
ar
X

iv
:1

90
2.

06
31

9v
1 

 [
cs

.I
T

] 
 1

7 
Fe

b 
20

19
1

Private Inner Product Retrieval

for Distributed Machine Learning

Mohammad Hossein Mousavi∗, Mohammad Ali Maddah-Ali†,

and Mahtab Mirmohseni†

∗Department of Electrical Engineering, Sharif University of Technology, Tehran,

Iran

†Nokia Bell Labs, Holmdel, NJ, USA

Abstract

In this paper, we argue that in many basic algorithms for machine learning, including support vector

machine (SVM) for classification, principal component analysis (PCA) for dimensionality reduction, and

regression for dependency estimation, we need the inner products of the data samples, rather than the

data samples themselves.

Motivated by the above observation, we introduce the problem of private inner product retrieval for

distributed machine learning, where we have a system including a database of some files, duplicated

across some non-colluding servers. A user intends to retrieve a subset of specific size of the inner

products of the data files with minimum communication load, without revealing any information about

the identity of the requested subset. For achievability, we use the algorithms for multi-message private

information retrieval. For converse, we establish that as the length of the files becomes large, the set

of all inner products converges to independent random variables with uniform distribution, and derive

the rate of convergence. To prove that, we construct special dependencies among sequences of the sets

of all inner products with different length, which forms a time-homogeneous irreducible Markov chain,

without affecting the marginal distribution. We show that this Markov chain has a uniform distribution

as its unique stationary distribution, with rate of convergence dominated by the second largest eigenvalue

of the transition probability matrix. This allows us to develop a converse, which converges to a tight

bound in some cases, as the size of the files becomes large. While this converse is based on the one

in multi-message private information retrieval due to the nature of retrieving inner products instead of

data itself some changes are made to reach the desired result.
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I. INTRODUCTION

With the growth in data volume over recent years, the tasks of data storage and processing

are often offloaded from in-house trusted systems to some external entities. Such distributed

environments raise challenges, not experienced before. One of the most important ones is

privacy concern, which can have different interpretations. Based on the applications use-case,

the private asset might be the training data, test data, and even the model parameters (the

learning algorithm). While the first two have been the subject of extensive research, from both

computational cryptography and information-theoretic perspectives, the last one has been less

understood.

In the privacy of the machine learning algorithms, the goal is to ensure the privacy of the

parameters. Many different scenarios can be considered in which the parameters are in danger

of breaching, and need to be addressed. Here, we focus on the case, where the learner must

download some data samples from the servers to train the model. In this case, the learner wants

to keep the identity of this subset hidden from the servers. The reason is that in many cases,

revealing the identity of the selected training samples would reveal considerable information

about the intention of the learner, and can be used to guess the learning algorithm and calculate

parameters of the model. For example, assume that learner downloads some training samples

from a server to train a classification algorithm, say support vector machines (SVM). The server

can easily guess that, and run the same algorithm, and gain full knowledge about the intention

and the model.

In this paper, we investigate the above privacy concern in a distributed setting, while our goal

is to achieve privacy in a fundamental and information-theoretic level where no information is

revealed about the algorithms to data owners. We argue that some of the most basic machine

learning algorithms in different areas, including but not limited to SVM for classification,

regression for relationship estimation, and principal component analysis (PCA) for dimensionality

reduction, share an important feature in using sample data in their algorithm. To run these

methods, the learner needs the inner products of the data files instead of the raw data. This can

be particularly important when the length of input vectors is large compared to the number of

data used for learning.

On a separate line of research, the privacy in distributed settings, referred to as private

information retrieval (PIR), is investigated. In [1], the basic setup of PIR is studied, where
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the goal is to retrieve a file from a dataset, replicated in some non-colluding servers, without

revealing its index. In particular, the capacity, as the infimum of the normalized download rate,

is characterized. This is followed by [2]–[6] for different cases such as symmetric privacy,

possibility of collusion among the servers, and coded storage instead of uncoded replication

of data files in servers. In particular, in [7], the multi-message PIR (MPIR) problem is studied,

where the objective is to privately download a subset of files, instead of just one, and the capacity

is approximately, and in some cases tightly, characterized. The problem of retrieving a linear

function of files from the servers, referred to as private computation (PC) or private function

retrieval (PFR), is investigated in [8] and [9]. In [10] the capacity for private linear computation in

MDS coded databases is studied. Recently the new problem of retrieving a polynomial function

of files from some servers has been introduced and discussed in [11] and [12] by using Lagrange

encoding in coded databases.

In this paper, we study a system, including a dataset of K files, replicated across N non-

colluding servers. A user (learner) wishes to retrieve a subset of inner products out of all possible

inner products of K data files, without revealing the identity of the subset to each server. We

prove that as the length of files, L, goes to infinity, the set of inner products of all data files (listed

in the vector X(L)) converges, in distribution, to a set of mutually independent uniform random

variables. To show that, we introduce some dependencies in the sequence of X(L), L = 1, 2, . . .,

while keeping the marginal distribution of X(L) the same. Thanks to this dependency, we show

that {X(L)}∞L=1 forms a time-homogeneous irreducible Markov chain, with uniform distribution

as its unique stationary distribution. Moreover, the rate of convergence is governed by the second

largest eigenvalue λ2 of the transition probability matrix, where |λ2| ≤ 1. This property motivates

us to suggest MPIR as an achievable scheme. In addition, we rely on the above property to

develop a converse which becomes tight in some case, as the length of files goes to infinity.

While this converse is based on [7], a few changes are needed to be made to reach our goal.

This is because of the difference in retrieving inner products instead of data files in [7]. For

example, the number of possible inner products cannot be any arbitrary integer which forces us

to introduce an equivalent problem with arbitrary number of inner products in the process of

reaching converse results.

The organization of the paper is as follows: In Section II, we discuss and motivate why

retrieving the set of inner products are critical in machine learning. Next in Section III, we

formally define the problem setting. We state our main results in Section V and their proofs in
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Section VI.

II. BACKGROUND AND MOTIVATION

In what follows, we review some of the most basic machine learning algorithms, in three

areas of classification, regression, and dimension reduction, and show that all three are based on

the inner products of the samples, rather than the samples.

1. Support vector machines (SVM): The SVM is one of the basic classification algorithms,

where the goal is to correctly label the data files. This algorithm has many use cases such as face

detection, bioinformatics (gene classifications), text categorization and etc. Here, we describe a

simple case of SVM from [13, Page 63] and we discuss that knowing the inner products is

enough to run the algorithm (instead of knowing the entire database).

