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Abstract—CCZ-equivalence is the most general currently
known equivalence relation for functions over finite fields preserv-
ing planarity and APN properties. However, for the particular
case of quadratic planar functions isotopic equivalence is more
general than CCZ-equivalence. A recent construction method
for APN functions over fields of even characteristic, so-called
isotopic shift construction, was instigated by the notion of isotopic
equivalence. In this paper we discuss possible applications of
the idea of isotopic shift for the case of planar functions. We
show that, surprisingly, some of the known planar functions are
actually isotopic shifts of each other. This confirms practically
the pertinence of the notion of isotopic shift not only for APN
functions but also for planar maps.

I. INTRODUCTION

Let p be a prime number and n a positive integer. Then Fpn
denotes the finite field with pn elements and F?pn = Fpn \ {0}
is its multiplicative group. Throughout the paper, ζ denotes a
primitive element of Fpn , in particular F?pn = 〈ζ〉. Any map F
defined from Fpn to itself can be represented as a univariate
polynomial of degree at most pn − 1, F ∈ Fpn [x]

F (x) =

pn−1∑
j=0

ajx
j , aj ∈ Fpn .

Given a function F we set ker(F ) to be the set of zeros of F
over Fpn .

Based on its structure, a function F is called
• linear if F (x) =

∑n−1
i=0 cix

pi ;
• affine if it is the sum of a linear function and a constant;
• DO (Dembowski-Ostrom) polynomial if F (x) =∑

0≤i≤j<n aijx
pi+pj , with aij ∈ Fpn (for p = 2 there is

a restriction i 6= j);
• quadratic if it is the sum of a DO polynomial and an

affine function.
If for any a ∈ F?pn and b ∈ Fpn the equation F (x + a) −

F (x) = b admits at most δ solutions, for δ a positive integer,
then the function F is called differentially δ-uniform. When
F is used as an S-box inside a cryptosystem, the differential
uniformity measures its resistance to the differential attack
[4]. Small values of δ lead to a better contribution of F
used as S-box in a cryptosystem to the resistance against

this attack. In this sense, 1-uniform functions are optimal
and they are called perfect nonlinear or PN. Hence, defining
DaF (x) = F (x+a)−F (x) the derivative of F in the direction
of a, a given function F is PN if and only if, for any non-
zero a, the function DaF (x) is a bijection. PN functions are
also called planar. In even characteristic such functions do not
exist. In this case, the best resistance belongs to functions that
are differentially 2-uniform, these functions are called almost
perfect nonlinear or APN. Notice that PN and APN functions
have been also employed to construct message authentication
codes (see for instance [10], [15]).

There are several equivalence relations of functions for
which the PN and APN properties are preserved. Two func-
tions F and F ′ from Fpn to itself are called:
• affine equivalent if F ′ = A1 ◦ F ◦ A2 where A1, A2 :

Fpn → Fpn are affine permutations;
• EA-equivalent if F ′ = F ′′+A, where the map A : Fpn →

Fpn is affine and F ′′ is affine equivalent to F ;
• CCZ-equivalent if there exists some affine permutation
L of Fpn × Fpn such that the image of the graph of
F is the graph of F ′, that is, L(GF ) = GF ′ , where
GF = {(x, F (x)) : x ∈ Fpn} and GF ′ = {(x, F ′(x)) :
x ∈ Fpn}.

CCZ-equivalence is the most general known equivalence rela-
tion for functions which preserves PN and APN properties
while affine and EA-equivalences are its particular cases.
However, for the particular case of quadratic planar functions
so-called isotopic equivalence is more general than CCZ-
equivalence [9]. Inspired by the notion of isotopic equivalence,
a new construction method for APN functions, called isotopic
shift, was introduced in [5]. Given a function F ∈ Fpn [x] and
a linear map L ∈ Fpn [x] the isotopic shift of F by L is defined
as the map

FL(x) = F (x+ L(x))− F (x)− F (L(x)). (1)

In [5], it is proved that if F and G are isotopic equivalent
quadratic PN functions, then G is EA-equivalent to an isotopic
shift of F by some linear permutation L. We will show below
that the converse does not hold, that is, an isotopic shift of



a quadratic planar function by a linear permutation does not
necessarily produce an isotopic equivalent function (and it is
not always planar either).

