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A Lower Bound on the Expected Distortion of

Joint Source-Channel Coding
Yuval Kochman, Or Ordentlich and Yury Polyanskiy

Abstract

We consider the classic joint source-channel coding problem of transmitting a memoryless source over a memo-
ryless channel. The focus of this work is on the long-standing open problem of finding the rate of convergence of the
smallest attainable expected distortion to its asymptotic value, as a function of blocklength n. Our main result is that

in general the convergence rate is not faster than n
−1/2. In particular, we show that for the problem of transmitting

i.i.d uniform bits over a binary symmetric channels with Hamming distortion, the smallest attainable distortion (bit

error rate) is at least Ω(n−1/2) above the asymptotic value, if the “bandwidth expansion ratio” is above 1.

I. INTRODUCTION

Over the last decade there has been a great progress in understanding the rate of convergence to the asymptotic

fundamental limits in various communication and compression setups. Yet, there remain some setups where although

the asymptotic limits are known, the rate of convergence to those is not known. Two prominent examples are to

show that the Gaussian-type 1/
√
n backoff, common to many settings, also arises in the joint source-channel coding

(JSCC) setup under expected distortion, and in the multiple access channel (MAC). The main difficulty in the JSCC

setup is that due to averaging, the Gaussian variations in source/channel quality may possibly be canceled out (as

in fact happens when the ‘not to code’ conditions of [3] are met). The fundamental issue in the MAC setup [4] is

that the multi-user interference, unless randomly-coded, should not in general satisfy the central limit theorem and

hence there is no reason to believe the back-off should be of 1/
√
n order. This paper makes progress on the first

of these open problems.

Specifically, we consider the classical point-to-point joint source-channel coding problem, depicted in Figure 1.

In this setup, an encoder observes a sequence Sm = (S1, . . . , Sm) of m i.i.d. samples generated according to the

distribution PS , and would like to send this sequence through n channel uses of the memoryless channel QY |X .

To that end, the encoder maps the source sequence Sm to the channel input Xn using an encoding function

E : Sm → Xn. The channel input Xn is transmitted through the channel Q⊗n
Y n|Xn(y

n|xn) = ∏n
i=1QY |X(yi|xi)

and the decoder that observes the channel output Y n, generates an estimate Ŝm = (Ŝ1, . . . , Ŝm) of the source

sequence, using a decoding function D : Yn → Ŝm. Let d : S × Ŝ → R be some distortion measure, and define

d(Sm, Ŝm) =

m∑

i=1

d(Si, Ŝi). (1)

For a given source-channel pair, one is interested in the statistics of the distortion d(Sm, Ŝm) that may be

obtained, as a function of the blocklengths m and n. It is convenient to think of the bandwidth expansion ratio

ρ = n/m as fixed (ignoring rounding effects), and then consider the performance as a function of n. As the full

statistics of the distortion are complicated, usually one of two figures of merit is considered: the expected distortion

D =
1

m
Ed(Sm, Ŝm),
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Y n

D(Y n) (Ŝm, D = 1
m

∑m
i=1 d(Si, Ŝi))

Fig. 1. The (n, ρ, PS , QY |X) joint source channel coding problem. It is assumed that n = ρm.

or the excess-distortion probability, which for any threshold D is given by

ǫ(D) = Pr

[
1

m
d(Sm, Ŝm) > D

]

.

The focus of this work is the expected distortion, for which we define the fundamental limit for the JSCC problem

by the function

D∗
n = D∗(n, ρ, PS , QY |X) ,

1

m
min

E:Sm→Xn

D:Yn→Ŝm

Ed(Sm, Ŝm). (2)

By the separation principle [5], we have that

D∗
∞ = D∗

∞(ρ, PS , QY |X) , lim
n→∞

D∗(n, ρ, PS , QY |X) = DPS
(ρC(QY |X)), (3)

where DPS
(R) is the distortion-rate function of a source with distribution PS , and C(QY |X) is the capacity of the

channel QY |X . We study the convergence of the expected distortion to its asymptotic value. To that end, we define

and study the quantity

∆∗
n = ∆∗(n, ρ, PS , QY |X) , D∗

n −D∗
∞. (4)

In terms of excess distortion, many facts are known about the convergence of the distortion to the infinite-

blocklength limit. For any threshold D > D∗
∞ we have that ǫ(D) is exponentially small, with upper and lower

bounds on the exponents (which agree for low enough D) given in [6]. To the contrary, for any D < D∗
∞ it holds

that 1− ǫ(D) is exponentially small [7]. The dispersion, i.e., convergence of D to D∗
∞ for fixed excess-distortion

probability, as well as finite-blocklength bounds, were derived in [8], [9].

