log2

(

d

qt

)

+ 33, (9)

where qt is chosen as the highest integer satisfying rt ≤ Rt.

We will also study the impact of introducing more devices

into the system. With the reducing cost of sensing and comput-

ing devices, we can consider introducing more devices, each

coming with its own power resources. We assume that the

size of the total dataset remains constant, which allows each

sensor to save computation time and energy. Assume that the

number of devices is increased by a factor κ > 1. We assume

that the total power consumed by the devices at iteration t also

increases by factor κ. We can see that the maximum number

of bits that can be sent by each device is strictly smaller in the

new system. this means that the PS receives a less accurate

gradient estimate from each device, but from more devices.

Numerical results for the D-DSGD scheme and its comparison

to analog transmission are relegated to Section VI.

Remark 2. We have established a framework for digital trans-

mission of the gradients over a band-limited wireless channel,

where other gradient quantization techniques can also be

utilized. In Section VI, we will compare the performance of

the proposed D-DSGD scheme with that of sign DSGD (S-

DSGD) [16] and quantized DSGD (Q-DSGD) [2], adopted

for digital transmission over a limited capacity MAC.

IV. ANALOG DSGD (A-DSGD)

Next, we propose an analog DSGD algorithm, called A-

DSGD, which does not employ any digital code, either for

5

compression or channel coding, and instead all the devices

transmit their gradient estimates simultaneously in an uncoded

manner. This is motivated by the fact that the PS is not inter-

ested in the individual gradients, but only in their average. The

underlying wireless MAC provides the sum of the gradients,

which is used by the PS to update the parameter vector. See

Algorithm 1 for a description of the A-DSGD scheme.

Similarly to D-DSGD, devices employ local error accumu-

lation. Hence, after computing the local gradient estimate for

parameter vector θt, each device updates its estimate with the

accumulated error as gec
m (θt) , gm (θt) +∆m(t), m ∈ [M].

The challenge in the analog transmission approach is to

compress the gradient vectors to the available channel band-

width. In many modern ML applications, such as deep neural

networks, the parameter vector, and hence the gradient vec-

tors, have extremely large dimensions, whereas the channel

bandwidth, measured by parameter s, is small due to the

bandwidth and latency limitations. Thus, transmitting all the

model parameters one-by-one in an uncoded/analog fashion is

not possible as we typically have d ≫ s.

Lossy compression at any required level is at least theoret-

ically possible in the digital domain. For the analog scheme,

in order to reduce the dimension of the gradient vector to that

of the channel, the devices apply gradient sparsification. In

particular, device m sets all but the k elements of the error-

compensated resulting vector gec
m (θt) with the highest mag-

nitudes to zero. We denote the sparse vector at device m by

gsp
m (θt), m ∈ [M]. This k-level sparsification is represented

by function spk in Algorithm 1, i.e., gsp
m (θt) = spk (g

ec
m (θt)).

The accumulated error at device m, m ∈ [M], which is the

difference between gec
m (θt) and its sparsified version, i.e., it

maintains those elements of vector gec
m (θt) which are set to

zero as the result of sparsification at iteration t, is then updated

according to

∆m(t+ 1) =gec
m (θt)− gsp

m (θt) = gm (θt) +∆m(t)

− spk (gm (θt) +∆m(t)) . (10)

We would like to transmit only the non-zero entries of these

sparse vectors. However, simply ignoring the zero elements

would require transmitting their indeces to the PS separately.

To avoid this additional data transmission, we will employ a

random projection matrix, similarly to compressive sensing.

A similar idea is recently used in [30] for analog image

transmission over a bandwidth-limited channel.

A pseudo-random matrix As̃ ∈ R
s̃×d, for some s̃ ≤ s,

with each entry i.i.d. according to N (0, 1/s̃), is generated

and shared between the PS and the devices before start-

ing the computations. At iteration t, device m computes

g̃m (θt) , As̃g
sp
m (θt) ∈ R

s̃, and transmits xm(t) =
[

√

αm(t)g̃m (θt)
T

am(t)
T
]T

, where am(t) ∈ R
s−s̃, over

the MAC, m ∈ [M], while satisfying the average power

constraint (6). The PS receives

y (t) =
∑M

m=1
xm (t) + z(t)

=

[

As̃

∑M
m=1

√

αm(t)gsp
m (θt)

∑M
m=1 am(t)

]

+ z(t). (11)

Algorithm 1 A-DSGD

1: Initialize θ0 = 0 and ∆1(0) = · · · = ∆M (0) = 0

2: for t = 0, . . . , T − 1 do

• devices do:

3: for m = 1, . . . ,M in parallel do

4: Compute gm (θt) with respect to Bm

5: gec
m (θt) = gm (θt) +∆m(t)

6: gsp
m (θt) = spk (g

ec
m (θt))

7: ∆m(t+ 1) = gec
m (θt)− gsp

m (θt)
8: g̃m (θt) = As−1g

sp
m (θt)

9: xm (t) =
[

√

αm(t)g̃m (θt)
T √

αm(t)

]T

10: end for

• PS does:

11: ĝ (θt) = AMPAs−1

(

1
ys(t)

ys−1 (t)
)

12: θt+1 = θt − ηt · ĝ (θt)
13: end for

In the following, we propose a power allocation scheme

designing the scaling coefficients
√

αm(t), ∀m, t.
We set s̃ = s − 1, which requires s ≥ 2. At it-

eration t, we set am(t) =
√

αm(t), and device m
computes g̃m (θt) = As−1g

sp
m (θt), and sends vector

xm (t) =
[

√

αm(t)g̃m (θt)
T √

αm(t)

]T

with the same

power Pt = ||xm (t) ||22 satisfying the average power con-

straint 1
T

∑T
t=1 Pt ≤ P̄ , for m ∈ [M]. Accordingly, scaling

factor
√

αm(t) is determined to satisfy

Pt = αm(t)
(

‖g̃m (θt)‖22 + 1
)

, (12)

which yields

αm(t) =
Pt

‖g̃m (θt)‖22 + 1
, for m ∈ [M]. (13)

Since ‖g̃m (θt)‖22 may vary across devices, so can
√

αm(t).
That is why, at iteration t, device m allocates one channel

use to provide the value of
√

αm(t) to the PS along with its

scaled low-dimensional gradient vector g̃m (θt), m ∈ [M].
Accordingly, the received vector at the PS is given by

y (θt) =

[

As−1

∑M
m=1

√

αm(t)gsp
m (θt)

∑M
m=1

√

αm(t)

]

+ z(t), (14)

where αm(t) is replaced by (13). For i ∈ [s], we define

yi (t) ,
[

y1 (t) y2 (t) · · · yi (t)
]T

, (15)

zi(t) ,
[

z1(t) z2(t) · · · zi(t)
]T

, (16)

where yj (t) and zj(t) denote the j-th entry of y (t) and z(t),
respectively. Thus, we have

ys−1 (t) = As−1

∑M

m=1

√

αm(t)gsp
m (θt) + zs−1(t),

(17a)

ys (t) =
∑M

m=1

√

αm(t) + zs(t). (17b)

Note that the goal is to recover 1
M

∑M
m=1 g

sp
m (θt) at the

PS, while, from ys−1 (t) given in (17a), the PS observes a

6

noisy version of the weighted sum
∑M

m=1

√

αm(t)gsp
m (θt)

projected into a low-dimensional vector through As−1. Ac-

cording to (13), each value of ‖g̃m (θt)‖22 results in a distinct

scaling factor αm(t). However, for large enough d and |Bm|,
the values of ‖g̃m (θt)‖22 , ∀m ∈ [M], are not going to

be too different across devices. As a result, scaling factors
√

αm(t), ∀m ∈ [M], are not going to be very different either.