As we have shown in [5], for the case p = 2, an isotopic
shift of an APN function can lead to APN functions CCZ-
inequivalent to the original function. In particular, all quadratic
APN functions over F26 can be obtained from x3 by isotopic
shift, and a new family of quadratic APN functions is con-
structed over F2n for n divisible by 3 by isotopic shift of
Gold functions [5]. Some generalizations of the isotopic shift
for the case of APN functions over a field of characteristic 2
are discussed in [6].

In this work we will extend the isotopic shift construction of
APN functions given in [5] for the even charecteristics to the
case of odd charecteristics for PN functions. For a Gold-like
PN functions (i.e xp

i+1) we will also generalize the result
obtained in [6], that is we study the PN property for some
particular functions of the type

F (x) = L1(x)p
i

x+ L2(x)xp
i

,

with L1 and L2 linearized polynomials. From the latter
construction we obtain some results on PN functions of the
type xL(x) with L linear. Some PN functions of this type are
also studied in [19], [20] . In the last part we report some
computational results and conclusions.

II. ON THE LINEAR SHIFTS IN FIELDS OF ODD
CHARACTERISTIC

As shown in [5], with the isotopic shift of an APN function
it is possible to obtain a CCZ-inequivalent APN function. This
is also true for the case of PN function. For example, consider
the planar quadratic function F (x) = x2, defined over any
finite field of odd characteristic. Consider its isotopic shift by
the linear permutation L(x) = xp

j

.

FL(x) =F (x+ L(x))− F (x)− F (L(x)) = 2xp
j+1.

Now, FL is PN over Fpn if and only if n
gcd(n,j) is odd.

Therefore we have an example of isotopic shift FL that is
not PN and also an example of isotopic shift that is PN and
isotopic inequivalent to F .

Proposition II.1. Given F,L ∈ Fpn [x], where L is a linear
function which is not a permutation, the map FL is not PN.

Proof. Without loss of generality assume F (0) = 0. Given
FL(x) as in (1), the function is PN if and only if for any
element e 6= 0DeFL(x) = FL(x+e)−FL(x) is a permutation.
Equivalently we can consider ∆e(x) = DeFL(x) − FL(e) to
be a permutation. Since L is not a permutation, there exists
z 6= 0 such that L(z) = 0. Then, ∆z(z) = FL(2z)−2FL(z) =
0 = ∆z(0) since FL(2z) = FL(z) = 0.

Remark II.2. If F is not PN, then it is still possible to
construct a planar isotopic shift FL. Consider the finite field
F34 and the non-PN function F (x) = x3+1 = x4. With the
linear permutation L(x) = x27 + ζ4x3 we construct

FL(x) = x3L(x) + xL(x)3 = x30 + ζ4x6 + x2 + ζ12x10,

that is PN. This function is CCZ-equivalent to the Dickson
function L(t2(x)) + 1

2x
2 with L(x) = 1

8 (x3 − x) and t(x) =

x3
2 − x.

Similarly to the case of finite fields with even characteristic
we have the following proposition.

Proposition II.3. For a monomial DO polynomial F (x) and a
linear function L(x) =

∑n−1
j=0 bjx

pj , the isotopic shift FL(x)
is affine equivalent to the isotopic shift FM (x) constructed
with the linear function

M(x) =

n−1∑
j=0

(bjζ
k(pj−1))p

t

xp
j

,

where k and t can be any integers. Moreover, for any function
F , if L is a permutation, then FL(x) is affine equivalent to
FL−1(x).

Proof. Without loss of generality let F (x) = xp
i+1. Then, we

have

FM (x) =

n−1∑
j=0

[(bjζ
k(pj−1))p

t

xp
i+pj + (bjζ

k(pj−1))p
i+t

xp
j+i+1]

and

(ζkp
t(1+pi)FM (ζ−kp

t

xp
t

))p
−t

=

=ζk(1+p
i)[ζ−kp

i

xp
i

M(ζ−kp
t

xp
t

))p
−t

+ ζ−kxM(ζ−kp
t

xp
t

))p
i−t

]

=ζk(1+p
i)
∑

[ζ−kp
i

xp
i

bjζ
k(pj−1)ζ−kp

j

xp
j

+

+ ζ−kxbp
i

j ζ
k(pj−1)piζ−kp

jpixp
jpi ]

=ζk(1+p
i)
∑

[ζ−k(p
i+1)bjx

pj+pi + ζ−k(p
i+1)bp

i

j x
pjpi+1]

=
∑

[bjx
pj+pi + bp

i

j x
pj+i+1] = FL(x).