In problems where the error criterion is defined as a hard-constrained 0/1-loss (such as excess-distortion above),

the Gaussian variations in channel quality cannot be leveraged and the fundamental limit experiences a 1/
√
n

back-off from its asymptotic values. However, in problems with averaging, the dispersion term disappears, for

example [10], [11], [12], because these (mean-zero) Gaussian variations can be averaged out. If indeed the variations

canceled out in a similar way for average distortion, it would suggest that the true behavior of the fundamental

limit ∆∗
n should indeed be o(1/

√
n).

As further evidence that ∆∗
n may be o(1/

√
n), consider the special case of the JSCC where QY |X is a clean

bit-pipe of rate R, for which the problem reduces to lossy source coding. In this case, it is known [13], [14] that

for any discrete source and rate R > 0,

∆∗
n = O

(
logn

n

)

.

Furthermore, for some source-channel pairs the optimal asymptotic distortion is already achievable using a scalar

scheme. See [3] for necessary and sufficient conditions. For example, this is the case for the problem of sending a

binary symmetric source (BSS) over a binary symmetric channel (BSC) under expected Hamming distortion with

ρ = 1. In light of this, one might hope that a low redundancy is possible in general.

Despite all this evidence for sub-
√
n convergence, this work proves that it is not the case, by showing that there

exist cases where ∆∗
n = Ω

(
1√
n

)

. More concretely, we study the very same symmetric binary-Hamming problem

mentioned above, but with ρ > 1, and derive a lower bound on D∗
n.

Our approach to proving this result goes through a reduction to a JSCC broadcast problem. Let Q̂Y |X be the

empirical channel realization in the point-to-point JSCC problem. The main observation in our distortion lower bound

is that a good JSCC code must achieve distortions close to D∗
∞(ρ, PS , Q̂Y |X) simultaneously for all “probable”

channel realizations. To show that this is impossible, we reduce the problem to that of broadcasting a source to

two users with different channel conditions, corresponding to one empirical channel that is better than QY |X , and

one that is worse. An outer bound on the distortions, in the infinite-blocklength limit, was derived in [15] for the
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Sm E(Sm)
Xn

Zn ∼ Ber(δ)⊗n

Y n

D(Y n) (Ŝm, D = 1
mdH(Sm, Ŝm))

Fig. 2. The n(ρ, δ) binary joint source-channel coding problem. it is assumed that n = ρm.

quadratic-Gaussian case, and was recently generalized by Khezeli and Chen [16], [17]. Here, we generalize these

bounds for our scenario of interest, and show that for the binary Hamming case, with bandwidth expansion ratio

ρ > 1, it is impossible to design a JSCC code that will be optimal simultaneously for both channel conditions.

Unfortunately, for the case ρ < 1 this technique falls short of providing similar bounds, mainly because in this

regime D∗
∞ changes too slowly with the crossover probability of the BSC.

We note that it is still not clear whether the n−1/2 scaling of ∆∗
n is achievable in general. In particular, a separation-

based coding scheme can only achieve ∆n = Dn − D∗
∞ = Ω

(√
logn
n

)

, and to the best of our knowledge no

JSCC coding scheme that achieves better scaling in general is known. See Section VII. Thus, despite the progress

made in this work, the exact correct scaling of ∆∗
n remains an open question.

The structure of the paper is as follows. In Section II, we define the binary instance of the JSCC problem we

analyze, state the main result, and give a high-level sketch of proof. Section III develops outer bounds on the

distortions that can be achieved when sending a source over a broadcast channel. The bounds from Section III

are then specialized in Section IV, for the problem of sending a binary source over a binary additive spherical

noise, i.e., noise uniform on an Hamming sphere, broadcast channel. The full proof of our main result is given

in Section V. Some auxiliary results for the problem of sending a source over a broadcast channel are given in

Section VI. The paper concludes with a discussion in Section VII.