Accordingly, to diminish the effect of scaled gradient vectors,

we choose to scale down the received vector ys−1 (t) at the

PS, given in (17a), with the sum of the scaling factors, i.e.,
∑M

m=1

√

αm(t), whose noisy version is received by the PS as

ys (t) given in (17b). The resulting scaled vector at the PS is

ys−1 (t)

ys (t)
=As−1

∑M

m=1

√

αm(t)
∑M

i=1

√

αi(t) + zs(t)
gsp
m (θt)

+
1

∑M
i=1

√

αi(t) + zs(t)
zs−1(t), (18)

where αm(t), m ∈ [M], is given in (13). By our choice, the

PS tries to recover 1
M

∑M
m=1 g

sp
m (θt) from ys−1 (t) /ys (t)

knowing the measurement matrix As−1. The PS estimates

ĝ (θt) using the AMP algorithm. The estimate ĝ (θt) is then

used to update the model parameter as θt+1 = θt−ηt · ĝ (θt).

Remark 3. We remark here that, with SGD the empirical vari-

ance of the stochastic gradient vectors reduce over time ap-

proaching zero asymptotically. The power should be allocated

over iterations taking into account this decaying behaviour

of gradient variance, while making sure that the noise term

would not become dominant. To reduce the variation in the

scaling factors
√

αm(t), ∀m, t, variance reduction techniques

can be used [39]. We also note that setting Pt = P̄ , ∀t, results

in a special case, where the power is allocated uniformly over

time to be resistant against the noise term.

Remark 4. Increasing M can help increase the convergence

speed for A-DSGD. This is due to the fact that having

more signals superposed over the MAC leads to more robust

transmission against noise, particularly when the ratio P̄ /sσ2

is relatively small, as we will observe in Fig. 6. Also, for a

larger M value, 1
M

∑M
m=1 g

sp
m (θt) provides a better estimate

of 1
M

∑M
m=1 gm (θt), and receiving information from a larger

number of devices can make these estimates more reliable.

Remark 5. In the proposed A-DSGD algorithm, the spar-

sification level, k, results in a trade-off. For a relatively

small value of k, 1
M

∑M
m=1 g

sp
m (θt) can be more reli-

ably recovered from 1
M

∑M
m=1 g̃m (θt); however it may

not provide an accurate estimate of the actual aver-

age gradient 1
M

∑M
m=1 gm (θt). Whereas, with a higher

k value, 1
M

∑M
m=1 g

sp
m (θt) provides a better estimate of

1
M

∑M
m=1 gm (θt), but reliable recovery of 1

M

∑M
m=1 g

sp
m (θt)

from the vector 1
M

∑M
m=1 g̃m (θt) is less likely.

A. Mean-Removal for Efficient Transmission

To have a more efficient usage of the available power, each

device can remove the mean value of its gradient estimate

before scaling and sending it. We define the mean value of

g̃m (θt) = As̃gm (θt) as µm(t) , 1
s̃

∑s̃
i=1 g̃m,i (θt), for m ∈

[M], where g̃m,i (θt) is the i-th entry of vector g̃m (θt), i ∈
[s̃]. We also define g̃az

m (θt) , g̃m (θt)− µm(t)1s̃, m ∈ [M].
The power of vector g̃az

m (θt) is given by

‖g̃az
m (θt)‖22 = ‖g̃m (θt)‖22 − s̃µ2

m(t). (19)

We set s̃ = s − 2, which requires s ≥ 3. We also set

am(t) =
[√

αaz
m (t)µm(t)

√

αaz
m (t)

]T
, and after computing

g̃m (θt) = As−2g
sp
m (θt), device m, m ∈ [M], sends

xm (t) =
[

√

αaz
m (t)g̃az

m (θt)
T √

αaz
m (t)µm(t)

√

αaz
m (t)

]T

,

(20)

with power

||xm (t) ||22 = α
az
m (t)

(

‖g̃m (θt)‖22 − (s− 3)µm(t)2 + 1
)

, (21)

which is chosen to be equal to Pt, such that 1
T

∑T
t=1 Pt ≤ P̄ .

Thus, we have, for m ∈ [M],

αaz
m (t) =

Pt

‖g̃m (θt)‖22 − (s− 3)µ2
m(t) + 1

. (22)

Compared to the transmit power given in (12), we observe that

removing the mean reduces the transmit power by αaz
m (t)(s−

3)µ2
m(t), m ∈ [M]. The received vector at the PS is given by

y (θt) =







∑M
m=1

√

αaz
m (t)g̃az

m (θt)
∑M

m=1

√

αaz
m (t)µm(t)

∑M
m=1

√

αaz
m (t)






+ z(t)

=







∑M
m=1

√

αaz
m (t) (As−2g

sp
m (θt)− µm(t)1s−2)

∑M
m=1

√

αaz
m (t)µm(t)

∑M
m=1

√

αaz
m (t)






+ z(t),

(23)

where we have

ys−2 (t) = As−2

∑M

m=1

√

αaz
m (t)gsp

m (θt)

−
∑M

m=1

√

αaz
m (t)µm(t)1s−2 + zs−2(t), (24a)

ys−1 (t) =
∑M

m=1

√

αaz
m (t)µm(t) + zs−1(t), (24b)

ys (t) =
∑M

m=1

√

αaz
m (t) + zs(t). (24c)

The PS performs AMP to recover 1
M

∑M
m=1 g

sp
m (θt) from the

following vector

1

ys (t)

(

ys−2 (t) + ys−1 (t)1s−2

)

=

As−2

∑M

m=1

√

αaz
m (t)

∑M
i=1

√

αaz
i (t) + zs(t)

gsp
m (θt)

+
zs−1(t)1s−2 + zs−2(t)
∑M

i=1

√

αaz
i (t) + zs(t)

. (25)

V. CONVERGENCE ANALYSIS OF A-DSGD ALGORITHM

In this section we provide convergence analysis of A-DSGD

presented in Algorithm 1. For simplicity, we assume that ηt =
η, ∀t. We consider a differentiable and c-strongly convex loss

7

function F , i.e., ∀x,y ∈ R
d, it satisfies

F (y)− F (x) ≥ ∇F (x)
T
(y − x) +

c

2
‖y − x‖2 . (26)

A. Preliminaries

We first present some preliminaries and background for the

essential instruments of the convergence analysis.