For the last part, it is easy to check that if L is a permutation,
then FL(L−1(x)) = FL−1(x).

A. Comparison on linear shifts in odd and even characteristic
Assume F is a quadratic polynomial satisfying F (0) = 0

and L a linear function over Fpn where p is odd. Let ∆(y, x)
be the symmetric bilinear operator

∆(y, x) = F (x+ y)− F (x)− F (y).

Then

FL(x) = F (x+ L(x))− F (x)− F (L(x)) = ∆(L(x), x)

is an isotopic shift of a quadratic polynomial and then is a
DO polynomial itself, and its differential property is given by
∆(c, L(x)) + ∆(L(c), x) for c 6= 0. Indeed, since ∆(y, x) is
symmetric and bilinear we have

FL(x+ c)− FL(x)− FL(c) =

=∆(L(x+ c), x+ c)−∆(L(x), x)−∆(L(c), c)

=∆(L(x), x) + ∆(L(c), x) + ∆(L(x), c)+

∆(L(c), c)−∆(L(x), x)−∆(L(c), c)

=∆(c, L(x)) + ∆(L(c), x).



In order FL to be PN we want that

for any c 6= 0 |Im(∆(c, L(x)) + ∆(L(c), x))| = pn,

where Im(·) is the image set. In particular we have the
following.

Proposition II.4. Given F,L : Fpn → Fpn where F is a
quadratic polynomial satisfying F (0) = 0 and L is a linear
map, consider the isotopic shift of F by L, FL defined as in
(1). If the map FL is PN then for any element c 6= 0 we have

ker(∆(c, L(x))) ∩ ker(∆(L(c), x)) = {0}.

Moreover, L is a permutation.

In the following table we compare the characteristics of the
linear functions L for the case p even and p odd.

p even
if FL is APN

then
∀c ∈ F?

pn ∆(c, L(x)) + ∆(L(c), x) 2-to-1
L 1-to-1 or 2-to-1

if ker(L) = {0, z} then ∆(z, L(c)) 6= 0 ∀c 6= 0, z
ker(∆(c, L(x))) ∩ ker(∆(L(c), x)) = {0, c}

p odd
if FL is PN

then
∀c ∈ F?

pn ∆(c, L(x)) + ∆(L(c), x) 1-to-1
L 1-to-1

∆(c, L(c)) 6= 0 (FL(c) 6= 0)
ker(∆(c, L(x))) ∩ ker(∆(L(c), x)) = {0}

III. GENERALIZED ISOTOPIC SHIFT FOR PN MAPS OVER
FIELDS OF ODD CHARACTERISTIC

In this section we extend the result obtained in [6] to the
case of PN functions. Let us consider two linear maps

L1(x) =

k−1∑
j=0

Ajx
pjm and L2(x) =

k−1∑
j=0

Bjx
pjm

defined over the finite field Fpkm and construct the function

F (x) = L1(x)p
i

x+ L2(x)xp
i

.

A necessary condition for F ′ to be PN is the following.

Proposition III.1. Over Fpkm , for two integer m, k, consider
the function

F (x) = L1(x)p
i

x+ L2(x)xp
i

,

where L1, L2 ∈ Fpkm [x] are pm-linear polynomial. Then F
can be PN only if m

gcd(i,m) is odd.

Proof. Since F is PN then for any e ∈ F?pkm the function
∆e(x) = F (x + e) − F (x) − F (e) is a permutation. In
particular, for any e ∈ F?pm we have

∆e(1) =(L1(1)p
i

+ L2(1))(ep
i

+ e).

Since ∆e(0) = 0, in order to be PN ∆e(1) must be different
from 0, implying that ep

i 6= −e, for any e ∈ F?pm . This implies
that m

gcd(i,m) is odd.

Remark III.2. Note that for this construction, the necessary
condition m

gcd(i,m) odd implies that xp
i+1 is PN over the

subfield Fpm , but it could be not PN over Fpkm .