Consider an input alphabet X consisting of length L vectors, a target output alphabet Y =

{−1, 1} and a distribution D on X ×Y . The learner has m training samples from X ×Y , denoted

by (x1, y1), (x2, y2), . . . , (xm, ym), drawn from D. The goal here is to find function h : X → Y
from hypothesis set H, such that the following generalization error is minimized over H:

RD(h) = Pr
(x,y)∼D

{h(x) 6= y}. (1)

Although many different hypotheses sets exist, H can be chosen as described in [13] as a

linear classifier defined as follows,

H = {x 7→ sign(〈w,x〉+ b)|w ∈ R
L, b ∈ R}. (2)

The solution to this problem boils down to solving the following convex optimization problem:

min
w,b

1

2
||w2|| (3)

subject to: yi(〈w,xi〉+ b) ≥ 1, ∀i ∈ [1 : m], (4)

where for any integer m, [1 : m] denotes {1, . . . , m}. This notation is used throughout this paper.

The above problem can be solved by introducing Lagrange variables αi ≥ 0, i ∈ [1 : m] for each

constraint. Thus, the dual form of the constrained optimization problem is derived as following.

max
αi,i∈[1:m]

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyj〈xi,xj〉 (5)

subject to: αi ≥ 0 and

m
∑

i=1

αiyi = 0, ∀i ∈ [1 : m]. (6)
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Solving the dual problem on αi, i ∈ [1 : m], we have:

w =

m
∑

i=1

= αiyixi , b = yi −
m
∑

j=1

αjyj〈xj ,xi〉. (7)

As is clear from (5)-(7), in order to solve the main problem for w, b, we only need the inner

products of samples and their labels to solve the dual problem for αi and a linear combination of

data samples to get w 1. So, when the length of vectors xi, L, is large, retrieving inner products

instead of raw samples is more efficient in a distributed learning setting.

2. Regression: The regression algorithm predicts the real-valued label of a point by using a

data set. Regression is a very common task in machine learning for approximately and closely

deriving the relationship between variables. The regression is similar to continuous-label version

of the classification, as opposed to the classification’s discrete labels. Many use cases can be

considered for the regression algorithm, such as optimizing the price of products by learning the

relation of price and the sale volume in different markets and analyzing the product sale drivers

such as distribution methods in markets. Here, we first describe a simple regression problem

from [13, Page 245] and show in order to solve this problem we only need the inner products

as opposed to retrieve all data files.

Similar to SVM, consider an input alphabet X consisting of vectors of length L and a distribu-

tion D on X×Y . The learner has m training samples from X×Y , denoted by (x1, y1), (x2, y2), . . . , (xm, ym),

drawn from D. The difference is that the target output alphabet Y can be a continuous space.

Since the labels are real numbers, the learner is not able to predict them precisely. So, a loss

function is considered to show the distance between the label and the predicted value.

Now, we discuss a simple linear regression problem. Similar to SVM, the hypothesis set is

as follows.

H = {x 7→ 〈w,x〉+ b|w ∈ R
L, b ∈ R}. (8)

The loss here is empirical mean squared error. So, the optimization problem is as follows,

min
w,b

1

m

m
∑

i=1

(〈w,xi〉+ b− yi)
2, (9)

which can be written in a simpler form as:

min
w̃

F (w̃) =
1

m
||X⊤w̃ − y||2, (10)

1To having a linear combination of the samples privately, we can use a scheme called private function retrieval
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where X =





x1 ... xm

1 ... 1



, w̃ =















w1

...

wL

1















and y =











y1
...

ym











. It is clear that the objective functions

is convex and reaches its optimum value in ∇F (w̃) = 0. So, we have:

2

m
X(X⊤w̃− y) = 0 ⇔ XX⊤w̃ = Xy. (11)

Now, if XX⊤ is invertible, we can calculate w̃. Otherwise, we replace the inverse with pseudo-

inverse.

w̃ =











(XX⊤)−1Xy if XX⊤ is invertible

(XX⊤)†Xy otherwise

. (12)

It can be easily shown that the above result can be rewritten as below.

w̃ =











X(X⊤X)−1y if X⊤X is invertible

X(X⊤X)†y otherwise

. (13)

As seen, the solution only needs inner products (X⊤X) and a linear combination of data files

(w̃ = Xa, a = (X⊤X)−1y) and not all data files. If the length of data vectors, L, is large,

downloading all data files needs much more resource.

3. Principal component analysis (PCA): The purpose of this algorithm is to reduce the

dimensionality of data with large vector length, so that its most important features can be better

analyzed. The reason is that sometimes the generalization ability of method decreases with the

increase in dimension of data. The following example is from [14, Page 324].

Consider the m vectors of length L, x1, ...,xm, as data files. The goal here is to reduce

the dimensionality of these vectors using linear transformation. To do this, we define a matrix

W ∈ R
d×L where d < L. We also have a mapping x 7→ Wx, whose output is the lower

dimensionality representation of data. Then a second matrix U ∈ R
L×d is defined to recover x.

This means that if y = Wx is the reduced representation, then the x̃ = Uy is the recovered data.

Minimizing the magnitude of empirical distance between the original data and the recovered data

is the goal of PCA.

arg min
W,U

m
∑

i=1

||xi −UWxi||2. (14)
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It is shown in [14] that U⊤ = W and this problem can be rewritten as follows.

argmin
U

m
∑

i=1

||xi −UU⊤xi||2, (15)

subject to: U⊤U = I, (16)

where I is the identity matrix. According to Theorem 23.2 in [14, Page 325] the solution for

above problem is to calculate u1, ...,ud which are eigenvectors of matrix A =
∑m

i=1XX⊤ (X =

[x1...xm]) corresponding to d largest eigenvalues of the matrix. The solution is U = [u1...ud].

If the dimension of the original vectors is too large (L ≫ m), then we can rewrite the answer.

We define B = X⊤X. Let u be an eigenvector of matrix B (so Bu = λu). This means that we

have X⊤Xu = λu and thus,

XX⊤Xu = λXu ⇒ AXu = λXu. (17)

Therefore, if u is an eigenvector of B, corresponding to eigenvalue λ, then Xu is an eigen-

vector of matrix A, corresponding to the same eigenvalue. So in PCA, when vector length L is

large, it is simpler to calculate the matrix X⊤X that is matrix of inner products of original data.

Then, the eigenvectors of this matrix corresponding to its d largest eigenvalues are enough.

These three algorithms make clear that methods using inner products of data files are important

and common tasks of machine learning. Thus, retrieving the inner products privately from the

servers is an important step in machine learning privacy.