Assumption 1. The average of the first moment of the gradi-

ents at different devices is bounded as follows:

1

M

∑M

m=1
E [‖gm (θt)‖] ≤ G, ∀t, (27)

where the expectation is over the randomness of the gradients.

Assumption 2. For scaling factors
√

αm(t), ∀m ∈ [M], given

in (13), we approximate

√
αm(t)

∑
M

i=1

√
αi(t)+zs(t)

≈ 1
M , ∀t.

The rationale behind Assumption 2 is assuming that the

noise term is small compared to the sum of the scaling

factors,
∑M

i=1

√

αi(t), and the l2 norm of the gradient vectors

at different devices are not highly skewed. Accordingly, the

model parameter vector in Algorithm 1 is updated as follows:

θt+1 = θt − η ·AMPAs−1

(

As−1

∑M

m=1

1

M
gsp
m (θt)

+
1

∑M
i=1

√

αi(t)
zs−1(t)

)

. (28)

Lemma 1. [40]–[42] Consider reconstructing vector x ∈ R
d

with sparsity level k and ‖x‖2 = P from a noisy observation

y = Asx+ z, where As ∈ R
s×d is the measurement matrix,

and z ∈ R
s is the noise vector with each entry i.i.d. with

N (0, σ2). If s > k, the AMP algorithm reconstructs

x̂ , AMPAs
(y) = x+ στω, (29)

where each entry of ω ∈ R
d is i.i.d. with N (0, 1), and σ2

τ

decreases monotonically from σ2+P to σ2. That is, the noisy

observation y is effectively transformed into x̂ = x+ σω.

Assumption 3. We assume that the sparsity pattern of vector
∑M

m=1 g
sp
m (θt) is smaller than s− 1, ∀t.

If all the sparse vectors gsp
m (θt), ∀m ∈ [M], have the same

sparsity pattern, Assumption 3 holds trivially since we set k <
s − 1. On the other hand, in general we can guarantee that

Assumption 3 holds by setting k ≪ s.

According to Lemma 1 and Assumption 3, the model

parameter update given in (28) can be rewritten as

θt+1 = θt − η

(

1

M

∑M

m=1
gsp
m (θt) + σω(t)w(t)

)

, (30)

where we define

σω(t) ,
σ

∑M
m=1

√

αm(t)
, (31)

and each entry of ω(t) ∈ R
d is i.i.d. with N (0, 1).

Corollary 1. For vector x ∈ R
d, it is easy to verify that

‖x− spk(x)‖ ≤ λ ‖x‖, where λ ,

√

d−k
d , and the equality

holds if all the entries of x have the same magnitude.

Lemma 2. Consider a random vector u ∈ R
d with each

entry i.i.d. according to N (0, σ2
u). For δ ∈ (0, 1), we

have Pr {‖u‖ ≥ σuρ(δ)} = δ, where we define ρ(δ) ,
(

2γ−1 (Γ(d/2)(1− δ), d/2)
)1/2

, and γ (a, x) is the lower

incomplete gamma function defined as:

γ (a, x) ,

ˆ x

0

ιa−1e−ιdι, x ≥ 0, a > 0, (32)

and γ−1 (a, y) is its inverse, which returns the value of x, such

that γ (a, x) = y, and Γ (a) is the gamma function defined as

Γ (a) ,

ˆ ∞

0

ιa−1e−ιdι, a > 0. (33)

Proof. We highlight that ‖u‖2 follows the Chi-square distri-

bution, and we have [43]

Pr
{

‖u‖2 ≤ u
}

=
γ(d/2, u/(2σ2

u))

Γ(d/2)
. (34)

Accordingly, it follows that

Pr
{

‖u‖ ≥ σu

(

2γ−1 (Γ(d/2)(1− δ), d/2)
)1/2

}

= Pr
{

‖u‖2 ≥ 2σ2
uγ

−1 (Γ(d/2)(1− δ), d/2)
}

= δ. (35)

By choosing δ appropriately, we can guarantee, with prob-

ability arbitrary close to 1, that ‖u‖ ≤ σuρ(δ).

Lemma 3. Having σω(t) defined as in (31), by taking the

expectation with respect to the gradients, we have, ∀t,

E [σω(t)] ≤
σ

M
√
Pt

(

σmax

(

1− λt+1

1− λ

)

G+ 1

)

, (36)

where σmax ,

√

d
s−1 + 1.

Proof. See Appendix A.

Lemma 4. Based on the results presented above, taking

expectation with respect to the gradients yields

E

[∥

∥

∥

∥

η
1

M

∑M

m=1
(gm (θt)− g

sp
m (θt))− σω(t)w(t)

∥

∥

∥

∥

]

≤ ηv(t),

(37a)

where we define, ∀t ≥ 0,

v(t) ,λ

(

(1 + λ)(1 − λt)

1− λ
+ 1

)

G

+ ρ(δ)
σ

M
√
Pt

(

σmax

(

1− λt+1

1− λ

)

G+ 1

)

, (37b)

Proof. See Appendix C.

B. Convergence Rate

Let θ
∗

be the optimum parameter vector minimizing the loss

function F . For ε > 0, we define S , {θ : ‖θ − θ∗‖2 ≤ ε} as

the success region to which the parameter vector should con-

verge. We establish the convergence using rate supermartingale

stochastic processes (refer to [23], [44] for a detailed definition

of the supermartingale and rate supermartingale processes).

8

0 50 100 150 200 250 300 350 400
Iteration count, t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Te
st
 a
cc
ur
ac
y

Error-free shared link
A-DSGD
D-DSGD
SignSGD
QSGD

(a) IID data distribution

0 50 100 150 200 250 300 350 400
Iteration count, t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

Error-free shared link
A-DSGD
D-DSGD
SignSGD
QSGD

(b) Non-IID data distribution

Fig. 2: Test accuracy of different schemes for IID and non-IID data distribution scenarios with M = 25, B = 1000, P̄ = 500,

s = d/2, k = s/2, and Pt = P̄ , ∀t.

Definition 1. [44] For any stochastic process, a non-negative

process Wt : R
d×(t+1) → R with horizon B is a rate

supermartingale if i) for any sequence θt, . . . , θ0 ∈ R
d and

any t ≤ B, E [Wt+1 (θt+1, . . . , θ0)] ≤ Wt (θt, . . . , θ0). ii)

∀T ≤ B and any sequence θT , . . . , θ0 ∈ R
d, if the algorithm

does not enter the success region by time T , i.e., if θt /∈ S,

∀t ≤ T , it must satisfy WT (θT , . . . , θ0) ≥ T .