As for the case of even characteristic, let W = {yζj : y ∈
U, 0 ≤ j ≤ d′ − 1}, where U = 〈ζd′(pm−1)〉, d = gcd(pm −
1, p

km−1
pm−1 ) and d′ is an integer with the same prime factor as

d, each being raised at the power as in pkm−1
pm−1 (hence such that

gcd(pm − 1, pkm−1
d′(pm−1) ) = 1). We obtain the following result.

(The proof use similar ideas as in [5]).

Theorem III.3. Over Fpkm , where k and m are positive
integers, let i be a positive integer such that m

gcd(m,i) is odd and
consider two pm-linear polynomials L1, L2. Then the function
F (x) = L1(x)p

i

x+L2(x)xp
i

is PN if and only if the following
conditions are satisfied:
(i) for any t ∈W F (t) 6= 0;

(ii) for any t, v ∈ W if L1(t)p
i

v + L2(v)tp
i

= 0 then
L1(v)p

i

t+ L2(t)vp
i 6= 0;

(iii) for any t, v ∈ W and any r ∈ F?pm if L1(t)p
i

v +

L2(v)tp
i 6= 0 then L1(v)

pi t+L2(t)v
pi

L1(t)p
iv+L2(v)tp

i 6= (r)p
i−1.

Sketch of proof. To be PN, we need that for any e ∈ F?pkm the
function ∆e(x) = F (x+ e)− F (x)− F (e) is a permutation
(or equivalently 0 is the only root of ∆e(x)). Since F?pkm =
W × F?pm then we can rewrite e = st and x = uv with
s, u ∈ F?pm and t, v ∈W . Hence,

∆e(x) =us[sp
i−1(L1(t)p

i

v + L2(v)tp
i

)

+ up
i−1(L1(v)p

i

t+ L2(t)vp
i

)].

If v = t, then ∆e(x) 6= 0 is equivalent to (i).
For the case v 6= t, when L1(t)p

i

v+L2(v)tp
i

= 0, ∆e(x) 6= 0
if and only if (ii) holds. While, if L1(t)p

i

v + L2(v)tp
i 6= 0

then Condition (iii) is equivalent to having ∆e(x) 6= 0.

A. The particular case of x2

If we consider the particular case of x2, we will obtain the
function

F (x) = L1(x)x+ L2(x)x = xL(x),

where L(x) = L1(x) + L2(x).
Some existence results on PN functions of type xL(x) are

discussed in [19], [20]. In particular, we have that

Proposition III.4 ( [19]). Let L1, L2 : Fqn → Fqn be Fq-
linear mappings. If the mapping L1(x) ·L2(x) is PN, then the
maps L1 and L2 are bijective.

This proposition implies that it is sufficient to study PN
function of type xL(x) where L is a bijection.

Remark III.5. The fact that L is bijective can be obtained
also from the previous section. Indeed, we can consider the
isotopic shift of x2 with a linear function L, obtaining the
function F (x) = 2xL(x). If F is PN then the function L
needs to be a permutation.



The PN property of functions of type x(xq + ux) over Fq2
and x(trn(x) + ax) over Fqn is studied in [19], [20] (where
trn denotes the trace function from Fqn to Fq).
We can restate Theorem III.3 for the case of x2 as follows.

Theorem III.6. Let k and m be positive integers. Consider
a pm-linear polynomial L over Fpkm . Then the function
F (x) = xL(x) is PN if and only if the following conditions
are satisfied:

• for any t ∈W F (t) 6= 0;
• for any t, v ∈W , L(v)v 6= −L(t)t .

For the case k = 3 it is possible to obtain the following
results on polynomials of the type xL(x) with L a pm-linear
polynomial.

Proposition III.7. Over Fp3m , consider the isotopic shift of x2

by the linear permutation L(x) = axp
2m

+bxp
m

+x, FL(x) =
2(axp

2m+1 + bxp
m+1 + x). Denoting by N the norm function

from Fp3m to Fpm , assume that a = 2ep
2m+1

N(e)+1 and b = 2ep
2m

N(e)+1 ,

where e is such that N(e) 6= ±1 and exp
2m

+ xp
m

+ ep
m+1x

is a permutation. Then FL(x) is PN and affine equivalent to
x2.

Proof. Let A1(x) = e2p
2m

1−N(e)2 (xp
2m − e2x) and A2(x) =

1
e (exp

2m+xp
m

+ep
m+1x). The map A1 is a permutation since

xp
2m−1 = e2 would imply 1 = N(x)(p

m+1)(pm−1) = N(e)2,
and A2(x) is a permutation by hypothesis. Now, it is easy to
verify that A1 ◦ x2 ◦A2 = FL(x)/2.