II. MAIN RESULT AND MAIN TECHNICAL CONTRIBUTION

We study the binary symmetric joint source-channel coding problem, depicted in Figure 2, which is a special

case of the general problem introduced above. The source is binary symmetric S ∼ Ber(1/2), the channel QY |X
is BSC(δ) with δ < 1/2, the reconstruction alphabet is Ŝ = {0, 1} and the distortion measure is Hamming, i.e.,

d(S, Ŝ) = 1{S 6=Ŝ}, such that

dH(Sm, Ŝm) =

m∑

i=1

1{Si 6=Ŝi}.

We use the binary entropy function1

hb(x) = −x log x− (1 − x) log(1 − x)

and its inverse restricted to the interval [0, 1/2] as h−1
b (·). It will be convenient to extend the domain of the function

h−1
b (·) to (−∞, log 2], such that h−1

b (t) = 0 for all t ≤ 0. For 0 ≤ a, b ≤ 1 we also define the binary convolution

a ∗ b = a(1− b) + b(1− a).

The expected distortion for this problem is formally defined below. For two binary variables, or vectors, the notation

+ is to be understood as addition modulo-2.

Definition 1: Let Sm ∼ Ber(1/2)⊗m, Y n = Xn +Zn with Zn ∼ Ber(δ)⊗n independent of Xn, and ρ = n/m.

The minimum expected Hamming distortion for transmitting Sm over the channel from Xn to Y n is defined as

D∗(n, ρ, δ) ,
1

m
min

E:{0,1}m→{0,1}n

D:{0,1}n→{0,1}m

EdH(Sm,D(E(Sm) + Zn)). (5)

and its convergence rate function is

∆∗
n = ∆∗(n, ρ, δ) , D∗(n, ρ, δ)−D(ρ, δ), (6)

1Throughout, logarithms are taken to the natural base.



4

where

D(ρ, δ) , h−1
b (log 2− ρ(log 2− hb(δ))), (7)

is the asymptotic value of D∗(n, ρ, δ).
In this problem, it is well known that ∆∗

n = 0 for all n, when ρ = 1. Here, we will give a non-trivial lower

bound for ρ > 1. We will express our result in terms of the following functions:

Φ(δ) ,
2

(1− 2δ) log
(
1−δ
δ

) +
1

δ(1 − δ) log2
(
1−δ
δ

) (8a)

f(ρ, δ) ,
1

ρ

Φ(δ)

Φ(D(ρ, δ))
, (8b)

η(ρ, δ) , 2ρ
log
(
1−δ
δ

)

log
(

1−D(ρ,δ)
D(ρ,δ)

) · D(ρ, δ) (1− f(ρ, δ))
2

2f(ρ, δ) + 4D(ρ, δ) (1− f(ρ, δ))
· 1 + f(ρ, δ)

f(ρ, δ)
. (8c)

Our main result is the following.

Theorem 1: In the binary JSCC problem of Definition 1, for all ρ > 1 we have that

∆∗
n , D∗(n, ρ, δ)−D(ρ, δ) ≥

√

δ(1− δ)

2πn
η(ρ, δ) +O(n−3/4 logn), (9)

where η(ρ, δ) is as defined in (8c) and is strictly positive for D(ρ, δ) > 0.

In particular, this binary symmetric example serves to show that there exists a choice of parameters (ρ, PS , QY |X),
such that

∆∗(n, ρ, PS , QY |X) = Ω

(
1√
n

)

.

The lower bound (9) is valid as long as f(ρ, δ) < 1, which is needed in order to justify (64) in the derivation

below. In Lemma 7 we show that for ρ > 1 this is indeed the case, and it therefore suffices to require that ρ > 1
in the statement of Theorem 1. Furthermore, f(ρ, δ) < 1 guarantees that η(ρ, δ) > 0 whenever D(ρ, δ) > 0, and

consequently the bound is not trivial. In the regime ρ ≤ 1, we have that f(ρ, δ) ≥ 1, and our bound is no longer

valid.

A. Outline of Reduction to JSCC Broadcast

The proof of Theorem 1 relies upon the reduction of the binary JSCC problem to the problem of sending a binary

source over a broadcast channel, for which we then derive outer bounds on the achievable distortions region. We

now outline this reduction. The details are straightforward but cumbersome, thus they are relegated to Section V.

Here we use approximated equality or inequality, to say that the correction terms will be below the 1/
√
n order of

interest.

We restrict our attention to δ such that δn is an integer; this reduction is insignificant in our scale of interest. We

define the integer-valued random variable K = wH(Zn) − δn, where wH(·) is the Hamming weight of a vector.