Next we present a rate supermartingale process for the

stochastic process with the update in (4), introduced in [44].

Statement 1. Consider the stochastic process in (4) with

learning rate η < 2cε/G2. We define the process Wt by

Wt(θt, ..., θ0) ,
ε

2ηcε − η2G2
log

(

e ‖θt − θ∗‖2
ε

)

+ t, (38)

if the algorithm has not entered the success region by it-

eration t, i.e., if θi /∈ S, ∀i ≤ t, and Wt(θt, ..., θ0) =
Wτ1−1(θτ1−1, ..., θ0) otherwise, where τ1 is the smallest index

for which θτ ∈ S. The process Wt is a rate supermartingale

with horizon B = ∞. It is also L-Lipschitz in its first

coordinate, where L , 2
√
ε(2ηcε − η2G2)−1; that is, given

any x,y ∈ R
d, t ≥ 1, and any sequence θt−1, ..., θ0, we have

‖Wt (y,θt−1, ...,θ0)−Wt (x,θt−1, ...,θ0)‖ ≤ L ‖y − x‖ . (39)

Theorem 1. Under the assumptions described above, for

η <
2
(

cεT −√
ε
∑T−1

t=0 v(t)
)

TG2
, (40)

the probability that the A-DSGD algorithm does not enter the

success region by time T is bounded by

Pr {ET } ≤ ε

(2ηcε − η2G2)
(

T − ηL
∑T−1

t=0 v(t)
) log

(

e ‖θ∗‖2
ε

)

,

(41)

where ET denotes the event of not arriving at the success

region at time T .

Proof. See Appendix D.

We highlight that the reduction term
∑T−1

t=0 v(t) in the
denominator is due to the sparsification, random projection
(compression), and the noise introduced by the wireless chan-
nel. To show that Pr {ET } → 0 asymptotically, we consider
a special case Pt = P̄ , in which

∑T−1

t=0
v(t) =

(

2λG

1− λ
+

σρ(δ)

M
√
P̄

(

σmaxG

1− λ
+ 1

))

T

−
(

λ(1 + λ)(1− λT)G

(1− λ)2
+

σρ(δ)σmax(1− λT+1)G

M
√
P̄ (1− λ)2

)

. (42)

After replacing
∑T−1

t=0 v(t) in (41), it is easy to verify that,

for η bounded as in (40), Pr {ET } → 0 as T → ∞.

VI. EXPERIMENTS

Here we evaluate the performances of A-DSGD and D-

DSGD for the task of image classification. We run experiments

on the MNIST dataset [45] with N = 60000 training and

10000 test data samples, and train a single layer neural

network with d = 7850 parameters utilizing ADAM optimizer

[46]. We set the channel noise variance to σ2 = 1. The

performance is measured as the accuracy with respect to the

test dataset, called test accuracy, versus iteration count t.
We consider two scenarios for data distribution across

devices: in IID data distribution, B training data samples, se-

lected at random, are assigned to each device at the beginning

of training; while in non-IID data distribution, each device has

access to B training data samples, where B/2 of the training

data samples are selected at random from only one class/label;

that is, for each device, we first select two classes/labels at

random, and then randomly select B/2 data samples from each

of the two classes/labels. At each iteration, devices use all the

B local data samples to compute their gradient estimates, i.e.,

the batch size is equal to the size of the local datasets.

When performing A-DSGD, we use mean removal power

allocation scheme only for the first 20 iterations. The reason

9

0 50 100 150 200 250 300
Iteration count, t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Te

st
 a

cc
ur

ac
y

Error-free shared ink
A-DSGD
D-DSGD, Pt = Pt, LH, stair
D-DSGD, Pt = Pt, LH
D-DSGD, Pt = Pt, HL

D-DSGD, Pt = ̄P

Fig. 3: Performance of the A-DSGD and D-DSGD algorithms

for different power allocation schemes when M = 25, B =
1000, P̄ = 200, s = d/2, and k = s/2.

is that the gradients are more aggressive at the beginning of

A-DSGD, and their mean values are expected to be relatively

diverse, while they converge to zero. Also, for comparison, we

consider a benchmark, where the PS receives the average of

the actual gradient estimates at the devices, 1
M

∑M
m=1 gm (θt),

in a noiseless fashion, and updates the model parameter vector

according to this error-free observation. We refer to this

scheme as the error-free shared link approach.

In Fig. 2, we investigate IID and non-IID data distribution

scenarios. For comparison, we also consider two alternative

digital schemes that employ SignSGD [16] and QSGD [2]

algorithms for gradient compression, where each device ap-

plies the coding schemes proposed in [16] and [2] to a limited

number of the elements of its gradient vector, specified by its

link capacity. To be more precise, assume that, at iteration t,
at each device a limited number of qt,S and qt,Q entries of

the gradient estimate with highest magnitudes are selected for

delivery with SignSGD and QSGD, respectively. Following

the SignSGD scheme [16], at iteration t, a total number of

rt,S = log2

(

d

qt,S

)

+ qt,S bits, ∀t, (43)

are delivered to transmit the sign of each selected entry, as well

as their locations, and qt,S is then highest integer satisfying

rt,S ≤ Rt. On the other hand, following the QSGD approach

[2], each device sends a quantized version of each of the qt,Q
selected entries, the l2-norm of the resultant vector with qt,Q
non-zero entries, and the locations of the non-zero entries.

Hence, for a quantization level of 2lQ , each device transmits

rt,Q = 32 + log2

(

d

qt,Q

)

+ (1 + lQ)qt,Q bits, ∀t, (44)

where qt,Q is set as then highest integer satisfying rt,Q ≤ Rt.

For QSGD, we consider a quantization level lQ = 2. We

consider s = d/2 channel uses, M = 25 devices each with

B = 1000 training data samples, average power P̄ = 500, and

we set a fixed ratio k = ⌊s/2⌋ for sparsification, and Pt = P̄ ,

0 50 100 150 200 250 300
Iteration c unt, t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

Err r-free shared link
A-DSGD, ̄P=200
D-DSGD, ̄P=̄000
D-DSGD, ̄P=200

Fig. 4: Performance of the A-DSGD and D-DSGD algorithms

for different P̄ values P̄ ∈ {200, 1000}, when M = 25, B =
1000, s = d/2, k = s/2, and Pt = P̄ , ∀t.

∀t. Observe that A-DSGD outperforms all digital approaches

that separate computation from communication. For both data

distribution scenarios, the gap between the performance of

the error-free shared link approach and that of A-DSGD is

very small, and D-DSGD significantly outperforms the other

two digital schemes SignSGD and QSGD. Unlike the digital

schemes, the performance loss of A-DSGD in non-IID data

distribution scenario compared to the IID scenario is negligible

illustrating the robustness of A-DSGD to the bias in data

distribution. The reduction in the convergence rate of A-DSGD

in the non-IID scenario is mainly due to the mismatch in the

sparsity patterns of gradients at different devices, especially

in the initial iterations. We also observe that the performance

of D-DSGD degrades much less compared to SignSGD and

QSGD when the data is biased across devices.