III. PROBLEM STATEMENT

Consider a set of K data files, W1, . . . ,WK , for some integer K, where files are selected

independently and uniformly at random from a finite field F(qL), for some integer L. Thus,

H(W1,W2, . . . ,WK) = LK log(q). (18)

Files can be represented in the vector form as

Wk = (wk1, ..., wkL)
⊤

wkℓ ∈ F(q), for k ∈ [1 : K], ℓ ∈ [1 : L]. (19)

We assume that files are replicated in N non-colluding servers, for some integer N . We define

X (L), as the set of the inner product of all pairs of data files,

X (L) = {〈Wi,Wj〉, ∀i, j ∈ [1 : K]}. (20)
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Also, we define T as index of inner products as follows,

T = {{i, j}, ∀i, j ∈ {1, 2, ..., K}}. (21)

Note that each member of T corresponds to an inner product in set X (L), i.e., {i, j} ∈ T ⇐⇒
〈Wi,Wj〉 ∈ X (L).

A user wishes to retrieve a subset of size P ∈ N of inner products. More precisely, the user

chooses a set P , where P ⊆ T , and |P| = P , and entreats to know X (L)
P , defined as

X (L)
P = {〈Wi,Wj〉, ∀{i, j} ∈ P}. (22)

The cardinality P of P is known to all servers. The user wishes to retrieve X (L)
P while ensuring

privacy of P from each server.

In order to retrieve these inner products user creates queries Q
[P]
1 , ..., Q

[P]
N and sends Q

[P]
n to

server n, through an error-free secure link. In response, server n, responds with A
[P]
n . Since user

has no knowledge of files,

I(W1, ...,WK ;Q
[P]
1 , ..., Q

[P]
N ) = 0. (23)

The answer of server n, n ∈ [1 : N ], is a function of query sent to that server and the set of

data files available there, thus

H(A[P]
n |W1, ...,WK , Q

[P]
n ) = 0. (24)

Also, An1:n2 denotes set {An1 , An1+1, ..., An2}. The queries and answers must satisfy two con-

ditions:

(i) Correctness Condition: This condition states that by having all queries and answers from

servers, the user can calculate inner products indexed by the set P . Equivalently,

H(X (L)
P | A[P]

1:N , Q
[P]
1:N) = 0. (25)

(ii) Privacy Condition: In order to satisfy privacy, regardless of what set P is chosen, query

and answer for each server must be identically distributed, i.e., ∀P1,P2 ⊆ T , |P1| = |P2| = P ,

we must have,

(Q[P1]
n , A[P1]

n ,W1, ...,WK)∼(Q[P2]
n , A[P2]

n ,W1, ...,WK). (26)
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For an achievable scheme, satisfying (25) and (26), we define the retrieval rate R(P, L), as the

ratio between information of the inner products in X (L)
P and total downloading cost to retrieve

the inner products X (L)
P , minimized over all possible requests P ⊆ T , |P| = P , i.e.,

R(P, L) = min
P⊆T ,|P|=P

H(X (L)
P )

∑N
n=1H(A

[P]
n )

. (27)

The capacity is the supremum of all achievable R(P, L).

IV. PRELIMINARY

In order to proceed we need to review the results of MPIR problem in [7]. Consider a

system, including K data files, replicated in N noncoluding servers. Each data file is chosen

independently and uniformly at random from the finite field F(qL). A user wishes to retrieve

a subset indexed by P ⊆ [1 : K] of data files, ensuring the privacy of P . Assume |P| = P ,

where P is known publicly. Rate is defined as information of subset of data files indexed by P
over download cost, and the capacity CMPIR is defined as the supremum over all rates in privacy

preserving schemes. Then we have [7],

R
MPIR

(K,P,N) ≤ CMPIR ≤ RMPIR(K,P,N), (28)

where for K
P
≤ 2, we have

1

RMPIR(K,P,N)
=

1

R
MPIR

(K,P,N)
= 1 +

K − P

PN
,

and for K
P
≥ 2, we have

1

RMPIR(K,P,N)
=

⌊

K

P

⌋

− 1
∑

i=0

1

N i
+

(

K

P
−

⌊

K

P

⌋)

1

N
⌊

K

P

⌋ ,

and
1

R
MPIR

(K,P,N)
is equal to

∑P
i=1 βir

K − P

i

[(

1 +
1

ri

)K

−
(

1 +
1

ri

)K − P]

∑P
i=1 βir

K − P

i

[(

1 +
1

ri

)K

− 1

] ,

where ri is defined as ri =
eĵ2π(i−1)/P

N1/P − eĵ2π(i−1)/P
, i ∈ [1 : P ], and ĵ =

√
−1. In addition, βi, i ∈ [1 :

P ], is the solution of the set of linear equations
∑P

i=1 βir
−P
i = (N−1)K−P and

∑P
i=1 βir

−k
i = 0,

k ∈ [1 : P − 1].
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V. MAIN RESULTS

The main result is stated in the following theorem.

Theorem 1. For a system with K files in F(qL) and N servers, where the user is interested in

a subset of size P of inner products, we have

1

R
MPIR

(K(K + 1)/2, P,N)
−O(λL−1

2 ) <
1

C
(29)

≤ 1

RMPIR(K(K + 1)/2, P,N)
,

where λ2 is a constant independent of L and |λ2| < 1.

Corollary 1. If
K(K + 1)

2P
≤ 2, then we have

lim
L→∞

1

C
= 1 +

K(K + 1)− 2P

2PN
. (30)

Corollary 2. If
K(K + 1)

2P
∈ N, then we have

lim
L→∞

1

C
= 1 +

1

N
+ ...+

1

N

K(K + 1)

2P
− 1

. (31)

The proof can be found in the next section. Assuming q is large enough, for achievability,

we use the scheme of MPIR. For converse, we prove that as L goes to infinity, entries of X (L)

converges to a set of independent random variables with uniform distribution, with the rate of

convergence dominated by a constant λ2, |λ2| ≤ 1. For large L, in some cases, the achievable

rate and converse match. In other cases, these two are very close.

VI. PROOF

We sort the elements of set X (L) in a vector X(L) ∈ F
K(K+1)/2(q), such that 〈Wi,Wj〉 in X(L)

comes before 〈Wk,Wl〉 if i < k or i = k and j < l. Likewise, we sort the elements of X (L)
P in

a vector X
(L)
P .

In this section, we provide the proof for Theorem 1.

First we show that as L → ∞, the distribution of X(L) converges to a uniform distribution

over FK(K+1)/2(q):

∀y ∈ F
K(K+1)/2(q) : lim

L→∞
Pr{X(L) = y} =

1

qK(K+1)/2
. (32)
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Indeed, we increase L by one, and show that the distribution of X(L) over FK(K+1)/2(q) becomes

closer to a uniform distribution. In addition, we derive the rate of convergence.