Let Sx,n be the set of all length-n binary sequences with Hamming weight 0 ≤ x ≤ n. For a given encoder/decoder

pair (E ,D) we define

Ψ(k) = ΨE,D(k) , E

[
1

m
dH (Sm,D (E(Sm) + Zn))

∣
∣
∣
∣
K = k

]

= E

[
1

m
dH (Sm,D (E(Sm) + Un))

]

, (10)

where Un ∼ Uniform(Sδn+k,n), although its dependence on k is not made explicit. We can then use iterated

expectation to assert

E

[
1

m
dH (Sm,D (E(Sm) + Zn))

]

= E [Ψ(K)]

= E

[

E

[

Ψ(K)

∣
∣
∣
∣
|K|
]]

. (11)
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Sm E(Sm)
Xn

Un
1

Y n
1 D1(Y

n
1 )

(

Ŝm
1 , D1 = 1

mEdH(Sm, Ŝm
1 )
)

Un
2

Y n
2 D2(Y

n
2 )

(

Ŝm
2 , D2 = 1

mEdH(Sm, Ŝm
2 )
)

Fig. 3. Binary spherical noise JSCC broadcast problem.

We then show that it is enough to consider a range of K around 0 that scales no faster than
√
n, and that within

this range, since the Binomial distribution is approximately symmetric close to its mean, we have

E

[

Ψ(K)

∣
∣
∣
∣
|K| = k0

]

= Pr(K = k0 | |K| = k0)Ψ(k0) + Pr(K = −k0 | |K| = k0)Ψ(−k0)

≈ 1

2
Ψ(k0) +

1

2
Ψ(−k0).

That is, we take A = |K|/√n and consider bounded A. Thus,

E

[

E

[

Ψ(K)

∣
∣
∣
∣
|K|
]]

'
1

2
E

[

E

[
1

m
dH (Sm,D (E(Sm) + Un

1 ))

]

+ E

[
1

m
dH (Sm,D (E(Sm) + Un

2 ))

]]

,

where Un
1 ∼ Uniform

(

S
n
(

δ− A√
n

)

,n

)

and Un
2 ∼ Uniform

(

S
n
(

δ+ A√
n

)

,n

)

. The outer expectation in the right hand

side is taken over A.

In the point-to-point JSCC setup considered, the encoder E and the decoder D are not aware of A, and cannot

adapt to it. In particular, the same decoder is used whether K is negative or positive. Nevertheless, we continue

the analysis by making the following relaxations: we let the encoder and decoder vary as a function of A, and

further for any value of A we allow different decoders for the channel with additive noise Un
1 (negative K) and

the channel with additive noise Un
2 (positive K). Thus we have that

D∗(n, ρ, δ) '
1

2
E [D(A)] ,

where

D(a) ,
1

m
min (E [dH (Sm,D1 (E(Sm) + Un

1 ))] + E [dH (Sm,D2 (E(Sm) + Un
2 ))]) , (12)

and the minimization is over all encoders E : {0, 1}m → {0, 1}n and decoders D1 : {0, 1}n → {0, 1}m, D2 :
{0, 1}n → {0, 1}m. This last quantity is the sum-distortion in a problem of JSCC broadcast with spherical noise,

see Figure 3. We will next consider JSCC broadcast, and prove in Theorem 4 that

D(a) ' 2D(ρ, δ) +
a√
n
η(ρ, δ). (13)

Thus,

D∗(n, ρ, δ) ' D(ρ, δ) +
E[A]

2
√
n
η(ρ, δ).

The result of the theorem follows since A is approximately the absolute value of a normal variable with zero mean

and variance δ(1− δ), thus

E[A] ≈
√

2δ(1− δ)

π
,

which gives the stated result.
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Sm E(Sm)
Xn

QY n
1 ,Y n

2 |Xn

Y n
1 D1(Y

n
1 ) (Ŝm

1 , D1)

Y n
2 D2(Y

n
2 ) (Ŝm

2 , D2)

Fig. 4. JSCC over a Broadcast Channel.

B. Sending a Source Over a Broadcast Channel

We now outline the derivation of (13), stating the steps which we will prove in Section IV. We consider the

problem of sending a source over a broadcast channel, or simply, the JSCC broadcast problem, as follows, See

Figure 4.