In all the following experiments, we only consider IID data

distribution scenario. In Fig. 3 we investigate the performance

of D-DSGD for various power allocation designs for T = 300
DSGD iterations with M = 25, B = 1000, P̄ = 200, s = d/2,

and k = ⌊s/2⌋. We consider four different power allocation

schemes: constant power allocation Pt = P̄ , and

Pt,LH,stair = 100
(2

299
(t− 1) + 1

)

, t ∈ [300], (45a)

Pt,LH =











100, if 1 ≤ t ≤ 100,

200, if 101 ≤ t ≤ 200,

300, if 201 ≤ t ≤ 300,

(45b)

Pt,HL =











300, if 1 ≤ t ≤ 100,

200, if 101 ≤ t ≤ 200,

100, if 201 ≤ t ≤ 300.

(45c)

With Pt,LH,stair, average transmit power increases linearly

from P1 = 100 to P300 = 300. We also consider the error-

free shared link bound, and A-DSGD with Pt = P̄ , ∀t. Note

that the performance of A-DSGD is almost the same as in

Fig. 2a, despite 60% reduction in average transmit power.

10

0 50 100 150 200 250 300
Iteration count, t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Te
st
 a
cc
ur
ac
y

Error-free shared link
A-DSGD, s= d/2
A-DSGD, s=3d/10
D-DSGD, s= d/2
D-DSGD, s=3d/10

Fig. 5: Performance of the A-DSGD and D-DSGD algorithms

for different s values, s ∈ {d/2, 3d/10}, when M = 20,

B = 1000, P̄ = 500, and k = ⌊s/2⌋, where Pt = P̄ , ∀t.

The performance of D-DSGD falls short of A-DSGD for all

the power allocation schemes under consideration. Comparing

the digital scheme for various power allocation designs, we

observe that it is better to allocate less power to the initial

iterations, when the gradients are more aggressive, and save

the power for the later iterations to increase the final accuracy;

even though this will result in a lower convergence speed.

Also, increasing the power slowly, as in Pt,LH,stair, provides

a better performance in general, compared to occassional

jumps in the transmit power. Overall, letting Pt vary over

time provides an additional degree-of-freedom, which can

improve the accuracy of D-DSGD by designing an efficient

power allocation scheme having statistical knowledge about

the dynamic of the gradients over time.

In Fig. 4, we compare the performance of A-DSGD with

that of D-DSGD for different values of the available average

transmit power P̄ ∈ {200, 1000}. We consider s = d/2,

M = 25, and B = 1000. We set k = ⌊s/2⌋ and Pt = P̄ ,

∀t. As in Fig. 2, we observe that A-DSGD outperforms D-

DSGD, and the gap between A-DSGD and the error-free

shared link approach is relatively small. We did not include the

performance of A-DSGD for P̄ = 1000 since it is very close

to the one with P̄ = 200. Unlike A-DSGD, the performance

of D-DSGD significantly deteriorates by reducing P̄ . Thus, we

conclude that the analog approach is particularly attractive for

learning across low-power devices as it allows them to align

their limited transmission powers to dominate the noise term.

In Fig. 5, we compare A-DSGD and D-DSGD for different

channel bandwidth values, s ∈ {d/2, 3d/10}, and M = 20
and B = 1000, where we set Pt = 500, ∀t, and k = ⌊s/2⌋.
Performance deterioration of D-DSGD is notable when chan-

nel bandwidth reduces from s = d/2 to s = 3d/10. On the

other hand, we observe that A-DSGD is robust to the channel

bandwidth reduction as well, providing yet another advantage

of analog over-the-air computation for edge learning.

In Fig. 6, we compare the performance of A-DSGD and

0 200 400 600 800 1000
Iteration c unt, t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st
 a
cc
ur
ac
y

Err r-free shared link, M=20,B=1000
Err r-free shared link, M=10,B=2000
A-DSGD, M=20,B=1000, ̄P=500
A-DSGD, M=10,B=2000, ̄P=500
D-DSGD, M=20,B=1000, ̄P=500
D-DSGD, M=10,B=2000, ̄P=500
A-DSGD, M=20,B=1000, ̄P=1
A-DSGD, M=10,B=2000, ̄P=1

Fig. 6: Performance of the A-DSGD and D-DSGD algorithms

for different (M,B) pairs (M,B) ∈ {(10, 2000), (20, 1000)},

where s = d/2, k = s/2, and Pt = P̄ , ∀t.

D-DSGD for different M and P̄ values, while keeping the

total number of data samples available across all the devices,

MB, fixed. We consider (M,B) ∈ {(10, 2000), (20, 1000)},
and, for each setting, P̄ ∈ {1, 500}. Given s = ⌊d/4⌋, we set

k = ⌊s/2⌋, and Pt = P̄ , ∀t. We highlight that, for P̄ = 1, D-

DSGD fails since the devices cannot transmit any information

bits. We observe that increasing M while fixing MB does

not have any visible impact on the performance in the error-

free shared link setting. The convergence speed of A-DSGD

improves with M for both P̄ values. We note that although

the accuracy of individual gradient estimates degrade with M
(due to the reduction in the training sample size available at

each device), A-DSGD benefits from the additional power

introduced by each device, which increases the robustness

against noise thanks to the superposed signals each with

average power P̄ . Similarly, the convergence speed of D-

DSGD improves with M for P̄ = 500. Note that even though

the number of bits allocated to each device reduces with M ,

i.e., each device sends a less accurate estimate of its gradient,

since each new device comes with its own additional power,

the total number of bits transmitted per data sample increases.

Also, we observe that, for P̄ = 500, the performance of A-

DSGD improves slightly by increasing M , while for P̄ = 1,

the improvement is notable. Thus, even for large enough P̄ ,

increasing M slightly improves the performance of A-DSGD.

In Fig. 7, we investigate the impact of s on the perfor-

mance of A-DSGD. We consider s ∈ {d/10, d/5, d/2} for a

distributed system with M = 25, B = 1000, P̄ = 50, and for

any s values, we set k = ⌊4s/5⌋, and Pt = P̄ , ∀t. In Fig. 7a,

we consider different s values for each iteration of A-DSGD.