Proposition III.8. Over Fp3m consider the isotopic shift of
x2 by the linear permutation L(x) = axp

2m

+ bxp
m

+ x,
FL(x) = 2(axp

2m+1 + bxp
m+1 + x2). Denoting by N the

norm function from Fp3m to Fpm , assume that a = 1/bp
2m

,
N(b) 6= 1, and xp

2m

+ bp
2m+1xp

m

+ bp
2m

x is a permutation.
Then FL(x) is PN and affine equivalent to xp

m+1.

Proof. Let A1(x) = bp
m+1

N(b)−1 (xp
2m − 1

bpm
x) and A2(x) =

1
bp2m

(xp
2m

+ bp
2m+1xp

m

+ bp
2m

x). A1(x) is a permutation
since xp

2m−1 = 1
bpm

would imply 1 = N(x)(p
m+1)(pm−1) =

1/N(b)p
m

= 1/N(b) and A2(x) is a permutation by hypoth-
esis. Then, A1 ◦ xp

m+1 ◦A2 = FL(x)/2.

IV. COMPUTATIONAL RESULTS OVER Fpn

In this section we report some computational results ob-
tained on the linear shift for odd characteristics in small
dimensions.

As seen before, from the linear shift of x2 by a linear
monomial we can obtain the Albert functions xp

t+1 [2] (for
any t ≥ 1). For any p odd, over Fpn with n ≤ 3, these are
the only PN functions possible.

A. The case p = 3

We consider the isotopic shift of x2 by a linear function L,
that is the function 2xL(x) with L a linear permutation.

Over F34 from the shift of x2 we can obtain with L(x) =
ax27 + bx9 + cx3 + dx (for some a, b, c, d) PN maps CCZ-
equivalent to x28 + x10 + ζ20x4 + ζ5x2, which is equivalent
to the Dickson function [14] L(t2(x)) + 1

2x
2 with L(x) =

1
8 (xp − x) and t(x) = xp

2 − x.
Over F35 , from the shift of x2 we can obtain the PN functions
x4, and x10 (Albert case).
From the shift of F (x) = x90 + x2 (PN function [3]), for
L(x) = x81 + x9 + 2x3 + x we obtain that FL is equivalent
to x10 − x6 − x2 [16].
Over F36 from the shift of x2 we can obtain the PN function
x10 (Albert case). Due to the number of linear permutations
over F36 , our program was still running at the time of writing.

B. The case p = 5

Over F54 , from the shift of x2 with L = ax125 + bx5 + cx
and L = ax125 + bx25 + cx5 + dx (for some a, b, c, d) we can
obtain PN maps equivalent to x126 + ζ12x6 + ζ2x2, which is
CCZ-equivalent to the Dickson function L(t2(x)) + 1

2x
2 with

L(x) = 1
8 (xp − x) and t(x) = xp

2 − x. As for the case F36 ,
our program was still running at the time of writing.

C. Isotopic shifts by a linear monomial

Starting from an Albert like function xp
t+1 over Fpn by a

linear monomial L(x) = axp
i

we obtain the map

FL(x) = ap
t

xp
t+i+1 + axp

t+pi .

When t = 0 we get that FL(x) = 2axp
i+1 is PN if and

only if n/ gcd(n, i) is odd. For t 6= 0 we performed some
computations over small dimension.
• For p = 3 and 3 ≤ n ≤ 9 no PN maps were constructed.
• Over F36 the only maps constructed were for t = 1 and
i = 3 (the maps found are affine equivalent to xp

2+1).
• Over F53 , F55 , F57 no PN maps were constructed.
• Over F54 the only maps constructed were for t = 1, i = 1

and i = 3 (the maps found for L(x) = ζx5 and L = ζx5
3

are affine equivalent to Dickson’s map).
• Over F56 the only maps constructed were for t = 1 and
i = 3 (the found PN maps are affine equivalent to xp

2+1).
• Over F73 with t = 1, i = 1 and i = 2 the map is affine

equivalent to xp
2+1 (L = ζjx7 for (j − 1) not multiple

of 3 and L = ζjx7
2

for (j − 2) not multiple of 3).
• Over F74 , F75 no PN maps were constructed.