Definition 2: In the JSCC broadcast problem, an encoder observes a sequence Sm = (S1, . . . , Sm) of m i.i.d.

samples generated according to the distribution PS , and would like to send this sequence through the broadcast

channel QY n
1 ,Y n

2 |Xn , which may not be memoryless, nor degraded. To that end, the encoder maps the source

sequence Sm to the channel input Xn using an encoding function E : Sm → Xn. The channel input Xn is

transmitted through the channel and the first receiver, which observes the channel output Y n
1 , generates an estimate

Ŝm
1 of the source sequence, using a decoding function D1 : Yn

1 → Ŝm, whereas the second receiver, which observes

the channel output Y n
2 , generates an estimate Ŝm

2 of the source sequence, using a decoding function D2 : Yn
2 → Ŝm.

We assume that the reconstruction alphabets Ŝ1, Ŝ2 are identical, and that the quality of the two reconstructions

are measured with respect to the same separable distortion measure d : S × Ŝ → R:2

Di =
1

m
Ed(Sm, Ŝm

i ), i = 1, 2, (14)

For given m, n, PS , and QY n
1 ,Y n

2 |Xn , a distortion pair (D1, D2) is said to be achievable if there exist (E ,D1,D2)

such that 1
mE[d(Sm, Ŝm

i )] ≤ Di for i = 1, 2. It will be convenient to express results using the bandwidth expansion

factor ρ = n/m. Our goal is to establish an outer bound on the achievable pairs (D1, D2).
For our results, we need the following functions of the source. We define an auxiliary variable U via a conditional

distribution PU|S . By combining with the given PS we obtain P = PSU . With respect to this distribution, we define:

FP (t) , min
V : U−S−V
I(S;V )≥t

I(S;V |U), (15)

R̄P (D) , min
Ŝ : U−S−Ŝ
Ed(S,Ŝ)≤D

I(U ; Ŝ). (16)

Notice that when U = S the function R̄P (D) reduces to the rate-distortion function RPS
(D) of the source S.3

Furthermore, we define the following function of the channel Qn = QY n
1 ,Y n

2 |Xn(yn1 , y
n
2 |xn),

GQn(t) , max
W,Xn : W−Xn−(Y n

1 ,Y n
2 )

I(Xn;Y n
1 |W )≥t

I(Y n
2 ;W ). (17)

Note the relation to the capacity region of the broadcast channel: If nR1 and nR2 bits can be communicated reliably

to the receivers Y n
1 and Y n

2 , respectively, then nR2 ≤ GQn(nR1) [19, Chapter 5.4.1] .

Let RPS
(D) be the rate-distortion function of the source PS . We prove the following theorem.

Theorem 2: Consider the problem of transmitting m realizations of the i.i.d. source S ∼ PS , over the n-letter

broadcast channel Qn. If (D1, D2) is achievable, then for any PU|S we have that

R̄P (D2) ≤
1

m
·GQn (mFP (RPS

(D1))) , (18)

where P = PSPU|S is the joint distribution on (S,U) induced by the choice of PU|S .

2These assumptions are made for the sake of simplicity only, results easily go through to the more general case as well.
3We note that the function R̄P (D) also arises as an upper bound on the communication rate required in order to perform a certain coordination

task, see [18].
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The proof of this bound, which is based on generalizing a technique developed by Reznic, Feder and Zamir [15]

for the Gaussian joint source-channel coding broadcast problem, will be given in Section III. While the functions

FP (t), R̄P (D) and RPS
(D), involved in the evaluation of the bound from Theorem 2 only require solving a

single-letter optimization, the function GQn requires solving, or bounding the solution of, an n-letter optimization,

which is in general a challenging task. However, if the broadcast channel is memoryless and degraded then GQn

single-letterizes; as a consequence the whole bound becomes single-letter as well, and in fact we will also show

that for this case it can be obtained as a special case of [16, Theorem 5].

We now speicialize Theorem 2 to the spherical-noise binary JSCC broadcast problem. Recalling Figure 3, it is

defined as follows.

Definition 3: The spherical-noise binary JSCC broadcast problem is a JSCC broadcast problem (as in Definition 2)

with a memoryless symmetric binary source Sm, channels Y n
1 = Xn + Un

1 , Y n
2 = Xn + Un

2 , where Un
1 ∼

Uniform (Snδ1,n) and Un
2 ∼ Uniform

(
Sn(δ1∗δ2),n

)
, (Un

1 , U
n
2 ) ⊥⊥ Xn, and Hamming distortion.