This may correspond to allocating different number of channel

resources for each iteration, for example, allocating more sub-

bands through OFDM. On the other hand, in Fig. 7b, we limit

the number of channel uses at each communication round, and

assume that the transmission time at each iteration linearly in-

creases with s, and evaluate the performance of A-DSGD with

11

0 50 100 150 200 250 300 350 400
Iteration count, t

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st
 a
cc
ur
ac
y

Error-free shared link
A-DSGD, s= d/2
A-DSGD, s= d/5
A-DSGD, s= d/10

(a) Test accuracy versus iteration count, t

0 50000 100000 150000 200000 250000 300000
Total number of symbols, ts

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st
 a
cc
ur
ac
y

Error-free shared link
A-DSGD, s= d/5
A-DSGD, s= d/10
A-DSGD, s= d/2

(b) Test accuracy versus number of transmitted symbols, ts

Fig. 7: Performance of the A-DSGD algorithm for different s values s ∈ {d/10, d/5, d/2}, when M = 25, B = 1000, P̄ = 50,

and k = ⌊4s/5⌋, where Pt = P̄ , ∀t.

respect to ts, the total number of transmitted symbols. This

would correspond to the convergence time if these symbols

are transmitted over time, using a single subcarrier. Therefore,

assigning more resources to each iteration, i.e., increasing s,

means that less number of iterations can be implemented by

the same time. Observe from Fig. 7a that, as expected, utilizing

more channel uses improves the performance both in terms

of convergence speed and final accuracy. On the other hand,

when we consider the total number of transmitted symbols in

Fig. 7b the performance of A-DSGD improves significantly

by reducing s from s = d/2 to s = d/5, which shows that

performing more SGD iterations with less accurate gradient

estimates at each iteration, i.e., smaller s values, can be better.

This clearly shows the benefit of A-DSGD, in which the

devices can transmit low dimensional gradient vectors at each

iteration instead of sending the entire gradient vectors over

several iterations. However, this trend does not continue, and

the performance of A-DSGD almost remains unchanged by

further reducing s from s = d/5 to s = d/10. According

to the results illustrated in Fig. 7b, we conclude that, when

the communication bandwidth is limited, the value s can be

a design parameter taking into account the total desired time

(number of iterations) to finish an ML task through DSGD.

We note here that we do not consider the computation time,

which remain mostly the same independent of s in different

devices, as the same number of gradients are computed.

VII. CONCLUSIONS

We have studied collaborative/ federated learning at the

wireless edge, where wireless devices aim to minimize an

empirical loss function collaboratively with the help of a

remote PS. Devices have their own local datasets, and they

communicate with the PS over a wireless MAC. We have

assumed that the communication from the PS to the devices is

noiseless, so the updated parameter vector is shared with the

devices in a lossless fashion.

As opposed to the standard approach in FL, which ig-

nores the channel aspects, and simply aims at reducing the

communication load by compressing the gradients to a fixed

level, here we incorporate the wireless channel characteristics

and constraints into the system design. We considered both

a digital approach (D-DSGD) that separates computation and

communication, and an analog approach (A-DSGD) that ex-

ploits the superposition property of the wireless channel to

have the average gradient computed over-the-air.

In D-DSGD, the amount of information bits sent by each

device at each iteration can be adaptively adjusted with respect

to the average transmit power constraint P̄ , and each device

quantizes its gradient followed by capacity-achieving channel

coding. We have shown that, under a finite power constraint,

the performance of D-DSGD can be improved by allocating

more power to later iterations to compensate for the decreasing

gradient variance, and provide better protection against noise.

In A-DSGD, we have proposed gradient sparsification

followed by random linear projection employing the same

projection matrix at all the devices. This allowed reducing

the typically very large parameter vector dimension to the

limited channel bandwidth. The devices then transmit these

compressed gradient vectors simultaneously over the MAC

to exploit the superposition property of the wireless medium.

This analog approach allows a much more efficient use of the

available limited channel bandwidth.

Numerical results have shown significant improvement in

the performance with the analog approach, particularly in the

low-power and low-bandwidth regimes. Moreover, when non-

IID data distribution is considered, the performance loss of

both A-DSGD and D-DSGD is much smaller compared to

SignSGD [16] and QSGD [2], A-DSGD being more robust to

bias in data distribution across devices. We have also observed

that the performances of both D-DSGD and A-DSGD improve

as more devices are introduced thanks to the additional power

introduced by each device.

12

APPENDIX A

PROOF OF LEMMA 3

By plugging (13) into (31), we have

σω(t) = σ

(M
∑

m=1

√
Pt

√

‖g̃m (θt)‖2 + 1

)−1

≤ σ

(M
∑

m=1

√
Pt

‖g̃m (θt)‖+ 1

)−1

. (46)

Here we find an upper bound on ‖g̃m (θt)‖. We have, ∀m, t,

‖g̃m (θt)‖ = ‖As−1g
sp
m (θt)‖

≤ ‖As−1‖ (‖gm (θt)‖+ ‖∆m (t)‖) . (47)

We note that ‖As−1‖ corresponds to the largest singular value

of random matrix As−1. We use the result presented in [47,

Theorem 2] to estimate ‖As−1‖. According to [47, Theorem

2], for a random matrix A ∈ R
n×m with the (i, j)-th entry

i.i.d. with E [ai,j] = 0 and E
[

a2i,j
]

= 1/n2, i ∈ [n], j ∈ [m],
and n = κm, as m → ∞, the largest singular value of A is

asymptotically given by σmax(A) =
√

m/n+1. Based on this

result, since d ≫ 0, we estimate ‖As−1‖ with its asymptotic

largest singular value denoted by σmax =
√

d/(s− 1) + 1.

Next we upper bound ‖∆m (t)‖. According to Corollary 1,

we have, ∀m, t,

‖∆m (t)‖ ≤ λ ‖gm (θt−1) +∆m (t− 1)‖
≤ λ(‖gm (θt−1)‖+ ‖∆m (t− 1)‖), (48)

where iterating it downward yields

‖∆m (t)‖ ≤
∑t−1

i=0
λt−i ‖gm (θi)‖ . (49)

By replacing ‖As−1‖ with σmax and plugging (49) into (47),

it follows

‖g̃m (θt)‖ ≤ σmax

∑t

i=0
λt−i ‖gm (θi)‖ . (50)

Using the above inequality in (46) yields

σω(t) ≤
σ√
Pt

(M
∑

m=1

1

σmax

∑t
i=0 λ

t−i ‖gm (θi)‖+ 1

)−1

.

(51)

For a1, ..., an ∈ R
+, we prove in Appendix B that

1
∑n

i=1
1
ai

≤
∑n

i=1 ai
n2

. (52)

According to (52), we can rewrite (51) as follows:

σω(t) ≤
σ

M2
√
Pt

∑M

m=1

(

σmax

∑t

i=0
λt−i ‖gm (θi)‖+ 1

)

.