Let us denote the qK(K+1)/2 members of set FK(K+1)/2(q) by y1 ... yqK(K+1)/2 , i.e.,

F
K(K+1)/2(q) = {y1 ... yqK(K+1)/2} (33)

We denote the probability mass function of X(L) over FK(K+1)/2(q) by p(L) ∈ [0, 1]q
K(K+1)/2

,

i.e.

p(L) = (p
(L)
1 , ..., p

(L)

qK(K+1)/2)
⊤ ∈ [0, 1]q

K(K+1)/2

(34)

where

p
(L)
i = Pr{X(L) = yi}, i ∈ [1 : qK(K+1)/2]. (35)

Apparently,

qK(K+1)/2
∑

i=1

p
(L)
i = 1. (36)

Our goal is to investigate how p(L) changes, as we increase L to L+ 1. Let

W
(L)
i = (wi1, ..., wiL)

⊤, i ∈ [1 : K]. (37)

Without loss of generality, we assume that

W
(L+1)
i , (wi1, ..., wiL, wi(L+1))

⊤ i ∈ [1 : K], (38)

where wi(L+1) is selected uniformly at random from F(q). We note that by this construction

X(L) and X(L+1) become correlated. However, the distribution of X(L+1) is still the same as it

was discussed in the problem formulation but this correlation allows us to derive the converging

distribution.

Lemma 1. The sequence {X(L)}∞L=1 forms a Markov chain with a time-homogeneous transition

probability M ∈ R
qK(K+1)/2×qK(K+1)/2

, i.e.

p(L+1) = Mp(L), (39)

where

[M ]i,j = Pr{∆(L,L+1) = yi − yj}, ∀i, j ∈ [1 : qK(K+1)/2]. (40)
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Proof. Defining the data files as above, then we have,

〈W (L+1)
i ,W

(L+1)
j 〉 = 〈W (L)

i ,W
(L)
j 〉+ wi(L+1)wj(L+1), ∀i, j ∈ [1 : K]. (41)

Thus for the vector of inner products X(L), we also can write,

X(L+1) = X(L) +∆(L,L+1) (42)

where

∆(L,L+1) = (w1(L+1)w1(L+1), w1(L+1)w2(L+1), ..., wK(L+1)wK(L+1))
⊤ ∈ F

K(K+1)/2(q). (43)

Because of the way we constructed W
(L+1)
i from W

(L)
i , for i = [1 : K], it is apparent that

∆(L+1) is independent of data files W
(L)
i , i ∈ [1 : K], and irrespective of L. We have

Pr{X(L+1) = yi} =
∑

j∈qK(K+1)/2

Pr{X(L) = yj}.Pr{∆(L,L+1) = yi − yj} (44)

Thus from (35), we can rewrite the above equation as

p(L+1) = Mp(L), (45)

where M ∈ R
qK(K+1)/2×qK(K+1)/2

is a constant matrix, with entry (i, j) be equal to

[M ]i,j = Pr{∆(L,L+1) = yi − yj}, ∀i, j ∈ [1 : qK(K+1)/2]. (46)

We note that M is constant and independent of L.

To show that the limit in (32) exists, in the following lemma, we guarantee that the Markov

chain has steady distribution.

Lemma 2. Markov chain formed by the sequence {X(L)}∞L=1 is irreducible.

Proof. In order to prove lemma we show that there exists some Γ ∈ N, such that [MΓ]i,j > 0,

∀i, j ∈ [1 : qK(K+1)/2]. This means it is possible to get to any state from any state in this chain

or equivalently this chain is irreducible. We note that for any integer Γ

X(L+Γ) = X(L) +∆(L,L+Γ), (47)

where

∆(L,L+Γ) = (

Γ
∑

γ=1

w1(L+γ)w1(L+γ),

Γ
∑

γ=1

w1(L+γ)w2(L+γ), ...,

Γ
∑

γ=1

wK(L+γ)wK(L+γ))
⊤. (48)
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One can see that

Pr{∆(L,L+Γ) = yi − yj} = [MΓ]i,j, ∀i, j ∈ [1 : K], (49)

[MΓ]i,j denotes entry (i, j) of matrix MΓ.

This lemma is equivalent to claim that there exists some Γ ∈ N such that every realization of

∆(L,L+Γ) in F
K(K+1)/2(q) is possible with some positive probability. Notice that the following

relationship holds,

∆(L,L+Γ) =

Γ
∑

γ=1

∆(L+γ−1,L+γ) (50)

It is obvious that ∆(L+γ−1,L+γ), γ = 1, . . . ,Γ, are mutually independent. The reason is that

∆(L+γ−1,L+γ) is only dependent of wk(L+γ), k ∈ [1 : K].

We first show that for Γ = 5 every vector in F
K(K+1)/2(q) with only one non-zero element

is a probable (has a positive probability) realization of ∆(L,L+5). In other words, we show that,

for any y ∈ F
K(K+1)/2(q), where y(e) 6= 0 and y(i) = 0, ∀i ∈ [1 : qK(K+1)/2]\{e}, for some

e ∈ [1 : qK(K+1)/2], then Pr{∆(L,L+5) = y} > 0. Let us assume

y(e) = a, for some a ∈ F(q)\{0}. (51)

We know that by definition ∆(L,L+5)(e) =
∑5

γ=1wie(L+γ).wje(L+γ), for some ie, je ∈ [1 : K].

Here, we consider two cases for values of ie, je.

Case (I) : In this case ie = je. In other words, ∆(L,L+5)(e) =
∑5

γ=1wie(L+γ).wie(L+γ), for some

ie ∈ [1 : K]

From [15, Page 66 ], we have

∀a ∈ F(q), ∃s, t ∈ F(q) : a = s2 + t2, (52)

Therefore one possible case that can create such y is as follows:

wr(L+γ) =























t r = ie = je, γ = 1

s r = ie = je, γ = 2

0 o.w.

(53)

Clearly this case has positive probability and therefore Pr{∆(L,L+Γ) = y} > 0.

Case (II): In the case ie 6= je. In other words, ∆(L,L+5)(e) =
∑5

γ=1wie(L+γ).wje(L+γ), for some ie, je ∈
[1 : K], ie 6= je.

February 19, 2019 DRAFT



14

We have (see [15, Page 66])

∃s1, s2, t1, t2 ∈ Fq : −a2 = s21 + t21 and − 1 = s22 + t22 (54)

Therefore one possible case that can create such y is as follows:

wr(L+γ) =















































































a r = ie, γ = 1

1 r = je, γ = 1

s1 r = ie, γ = 2

t1 r = ie, γ = 3

s2 r = je, γ = 4

t2 r = je, γ = 5

0 o.w.

(55)

In particular, one can verify that

∆(L,L+5)(e) =

Γ
∑

γ=1

wie(L+γ)wje(L+γ) = a× 1 + s1 × 0 + t1 × 0 + 0× s2 + 0× t2 = a.