In this problem the broadcast channel is neither memoryless, nor degraded. Indeed, if we replaced the spherical

noises by an i.i.d. noise with the same marginals, the channel would become a BSC(δ1, δ1∗δ2) degraded memoryless

broadcast channel. In that case, the corresponding channel function does single-letterize, and equals

1

n
GQn(nt) = GBSC(t)

= log 2− hb
(
δ2 ∗ h−1

b (hb(δ1) + t)
)
, (19)

see Section VI. The i.i.d. JSCC bound derived from this function would easily prove our result. Closing the gap

between the i.i.d. case and the spherical-noise case, is one of the main technical challenges in this work.

For the spherical-noise broadcast channel, we prove that

1

n
GQn(nt) ≤ GBSC(t) + Γ(n, δ2),

where

Γ(n, δ2) ,

√

δ2
n

log

(
n

δ2

)

+
logn+ 1

2n
.

The proof of this bound, which is given in Section IV, is based on replacing Un
2 with the noise Un

1 + Z̃n,

where Z̃n ∼ Ber(δ2)
⊗n, such that the obtained broadcast channel Q̃n is degraded (though not memoryless), and

its corresponding function GQ̃n can be computed using Mrs. Gerber’s Lemma [20] (see below). The difference

|GQ̃n(nt) − GQn(nt)| is essentially bounded by supPXn |H(Xn + Un
1 + Z̃n) − H(Xn + Un

2 )|, which can be

bounded via a coupling argument introduced in [21] (see also [22]). Using this technique, we show that |GQ̃n(nt)−
GQn(nt)| / n · Γ(n, δ2).

Thus, in order to apply Theorem 2 for obtaining an outer bound on the achievable (D1, D2) pairs for the binary

spherical noise JSCC broadcast problem, we need only choose an auxiliary channel PU|S and evaluate the functions

FP (t), R̄P (D) and RPS
(D). For the particular choice U = S +N , where N ∼ Ber(q) is statistically independent

of X , evaluating these functions becomes particularly simple, and we obtain the following Theorem, proved in

Section IV.

Theorem 3: Consider the binary spherical noise JSCC broadcast problem. If (D1, D2) is achievable, then for any

0 < q < 1/2

log 2− hb(q ∗D2) ≤ ρ

[

log 2− hb

(

δ2 ∗ h−1
b

(

hb(δ1) +
hb(q ∗D1)− hb(D1)

ρ

))]

+ ρΓ(n, δ2), (20)

where Γ(n, δ2) is as defined in (39).

Recall now that our goal is to bound from D(a) (12). This is nothing but the sum D1+D2 in the binary spherical

noise JSCC broadcast problem, with appropriate δ1 and δ2. The required result is as follows.

Theorem 4: Consider the binary spherical noise JSCC broadcast problem, with δ1 = δ − a√
n

, δ1 ∗ δ2 = δ + a√
n

,

for some positive a < log2(n). If (D1, D2) is achievable, then

D1 +D2 ≥ 2D(ρ, δ) +
aη(ρ, δ)√

n
+O

(

n−3/4 logn
)

, (21)

where η(ρ, δ) is as defined in (8c).
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The proof appears in Section IV-B. Given Theorem 3, it is merely a matter of algebraic manipulations and local

approximations. Note that since we are interested in the regime where δ2 = Θ(n−1/2), the term Γ(n, δ2) only

contributes to the O(n−3/4 logn) correction.

As we make extensive use of Mrs. Gerber’s Lemma (MGL) [20], for completeness, we end this section with its

statement.

Lemma 1 (Mrs. Gerber’s Lemma [20]): The MGL function ϕδ(t) = hb(δ ∗ h−1
b (t)) is convex in t. Furthermore,

for Zn ∼ Ber(δ)⊗n and any n-dimensional binary vector Xn, statistically independent of Zn, we have that

H(Xn + Zn) ≥ nϕδ

(
H(Xn)

n

)

.

III. OUTER BOUND FOR THE GENERAL JSCC BROADCAST PROBLEM

In this section we address the general JSCC broadcast problem of Definition 2. We prove Theorem 2 by analyzing

the source and channel functions (15)-(17). We note that the setting of Theorem 2 is asymmetric: the source is

assumed to be i.i.d., while the channel is neither memoryless nor degraded; this is the most general form that we

need for this work, and the extension for sources with memory will become quite obvious in the sequel.