(53)

Independence of the gradients across time and devices yields

E [σω(t)] ≤
σ

M2
√
Pt

(

σmax

t
∑

i=0

λt−i
M
∑

m=1

E [‖gm (θi)‖] +M

)

≤ σ

M
√
Pt

(

σmax

(

1− λt+1

1− λ

)

G+ 1

)

. (54)

APPENDIX B

PROOF OF INEQUALITY (52)

To prove the inequality in (52), we need to show that, for

a1, ..., an > 0,

n2
∏n

i=1 ai
∑n

i=1

∏n
j=1,j 6=i aj

≤
n
∑

i=1

ai, (55)

which corresponds to

n
∑

i=1

n
∏

j=1,j 6=i

aj

n
∑

k=1

ak − n2
n
∏

i=1

ai ≥ 0. (56)

We have
∑n

i=1

∏n

j=1,j 6=i
aj

∑n

k=1
ak − n

2
∏n

k=1
ak

=
n
∑

i=1

(

∏n

j=1
aj +

∑n

j=1,j 6=n
a
2
j

∏n

k=1,k 6=i,j
ak

)

− n
2

n
∏

k=1

ak

=
∑n

i=1

∑n

j=1,j 6=n
a
2
j

∏n

k=1,k 6=i,j
ak − n(n− 1)

∏n

k=1
ak

=
∑

(i,j)∈[n]2,i6=j
(a2

i + a
2
j)
∏n

k=1,k 6=i,j
ak − n(n− 1)

∏n

k=1
ak

=
∑

(i,j)∈[n]2,i6=j
(a2

i + a
2
j)
∏n

k=1,k 6=i,j
ak

− 2
∑

(i,j)∈[n]2,i6=j
aiaj

∏n

k=1,k 6=i,j
ak

=
∑

(i,j)∈[n]2,i6=j
(a2

i + a
2
j − 2aiaj)

∏n

k=1,k 6=i,j
ak

=
∑

(i,j)∈[n]2,i6=j
(ai − aj)

2
∏n

k=1,k 6=i,j
ak ≥ 0, (57)

which completes the proof of inequality (52).

APPENDIX C

PROOF OF LEMMA 4

By taking the expectation with respect to the gradients, we
have

E

[∥

∥

∥

∥

∥

η
1

M

M
∑

m=1

(gm (θt)− spk (gm (θt) +∆m(t)))− σω(t)w(t)

∥

∥

∥

∥

∥

]

≤ ηE

[∥

∥

∥

∥

∥

1

M

M
∑

m=1

(gm (θt) +∆m(t)− spk (gm (θt) +∆m(t)))

∥

∥

∥

∥

∥

]

+ ηE

[∥

∥

∥

∥

1

M

∑M

m=1
∆m(t)

∥

∥

∥

∥

]

+ η ‖ω(t)‖E [σω(t)]

(a)
= ηE

[∥

∥

∥

∥

1

M

∑M

m=1
∆m(t+ 1)

∥

∥

∥

∥

]

+ ηE

[∥

∥

∥

∥

1

M

∑M

m=1
∆m(t)

∥

∥

∥

∥

]

+ η ‖ω(t)‖E [σω(t)]
(b)

≤ ηE

[

1

M

∑M

m=1

∑t

i=0
λ
t+1−i ‖gm (θi)‖

]

+ ηE

[

1

M

∑M

m=1

∑t−1

i=0
λ
t−i ‖gm (θi)‖

]

+ η ‖ω(t)‖E [σω(t)] ,

(c)

≤ ηλ

(

(1 + λ)(1− λt)

1− λ
+ 1

)

G

+ ηρ(δ)
σ

M
√
Pt

(

σmax

(

1− λt+1

1− λ

)

G+ 1

)

, (58)

where (a) follows from the definition ∆m(t) in (10), (b)

follows from the inequality in (49), and (c) follows from

Assumption 1, as well as the result presented in Lemma 3.

13

APPENDIX D

PROOF OF THEOREM 1

We define the following process for the A-DSGD algorithm

with the model update estimated as (30), t ≥ 0,

Vt(θt, ..., θ0) , Wt(θt, ..., θ0)− ηL
∑t−1

i=0
v(i), (59)

if θi /∈ S, ∀i ≤ t, and Vt(θt, ..., θ0) = Vτ2−1(θτ2−1, ..., θ0),
where τ2 denotes the smallest iteration index such that θτ2 ∈
S. When the algorithm has not succeeded to the success

region, we have, ∀t ≥ 0,

Vt+1(θt+1, ..., θ0)

= Wt+1

(

θt − η

(

1

M

M
∑

m=1

gsp
m (θt) + σω(t)w(t)

)

, θt, ..., θ0

)

− ηL
∑t

i=0
v(i)

≤ Wt+1

(

θt − η
1

M

∑M

m=1
gm (θt) , θt, ..., θ0

)

+ L

∥

∥

∥

∥

η
1

M

M
∑

m=1

(gm (θt)− gsp
m (θt))− σω(t)w(t)

∥

∥

∥

∥

− ηL

t
∑

i=0

v(i), (60)

where the inequality is due to the L-Lipschitz property of

process Wt in its first coordinate. By taking expectation of

the terms on both sides of the inequality in (60) with respect

to the randomness of the gradients, it follows that

E [Vt+1(θt+1, ..., θ0)]

≤ E

[

Wt+1

(

θt − η
1

M

∑M

m=1
gm (θt) , θt, ..., θ0

)]

+ ηLE

[

∥

∥

∥

1

M

∑M

m=1
(gm (θt)− gsp

m (θt))− σω(t)w(t)
∥

∥

∥

]

− ηLE
[

∑t

i=0
v(i)

]

(a)

≤ Wt (θt, ..., θ0) + ηLv(t)− ηL

t
∑

i=0

v(i) = Vt(θt, ..., θ0),

(61)

where (a) follows since Wt is a rate supermartingale process,

as well as the result in Lemma 4. Accordingly, we have

E [Vt+1(θt+1, ..., θ0)] ≤ Vt(θt, ..., θ0), ∀t. (62)

We denote the complement of Et by Ec
t , ∀t. With the

expectation with respect to the gradients, we have

E [W0] = E [V0]
(a)

≥ E [VT]

= E [VT |ET] Pr{ET }+ E [VT |Ec
T] Pr{Ec

T }
≥ E [VT |ET] Pr{ET }

=

(

E [WT |ET]− ηL
∑T−1

i=0
v(i)

)

Pr{ET }
(b)

≥
(

T − ηL
∑T−1

i=0
v(i)

)

Pr{ET }, (63)

where (a) follows form (62), and (b) follows since Wt is rate

supermartingale. Thus, for η bounded as in (40), we have

Pr{ET } ≤ E [W0]

T − ηL
∑T−1

i=0 v(i)
. (64)

Replacing W0 from (38) completes the proof of Theorem 1.

REFERENCES

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” CoRR, vol. abs/1812.02858, 2018. [Online].
Available: http://arxiv.org/abs/1812.02858

[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
arXiv:1610.02132 [cs.LG], Dec. 2017.

[3] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv:1712.01887 [cs.CV], Feb. 2018.

[4] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in INTERSPEECH, Singapore, Sep. 2014, pp. 1058–1062.