(56)

In addition

Γ
∑

γ=1

wie(L+γ)wie(L+γ) = a2 + s21 + t21 + 0 + 0 = a2 − a2 = 0, (57)

Γ
∑

γ=1

wje(L+γ)wje(L+γ) = 12 + 0 + 0 + s22 + t22 = 12 − 12 = 0. (58)

Other entries of ∆(L,L+5) are zero trivially.

Since the probability of (55) is not zero, therefore in this case also Pr{∆(L,L+Γ) = y} > 0.

From these two cases above, we can say every vector with one non-zero element is a probable

(with positive probability) realization of ∆(L,L+5). We now show that every vector in F
K(K+1)/2(q)

is a possible realization with positive probability for ∆(L,L+Γ) when Γ ≥ 5K(K + 1)/2. First

we write ∆(L,L+5K(K+1)/2) as,

∆(L,L+5K(K+1)/2) =

K(K+1)/2
∑

γ=1

∆(L+5(γ−1),L+5(γ)). (59)
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Let y ∈ F
K(K+1)/2(q) be an arbitrary vector. To show that y is a possible realization of

∆(L,L+Γ) with non-zero probability, we first define y(i), i ∈ [1 : K(K + 1)/2], as follows,

y(i)(i) = y(i), (60)

y(i)(j) = 0, j ∈ [1 : K(K + 1)/2]\{i}. (61)

This means y(i) is zero in every index except in index i where its value is y(i). We can see that,

y =

K(K+1)/2
∑

i=1

y(i). (62)

By construction, y(i) is a vector that has at most one non-zero element, thus it is a probable

realization for ∆(L+5(i−1),L+5(i)). Now if ∆(L+5(i−1),L+5(i)) = y(i), ,∀i ∈ [1 : K(K+1)/2] which is

possible with positive probability then because of (62) and (59), we know ∆(L,L+5K(K+1)/2) = y,

therefore Pr{∆(L,L+5K(K+1)/2) = y} > 0. Also because of (49) every element in the matrix

M5K(K+1)/2 is positive.

Corollary 3. Markov sequence {X(L)}∞L=1 has a steady state.

Proof. Markov sequence {X(L)}∞L=1 has a unique steady state if there exist an integer Γ that

MΓ has an all positive row [16, Page 176], as it is proved in Lemma 2.

Lemma 3. As L → ∞, Markov chain {X(L)}∞L=1 converges to a random vector with uniform

distribution over F
K(K+1)/2(q).

Proof. It is known that if a Markov chain has steady state, its stationary distribution is equal

to its steady state probabilities [16, Page 174]. We use this fact to find that steady state. As

obtained, we know [M]i,j = Pr{∆(L,L+1) = yj − yi}. It is easy to see that for any i, the set

{yi − yj , j ∈ [1 : qK(K+1)/2]} is equal to F
K(K+1)/2(q). Thus,

qK(K+1)/2
∑

j=1

[M]i,j = 1, ∀i ∈ [1 : qK(K+1)/2]. (63)

Let π = (1/qK(K+1)/2, ..., 1/qK(K+1)/2)⊤. It is easy to see that due to (63), Mπ = π. Thus

uniform distribution is stationary state probability of this Markov chain.

Lemma 4. Let p(L) ∈ [0, 1]q
K(K+1)/2

denote the PMF of X(L) over F
K(K+1)/2(q). Then, ‖p(L) −

π‖∞ = O(λL−1
2 ), where λ2 is the second largest eigenvalue (absolute value of eigenvalue) of

M and |λ2| < 1.
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We show that,

p(L) +O(λL−1
2 )1 = π (64)

where π = (
1

qK(K+1)/2
, ...,

1

qK(K+1)/2
)⊤ and 1 = (1, ..., 1)⊤ ∈ R

K(K+1)/2.

From Lemma 1, we know that {X(L)}∞L=1 forms a Markov chain with transition matrix M.

Thus, the PMF of X(L), denoted by p(L), is equal to

p(L) = Mp(1), (65)

where p(1) is the PMF of X(1). Also from Lemma 3, we know that this Markov chain has a

steady state. Thus for the eigenvalue of transition matrix M, we have,

|λqK(K+1)/2 | ≤ ... ≤ |λ2| < |λ1| = 1. (66)

As stated, matrix M and thus its eigenvalues are independent of L.

Let π,v2, . . . ,vqK(K+1)/2 ∈ R
qK(K+1)/2

denote the right eigenvectors corresponding to the eigen-

values λ1, λ2, . . . , λqK(K+1)/2 , respectively. We note that π,v2, . . . ,vqK(K+1)/2 forms an orthogonal

bases for RqK(K+1)/2
. Thus, we can expand p(1) as

p(1) = α1π + α2v2 + ... + αqK(K+1)/2vqK(K+1)/2 , (67)

for some αi, i ∈ [1 : qK(K+1)/2].

Therefore we can write,

p(L) = Mp(1) = λL−1
1 α1π + λL−1

2 α2v2 + ... + λL−1
qK(K+1)/2αqK(K+1)/2vqK(K+1)/2 . (68)

From the fact that limL→∞ p(L) = π and also (66) we know when L → ∞ every term in (68)

diminishes except λL−1
1 α1π (where λ1 = 1) which should be equal to π. Thus we can rewrite

(68) as,

p(L) = π + λL−1
2 α2v2 + ...+ λL−1

qK(K+1)/2αqK(K+1)/2vqK(K+1)/2 . (69)

Thus for every element of p(L) from (69), we have,

p(L)(i) = π(i) + λL−1
2 α2v2(i) + ... + λL−1

qK(K+1)/2αqK(K+1)/2vqK(K+1)/2(i) (70)

≤ π(i) + |λL−1
2 |(

qK(K+1)/2
∑

t=2

|αtvt(i)|) = π(i) +O(λL−1
2 ). (71)
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Lemma 5. Entropy of set X (L)
P of inner products when |P| = P satisfies,

H(X (L)
P ) ≥ P log(q)− O(λL−1

2 ) (72)

Proof. This lemma gives a lower bound on entropy of inner products indexed by a subset P . We

first calculate probability distribution of X
(L)
P over F

P (q). For the set P , we define the vector

of indices τP , such that X
(L)
P (i) = X(L)(τP(i)), for i = 1, . . . , P . In addition, for a z ∈ F

P (q),

we define

Sz ,
{

x|x ∈ F
K(K+1)/2(q),x(τP(i)) = z(i), ∀i ∈ [1 : P ]

}

. (73)

It is easy to see that |Sz| = qK(K+1)/2−P . Now we can calculate the probability distribution of

X
(L)
P over FP (q).