D. Isotopic shift with q-polynomials

We report some computational results, done in characteristic
3, for the (generalized) isotopic shift constructed in Section III.

Consider the field F36 , in Table I we list all known isotopic
inequivalent planar functions,

Considering k = 2 and m = 3, a pm-polynomial is of the
form L(x) = ax3

3

+bx. With F (x) = xp+1 (it is not PN over
F36 ) the isotopic shift with L(x) = ζ2x3

3

+ x (i.e. the case
L1(x) = L2(x)),

FL(x) = ζ6x82 + ζ2x30 + 2x4

is PN and affine equivalent to the ZP function.



Table I
ALL KNOWN ISOTOPIC INEQUIVALENT PLANAR FUNCTIONS OVER F36

x2 Finite Field

xp2+1 Albert
1
8 (x

2p4 + x2p − 2xp4+p − x2p3 − x2 + 2xp3+1) + 1
2x

2 Dickson [14]

ζ27x270 + ζx28 + ζx10 BH [9]

2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 LMPTB [18]

ζ336x270 + ζ700x244 + ζ350x162 + ζ350x84+

+x54 + ζ700x36 + x28 + ζ336x10 + ζ350x6 Ganley [17]

2x486 + 2x252 + ζ294x162 + ζ294x84+

+ζ28x54 + ζ28x28 + 2x18 + ζ294x6 + ζ84x2 Cohen-Ganley [11]

ζ140x324 + ζ504x246 + ζ284x108 + ζ504x90 + ζ674x82+

+ζ506x54 + ζ726x30 + ζ225x28 + ζ140x12 + ζ388x4 + ζ532x2 ZP [22]

x122 CM [12]

We searched for similar structures in other even dimensions.
Over F32m with L(x) = axp

m

+ x and F (x) = xp
i+1 we

obtained the following results:
• with m = 3 over F36 the following PN maps are

constructed
– F (x) = x3+1 and L(x) = ax3

3

+ x (a =
ζ2, ζ6, ζ18, ζ28, ζ32, . . .), the functions obtained are
all affine equivalent to the ZP function.

• with m = 4, 5 no PN maps are constructed;
• with m = 6, over F312 the following PN maps are

constructed
– F (x) = x3

2+1 and L(x) = ax3
6

+ x (a =
ζ22, ζ56, ζ66, ζ168, ζ198, . . .),

– F (x) = x3
4+1 and L(x) = ax3

6

+ x (a =
ζ22, ζ56, ζ66, ζ168, ζ198, . . .).

For these last functions it is not currently possible to check
with MAGMA CCZ-equivalence to the known families.

Over F36 we consider also the generalized isotopic shift
with L2(x) = −L1(x). For the PN function F (x) = xp

2+1,
putting k = 2 and m = 3, and thus L1(x) = ax3

3

+ bx, we
have

F ′(x) = ap
2

xp
5+1 − axp

3+p2 + (bp
2

− b)xp
2+1.

With coefficients restricted to the subfield F33 the following
results are obtained:
• when L1(x) = ax, (a 6∈ Fp2 ) F ′ is affine equivalent to
F ,

• when L1(x) = ax3
3

+ bx, F ′ is affine equivalent to the
ZP function.

Putting k = 3 and m = 2, then L1 is a p2-polynomial,
L1(x) = axp

4

+ bxp
2

+ cx, and

F ′(x) = axp
2(p2+1)+bx2p

2

−ap
2

x2−bp
2

xp
4(p2+1)+(c−cp

2

)xp
2+1.

All PN functions constructed are affine equivalent to x10 =
xp

2+1.

V. CONCLUSIONS

We investigate further the isotopic shift construction intro-
duced in [5] applying it to PN functions in odd characteristic.

We show that isotopic shift of a PN function can lead to
PN functions isotopic inequivalent to the original function.
Moreover, we extend the construction through q-polynomials
also at the PN case. In the last years, known classes of
APN functions over fields of even characteristic were used
for constructing new classes of PN mappings over fields
of odd characteristics (see for instance [9], [21]). It would
be interesting to investigate more whether the isotopic shift
construction can determine new classes of PN mappings and,
in particular, whenever the functions given in Theorem III.3
can be CCZ-inequivalent to the known ones.
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