[5] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv:1610.05492 [cs.LG], Oct. 2017.

[6] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017.

[7] B. McMahan and D. Ramage, “Federated learning: Collabora-
tive machine learning without centralized training data,” [on-

line]. Available. https://ai.googleblog.com/2017/04/federated-learning-

collaborative.html, Apr. 2017.

[8] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” arXiv:1705.10467 [cs.LG], May 2017.

[9] J. Konecny and P. Richtarik, “Randomized distributed mean estimation:
Accuracy vs communication,” arXiv:1611.07555 [cs.DC], Nov. 2016.

[10] J. Konecny, B. McMahan, and D. Ramage, “Federated optimization: Dis-
tributed optimization beyond the datacenter,” arXiv:1511.03575 [cs.LG],
Nov. 2015.

[11] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” arXiv:1804.08333 [cs.NI],
Apr. 2018.

[12] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed fed-
erated learning for ultra-reliable low-latency vehicular communications,”
arXiv:1807.08127 [cs.IT], Jul. 2018.

[13] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “TernGrad:
Ternary gradients to reduce communication in distributed deep learning,”
arXiv:1705.07878 [cs.LG], Dec. 2017.

[14] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv:1606.06160 [cs.NE], Feb. 2018.

[15] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “ATOMO: Communication-efficient learning via atomic
sparsification,” arXiv:1806.04090 [stat.ML], Jun. 2018.

[16] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandku-
mar, “signSGD: Compressed optimisation for non-convex problems,”
arXiv:1802.04434 [cs.LG], Aug. 2018.

[17] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quan-
tized SGD and its applications to large-scale distributed optimization,”
arXiv:1806.08054 [cs.CV], Jun. 2018.

[18] B. Li, W. Wen, J. Mao, S. Li, Y. Chen, and H. Li, “Running sparse
and low-precision neural network: When algorithm meets hardware,” in
Proc. Asia and South Pacific Design Automation Conference (ASP-DAC),
Jeju, South Korea, Jan. 2018.

[19] N. Strom, “Scalable distributed DNN training using commodity gpu
cloud computing,” in Proc. Conference of the International Speech

Communication Association (INTERSPEECH), 2015.

[20] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv:1704.05021 [cs.CL], Jul. 2017.

[21] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” arXiv:1805.08768 [cs.LG], May 2018.

[22] C. Renggli, D. Alistarh, T. Hoefler, and M. Aghagolzadeh, “Spar-
CML: High-performance sparse communication for machine learning,”
arXiv:1802.08021 [cs.DC], Oct. 2018.

http://arxiv.org/abs/1812.02858

14

[23] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov,
and C. Renggli, “The convergence of sparsified gradient methods,”
arXiv:1809.10505 [cs.LG], Sep. 2018.

[24] Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient compres-
sion for efficient distributed deep learning,” arXiv:1802.06058 [cs.LG],
Feb. 2018.

[25] S. U. Stich, “Local SGD converges fast and communicates little,”
arXiv:1805.09767 [math.OC], Jun. 2018.

[26] T. Lin, S. U. Stich, and M. Jaggi, “Don’t use large mini-batches, use
local SGD,” arXiv:1808.07217 [cs.LG], Oct. 2018.

[27] D. Gunduz, E. Erkip, A. Goldsmith, and H. V. Poor, “Source and
channel coding for correlated sources over multiuser channels,” IEEE

Transactions on Information Theory, vol. 55, no. 9, pp. 3927–3944, Sep.
2009.

[28] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Trans. Commun., vol. 61,
no. 9, pp. 3863–3877, Sep. 2013.

[29] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” in Proc. IEEE Int’l

Symp. on Inform. Theory (ISIT), Paris, France, Jul. 2019, pp. 1432–1436.
[30] T-Y. Tung and D. Gündüz, “SparseCast: Hybrid digital-analog wireless

image transmission exploiting frequency-domain sparsity,” IEEE Com-

mun. Lett., vol. 22, no. 12, pp. 2451–2454, Dec. 2018.
[31] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-

rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18 914–18 919, Nov. 2009.

[32] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, Jan. 2020.

[33] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” arXiv:1812.11750 [cs.LG], Jan. 2019.

[34] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., Early Access, Feb. 2020.

[35] ——, “Over-the-air machine learning at the wireless edge,” in Proc.
IEEE International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), Cannes, France, Jul. 2019, pp. 1–5.
[36] J.-H. Ahn, O. Simeone, and J. Kang, “Wireless federated distillation for

distributed edge learning with heterogeneous data,” arXiv:1907.02745
[cs.IT], Jul. 2019.

[37] M. M. Amiri, T. M. Duman, and D. Gündüz, “Collaborative machine
learning at the wireless edge with blind transmitters,” in Proc. IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
Ottawa, ON, Canada, Nov. 2019, pp. 1–5.

[38] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in INTERSPEECH, 2015, pp. 1488–1492.

[39] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. International Conference

on Neural Information Processing Systems (NIPS), Navada, USA, Dec.
2013.

[40] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.

Inform. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.
[41] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving sparse

superposition codes via approximate message passing decoding,” IEEE

Trans. Inform. Theory, vol. 63, no. 3, pp. 1476–1500, Mar. 2017.
[42] C. Rush and R. Venkataramanan, “The error probability of sparse

superposition codes with approximate message passing decoding,” IEEE

Trans. Inform. Theory, vol. 65, no. 5, pp. 3278–3303, Nov. 2018.
[43] A. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of

Statistics. Third ed., McGraw-Hill, 1974.
[44] C. D. Sa, C. Zhang, K. Olukotun, and C. Re, “Taming the wild: A unified

analysis of hogwild-style algorithms,” in Proc. International Conference

on Neural Information Processing Systems (NIPS), 2015.
[45] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of hand-

written digits,” http://yann.lecun.com/exdb/mnist/, 1998.
[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980 [cs.LG], Jan. 2017.
[47] Z. D. Bai and Y. Q. Yin, “Limit of the smallest eigenvalue of a

large dimensional sample covariance matrix,” The Annals of Probability,
vol. 21, no. 3, pp. 1275–1294, 1993.

This figure "Deniz.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/1901.00844v3

http://arxiv.org/ps/1901.00844v3

	I Introduction
	I-A Prior Works
	I-B Our Contributions
	I-C Notations

	II System Model
	III Digital DSGD (D-DSGD)
	IV Analog DSGD (A-DSGD)
	IV-A Mean-Removal for Efficient Transmission

	V Convergence Analysis of A-DSGD Algorithm
	V-A Preliminaries
	V-B Convergence Rate

	VI Experiments
	VII Conclusions
	Appendix A: Proof of Lemma 3
	Appendix B: Proof of Inequality (52)
	Appendix C: Proof of Lemma 4
	Appendix D: Proof of Theorem 1
	References