Pr{X(L)
P = z} =

∑

x∈Sz

Pr{X(L) = x} (74)

=
∑

x∈Sz

1

qK(K+1)/2
+O(λL−1

2 ) (75)

=
qK(K+1)/2−P

qK(K+1)/2
+O(λL−1

2 ) =
1

qP
+O(λL−1

2 ), (76)

where (75) is the result of Lemma 4.

For entropy of inner products in set X (L)
P , we can write,

H(X (L)
P ) = H(X

(L)
P ) = −

∑

z∈FP (q)

Pr{X(L)
P = z} log (Pr{X(L)

P = z}) (77)

≥ −
∑

z∈FP (q)

(

1

qP
+O(λL−1

2 )

)(

log
1

qP
+O(λL−1

2 )

)

(78)

= −
∑

z∈FP (q)

1

qP
log

1

qP
− O(λL−1

2 ) (79)

= P log(q)−O(λL−1
2 ) (80)

Now that we have the result of lemma 5 and by employing MPIR achievable scheme on inner

products we are able to achieve result of theorem 1.
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A. Proof of Theorem 1

This proof is similar to the proof in [7] changed to match the current problem setting. To

show the limits of capacity, this proof needs to be split in two parts, achievability and converse.

Achievability: We use the same achievability scheme that is used in MPIR problem. In this

case as the problem setting states, user wants to privately retrieve all inner products included in

X (L)
P without revealing the identity of P . Now we treat every inner product like an entry data

file in MPIR and run the proposed scheme on them. Notice that by running MPIR scheme, inner

products indexed by the mentioned subset are privately retrieved and to servers all subsets of

size P are equiprobable so privacy constraint is met and we can say,

C ≥ R
MPIR

(K(K + 1)/2, P,N) ⇒ 1

C
≤ 1

R
MPIR

(K(K + 1)/2, P,N)
. (81)

Here the number of data files in MPIR is the number of inner products, i.e. K(K + 1)/2.

Converse: In order to prove the converse for Theorem 1 (i.e., to derive an upper bound on the

capacity), we use Lemma 5 from which we have a lower bound on the entropy of an arbitrary

subset of inner products P as,

H(XP) ≥ P log(q)− O(λL−1
2 ). (82)

To continue with the proof, we consider the problem in two cases,
K(K + 1)

2P
≤ 2 and

K(K + 1)

2P
> 2.

Case 1:
K(K + 1)

2P
≤ 2.

Remember that the user sends queries Q
[P]
n , n ∈ [1 : N ], to servers and receives answers

A
[P]
n , n ∈ [1 : N ]. We define the set of all possible queries as

Q , {Q[P]
n |P ⊆ T , n ∈ [1 : N ]}, (83)

and also the set of answers from servers n1 to n2 as,

An1:n2 , {A[P]
n1
, A

[P]
n1+1, ..., A

[P]
n2
}. (84)

Note that the number of all possible P is β =
(

K(K+1)/2
P

)

.

We can assume symmetry in the scheme across data files and servers queries and answers.

Even if the scheme is asymmetric we can replicate scheme for every permutation of data bases

and servers and create a symmetric scheme.
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Since the queries and answers are independent of the desired set because of (26), we fix the

answers of server 1 to be (same as the MPIR),

A
[P]
1 = A1, ∀P ⊆ T , |P| = P. (85)

The proof of the following lemma is similar to the proof of [7, Lemma 1].

Lemma 6. For any S ⊆ T and X (L)
S = {〈Wi,Wj〉|{i, j} ∈ S}, we have,

H(A[P]
n |X (L)

S ,Q) = H(A
[P]
1 |X (L)

S ,Q), (86)

H(A1|Q) = H(A[P]
n |Q). (87)

(87) is the result of symmetry assumption and (26).

First, we derive a lower bound on the entropy of inner products appeared in A
[P]
1 , that are not

in X (L)
P .

Lemma 7. For the problem stated in Section III, with P ≥ K(K + 1)

2
, the following lower

bound on the conditional entropy of A
[P]
1 holds.

H(A
[P]
1 |X (L)

P ,Q) >

K(K + 1)

2
− P

N
log(q)− O(λL−1

2 ). (88)

Proof. Here we define P̄ ⊆ T to be the set with size |P̄| = P such that P ∪ P̄ = T .

Such a set P̄ exists, since P has more than the half of all inner products (due to P ≥
K(K + 1)/4). Now, we use (82) for X (L) to write the following.

K(K + 1)

2
log(q)− P log(q)− O(λL−1

2 ) ≤ H(X (L))−H(X (L)
P ) (89)

= H(X (L) \ X (L)
P |X (L)

P ,Q) (90)

= H(X (L) \ X (L)
P |X (L)

P ,Q)−H(X (L) \ X (L)
P |A[P̄]

1:N ,X
(L)
P ,Q)

(91)

= I(X (L) \ X (L)
P ;A

[P̄]
1:N |X

(L)
P ,Q) (92)

= H(A
[P̄]
1:N |X

(L)
P ,Q) (93)

≤
N
∑

n=1

H(A[P̄]
n |X (L)

P ,Q) (94)

= NH(A1|X (L)
P ,Q), (95)
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where (91) follows from (25) noting that X (L) \ X (L)
P ⊆ X (L)

P̄
; (93) is true because of (24); and

(95) is the result of Lemma 6.

Now, we proceed to the converse following the approach of [7] as,

K(K + 1)

2
log(q)− O(λL−1

2 ) ≤ H(X (L)) (96)

= H(X (L)|Q) (97)

= H(X (L)|Q)−H(X (L)|A[P1]
1:N , ..., A

[Pβ ]
1:N ,Q) (98)

= I(X (L);A
[P1]
1:N , ..., A

[Pβ ]
1:N |Q) (99)

= H(A
[P1]
1:N , ..., A

[Pβ ]
1:N |Q) (100)

= H(A1, A
[P1]
2:N , ..., A

[Pβ ]
2:N |Q) (101)

= H(A1, A
[P1]
2:N |Q) +H(A

[P2]
2:N , ..., A

[Pβ ]
2:N |A1, A

[P1]
2:N ,Q) (102)

= H(A1, A
[P1]
2:N |Q) +H(A

[P2]
2:N , ..., A

[Pβ ]
2:N |A1, A

[P1]
2:N ,X (L)

P1
,Q) (103)

≤
N
∑

n=1

H(A[P1]
n |Q) +H(A

[P2]
2:N , ..., A

[Pβ ]
2:N |A1,X (L)

P1
,Q) (104)

=

N
∑

n=1

H(A[P1]
n |Q) +H(A

[P2]
1:N , ..., A

[Pβ ]
1:N |X (L)

P1
,Q)−H(A1|X (L)

P1
,Q),

(105)

where (97) follows (23); (98) follows from (25) and the fact that P1, . . . ,Pβ are distinct sets that

cover all possible inner products and thus every inner product can be decoded from A
[P1]
1:N , ..., A

[Pβ ]
1:N ;

(100) holds thanks to (24); (101) is true because of (85); and (103) is due to (25).

We can see that,

H(A
[P2]
1:N , ..., A

[Pβ ]
1:N |X (L)

P ,Q) ≤ H(A
[P2]
1:N , ..., A

[Pβ ]
1:N ,X (L)|X (L)

P ,Q) = H(X (L)|X (L)
P ,Q) (106)

= H(X (L))−H(X (L)
P ) (107)

≤ K(K + 1)

2
log(q)− P log(q) +O(λL−1

2 ), (108)

where (106) is true because of (24) and the last inequality follows from (82). Now, combining

the result of Lemma 7 with (105) and (108) results in:

K(K + 1)

2
log(q)− O(λL−1

2 ) ≤
N
∑

n=1

H(A[P1]
n |Q) +

K(K + 1)

2
log(q)− P log(q) +O(λL−1

2 )

− K(K + 1)− 2P

2N
log(q) +O(λL−1

2 ), (109)
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which can be written as,

P log(q) +
K(K + 1)− 2P

2N
log(q)−O(λL−1

2 ) ≤
N
∑

n=1

H(A[P1]
n |Q), (110)

and further is simplified as,

N
∑

n=1

H(A[P1]
n |Q) ≥ P log(q)

(

1 +
K(K + 1)− 2P

2PN
−O(λL−1

2 )

)

(111)

≥ H(X (L)
P )

(

1 +
K(K + 1)− 2P

2PN
− O(λL−1

2 )

)

, (112)

which completes the converse for Case 1 as:

1 +
K(K + 1)− 2P

2PN
− O(λL−1

2 ) ≤ 1

C
. (113)

Case 2:
K(K + 1)

2P
> 2.

Here, similar to the proof of MPIR, we create an inductive relation and use the result of

Case 1 as the base induction step. In order to continue with the induction proof we need to

introduce a slightly different problem formulation (we call as modified problem). Assume that

the user wishes to retrieve inner products indexed by the set P1 while ensuring privacy over

∀P ⊆ T1 ⊆ T where |T1| = T1 and T1 is fixed and known to all. We denote the query set in

this problem by Q̂ and the answer from n-th server by Â
[P]
n . Number of all possible sets P is

β̂ =
(

T1

P

)

.

Note that for T1 = T , the modified problem reduces to the original problem (of Section III).

The reason for introducing the modified problem is that |T | in the original problem is equal to

|T | = K(K + 1)/2 (that is |T | cannot take any arbitrary integer). However, for the inductive

step, we need the number of inner products to take any integer.

It is easy to see that the result of case 1 is still true for the modified problem. Hence, when

T1/P ≤ 2 we have,

NH(Â1|Q̂) ≥ P log(q)

(

1 +
T1 − P

PN
− O(λL−1

2 )

)

. (114)

We use this result as our induction base step. Now we proceed to prove that for case T1/P > 2

we have,

NH(Â1|Q̂) ≥ P log(q)







⌊

T1

P

⌋

−1
∑

i=0

1

N i
+

(

T1

P
−

⌊

T1

P

⌋)

1

N

⌊

T1

P

⌋ −O(λL−1
2 )






. (115)
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We achieve (115) by induction with (114) as induction base. First, we provide a lemma to derive

an upper bound on the remaining information in answer Â
[P2]
2:N conditioned on inner products

indexed by the set P1 ⊆ T1 when P1 and P2 have the same size but have no similar inner

product in their corresponding sets.

Lemma 8. For two sets P1 ⊆ T1 and P2 ⊆ T1, if |P1| = |P2| = P and P1 ∩ P2 = φ, then the

following inequality holds.

H(Â
[P2]
2:N |X (L)

P1
, Q̂) ≤ (N − 1)[NH(Â1|Q̂)− P log(q)] +O(λL−1

2 ). (116)

Proof.

H(Â
[P2]
2:N |X (L)

P1
, Q̂) ≤

N
∑

n=2

H(Â[P2]
n |X (L)

P1
, Q̂) (117)

≤
N
∑

n=2

H(Â
[P1]
1:n−1, Â

[P2]
n , Â

[P1]
n+1:N |X

(L)
P1

, Q̂) (118)

=

N
∑

n=2

H(Â
[P1]
1:n−1, Â

[P2]
n , Â

[P1]
n+1:N ,X

(L)
P1

|Q̂)−H(X (L)
P1

|Q̂) (119)

=

N
∑

n=2

H(Â
[P1]
1:n−1, Â

[P2]
n , Â

[P1]
n+1:N |Q̂) +H(X (L)

P1
|Â[P1]

1:n−1, Â
[P2]
n , Â

[P1]
n+1:N , Q̂)−H(X (L)

P1
)

(120)

≤
N
∑

n=2

NH(Â1|Q̂)− P log(q) +O(λL−1
2 ) (121)

= (N − 1)[NH(Â1|Q̂)− P log(q)] +O(λL−1
2 ), (122)

where (120) holds because of independence of queries and data files; and (121) follows from (82),

the symmetry across the servers and the fact that X (L)
P1

can be calculated from Â
[P1]
1:n−1, Â

[P2]
n , Â

[P1]
n+1:N

and queries which is the result of (25).

Now we construct the inductive step, similar to MPIR but tailored to our setting. Assume

that two subsets P1 and P2 are chosen from all subsets Pi ⊆ T1, i ∈ [1 : β̂], |P| = P such that

P1 ∩ P2 = φ. We see,

T1 log(q)− O(λL−1
2 ) ≤ H(Â1, Â

[P1]
2:N , ..., Â

[P
β̂
]

2:N |Q̂) (123)

= H(Â1, Â
[P1]
2:N |Q̂) +H(Â

[P2]
2:N |Â1, Â

[P1]
2:N , Q̂) +H(Â

[P3]
2:N , ..., Â

[P
β̂
]

2:N |Â1, Â
[P1]
2:N , Â

[P2]
2:N , Q̂) (124)
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≤ NH(Â1|Q̂) +H(Â
[P2]
2:N |Â1, Â

[P1]
2:N ,X (L)

P1
, Q̂) +H(Â

[P3]
2:N , ..., Â

[P
β̂
]

2:N |Â1, Â
[P1]
2:N , Â

[P2]
2:N ,X (L)

P1
,X (L)

P2
, Q̂)

(125)

≤ NH(Â1|Q̂) +H(Â
[P2]
2:N |X (L)

P1
, Q̂) +H(Â

[P3]
2:N , ..., Â

[P
β̂
]

2:N |Â1,X (L)
P1

,X (L)
P2

, Q̂) (126)

= NH(Â1|Q̂) +H(Â
[P2]
2:N |X (L)

P1
, Q̂) +H(Â

[P3]
1:N , ..., Â

[P
β̂
]

1:N |X (L)
P1

,X (L)
P2

, Q̂)−H(Â1|X (L)
P1

,X (L)
P2

, Q̂)

(127)

≤ NH(Â1|Q̂) +H(Â
[P2]
2:N |X (L)

P1
, Q̂) +H(X (L)

T1
|X (L)

P1
,X (L)

P2
)−H(Â1|X (L)

P1
,X (L)

P2
, Q̂) (128)

= NH(Â1|Q̂) +H(Â
[P2]
2:N |X (L)

P1
, Q̂) +H(X (L)

T1
)−H(X (L)

P1
,X (L)

P2
)−H(Â1|X (L)

P1
,X (L)

P2
, Q̂)

(129)

≤ NH(Â1|Q̂) +H(Â
[P2]
2:N |X (L)

P1
, Q̂) + T1 log(q)− 2P log(q) +O(λL−1

2 )

−H(Â1|X (L)
P1

,X (L)
P2

, Q̂) (130)

≤ NH(Â1|Q̂) + (N − 1)[NH(Â1|Q̂)− P log(q)] + T1 log(q)− 2P log(q) +O(λL−1
2 )

−H(Â1|X (L)
P1

,X (L)
P2

, Q̂), (131)

where (123) follows from the fact that knowing A1, A
[P1]
2:N , ..., A

[P
β̂
]

2:N one can obtain all inner

products indexed by T1 (noting that it is always possible to fix the answers of one of the servers

(to be independent of the desired set) as done in (85)); (125) is true due to the symmetry across

the servers and the fact that X (L)
P1

and X (L)
P2

have no more information if we have A1, A
[P1]
2:N , A

[P2]
2:N

and queries which is the result of (25); (128) is true because of (24) similar to (106); and (130)

follows from (82).

We rewrite (131) as,

N2H(Â1|Q̂) ≥ (N + 1)P log(q) +H(Â1|X (L)
P1

,X (L)
P2

, Q̂)− O(λL−1
2 ), (132)

which can also be written as,

NH(Â1|Q̂) ≥
(

1 +
1

N

)

P log(q) +
1

N
H(Â1|X (L)

P1
,X (L)

P2
, Q̂)− O(λL−1

2 ). (133)

Now, as mentioned in [7], H(Â1|X (L)
P1

,X (L)
P2

, Q̂) (in the modified problem) is quite similar to

the H(Â1|Q̂) in an equivalent problem where the user wants to retrieve a subset of inner products

indexed by P ⊆ T2 and T2 = T1 \(P1∪P2) and thus |T2| = T1−2P . The difference between the

modified problem and its equivalent problem is that in the modified problem we have conditions

on X (L)
P1

,X (L)
P2

, while in the equivalent problem the conditions don’t exist. These two problem

would be completely equivalent if the inner products were mutually independent. However, by
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adding the conditions, one can obtain all the equations up to (133) for the equivalent problem with

a difference of O(λL−1
2 ). Therefore, we can say H(Â1|X (L)

P1
,X (L)

P2
, Q̂) in the modified problem

with total number of inner products |T1| = T1 is equal to H(Â1|Q̂) in an equivalent problem

with total number of inner products |T1| = T1 − 2P . We use this result in our induction step.

Now, we start with the following induction hypothesis when the number of all inner products

is |T1| = T1 − 2P + 1:

NH(Â1|Q̂) ≥P log(q)







⌊

T1 − 2P + 1

P

⌋

−1
∑

i=0

1

N i







+ P log(q)

[

(

T1 − 2P + 1

P
−

⌊

T1 − 2P + 1

P

⌋)

1

N

⌊

T1 − 2P + 1

P

⌋ −O(λL−1
2 )

]

(134)

To complete the proof by induction we must show that (134) holds for |T1| = T1 + 1.

Using the equivalency of the modified and the equivalent problem, (134) (which was written

for the equivalent problem with |T1| = T1 − 2P + 1) is true for the modified problem if we

substitute H(Â1|X (L)
P1

,X (L)
P2

, Q̂) by H(Â1|Q̂) (as well as T1 − 2P + 1 by T1 + 1) to obtain:

NH(Â1|X (L)
P1

,X (L)
P2

, Q̂) (135)

≥ P log(q)







⌊

T1 − 2P + 1

P

⌋

−1
∑

i=0

1

N i







+ P log(q)

[

(

T1 − 2P + 1

P
−
⌊

T1 − 2P + 1

P

⌋)

1

N

⌊

T1 − 2P + 1

P

⌋ −O(λL−1
2 )

]

(136)

= P log(q)







⌊

T1 + 1

P

⌋

−3
∑

i=0

1

N i
+

(

T1 + 1

P
−

⌊

T1 + 1

P

⌋)

1

N

⌊

T1 + 1

P

⌋

−2
−O(λL−1

2 )






(137)

Combining (133) and (137) results in,

NH(Â1|Q̂) ≥
(

1 +
1

N

)

P log(q)

+
1

N2
P log(q)







⌊

T1 + 1

P

⌋

−3
∑

i=0

1

N i
+

(

T1 + 1

P
−

⌊

T1 + 1

P

⌋)

1

N

⌊

T1 + 1

P

⌋

−2
− O(λL−1

2 )






(138)

= P log(q)







⌊

T1 + 1

P

⌋

−1
∑

i=0

1

N i
+

(

T1 + 1

P
−
⌊

T1 + 1

P

⌋)

1

N

⌊

T1 + 1

P

⌋ − O(λL−1
2 )






(139)
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From induction hypothesis (134), we have proven inductive step in (139) and thus (115) is true.

As mentioned before, when T1 = T or equivalently T1 = K(K + 1)/2, the modified problem

reduces to the original problem. Therefore (115) holds for the original problem. Therefore, we

have,

⌊

K(K + 1)

2P

⌋

−1
∑

i=0

1

N i
+

(

K(K + 1)

2P
−
⌊

K(K + 1)

2P

⌋)

1

N

⌊

K(K + 1)

2P

⌋ − O(λL−1
2 ) ≤ NH(A1|Q)

P log(q)
(140)

≤ NH(A1|Q)

H(X (L)
P )

(141)

≤
∑N

n=1H(AP
n )

H(X (L)
P )

(142)

≤ 1

C
(143)

From the results of two cases (113) and (143) we can write,

1

R
MPIR

(K(K + 1)/2, P,N)
− O(λL−1

2 ) <
1

C
. (144)

Comparing (28) with the results of converse, (144), and achievability, (81), the proof of

Theorem 1 is complete.
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