A. The Source Functions

First, we prove two simple statements regarding properties of the functions FP (15) and R̄P (16). Recall that

for a given choice of auxiliary conditional distribution PU|S , we have defined P = PSPU|S . The source function

FP⊗m corresponding to m i.i.d. draws (Um, Sm) from P is

FP⊗m(t) , min
V : Um−Sm−V

I(Sm;V )≥t

I(Sm;V |Um).

Lemma 2: The function FP (t) is monotone non-decreasing and convex. Furthermore, it tensorizes, i.e.,

FP⊗m(mt) = mFP (t).

Proof. Monotonicity of the function FP (t) follows by definition. For convexity, let V0 and V1 be random variables

(induced by the channels PVi|S) that attain FP (t0) and FP (t1) with equality. Let A ∼ Ber(α) be statistically

independent of (U, S), and define Ṽ = (A, VA). We have that

I(S; Ṽ ) = I(S;VA|A)
= (1− α)I(S;V0) + αI(S;V1)

= (1− α)t0 + αt1,

and by definition of Fp(t),

Fp((1− α)t0 + αt1) ≤ I(S; Ṽ |U)

= (1− α)I(S;V0|U) + αI(S;V1|U)

= (1− α)FP (t0) + αFP (t1). (22)

We prove tensorization by induction. Let (Um, Sm) ∼ P⊗m. For any V that satisfies the Markov chain Um−Sm−V ,

we have

FP

(
I(Sm;V )

m

)

= FP

(
I(Sm−1;V ) + I(Sm;V |Sm−1)

m

)

= FP

(
I(Sm−1;V ) + I(Sm;V, Sm−1)

m

)

= FP

(
m− 1

m

I(Sm−1;V )

m− 1
+

1

m
I(Sm;V, Sm−1)

)

≤ m− 1

m
FP

(
I(Sm−1;V )

m− 1

)

+
1

m
FP

(
I(Sm;V, Sm−1)

)
,
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where we have used the convexity of t 7→ FP (t) in the last inequality. Invoking the induction hypothesis, we have

FP

(
I(Sm;V )

m

)

≤ 1

m
FP⊗(m−1)

(
I(Sm−1;V )

)
+

1

m
FP

(
I(Sm;V, Sm−1)

)

≤ 1

m

[
I(Sm−1;V |Um−1) + I(Sm;V, Sm−1|Um)

]
, (23)

where the last inequality follows by definition of FP⊗(m−1) and FP and the fact Um−1 − Sm−1 − V and Um −
Sm − (V, Sm−1) are indeed Markov chains. Noting that

I(Sm−1;V |Um−1) ≤ I(Sm−1;V |Um),

and

I(Sm;V, Sm−1|Um) ≤ I(Sm;V, Sm−1|Um)

= I(Sm;V |Sm−1, Um),

which both follow since Sm is memoryless, we obtain

I(Sm−1;V |Um−1) + I(Sm;V, Sm−1|Um) ≤ I(Sm;V |Um). (24)

Substituting (24) into (23), gives

I(Sm;V |Um) ≥ mFP

(
I(Sm;V )

m

)

. (25)

Thus, we have shown that FP⊗m(mt) ≥ mFP (t). On the other hand, we have that

FP⊗m(mt) , min
V : Um−Sm−V
I(Sm;V )≥mt

I(Sm;V |Um)

≤ min
V m : Um−Sm−V m

I(Sm;V m)≥mt

I(Sm;V m|Um) (26)

= mFP (t),

where the minimum in (26) is taken over the memoryless channels PV m|Sm =
∏n

i=1 PV |S .

Lemma 3: Let (Um, Sm) ∼ P⊗m, and let Ŝm be a random vector satisfying the Markov chain Um − Sm − Ŝm

and 1
mEd(Sm, Ŝm) ≤ D, then

I(Um; Ŝm) ≥ mR̄P (D).

Proof. Since Um is memoryless, we have that

I(Um; Ŝm) ≥
m∑

i=1

I(Ui; Ŝi). (27)

Note that 1
m

∑m
i=1 Ed(Si; Ŝi) ≤ D by separability of d(Sm; Ŝm), and that the Markov chain Um − Sm − Ŝm

implies that Ui − Si − Ŝi is also a Markov chain. It is easy to see that the function D 7→ R̄P (D) is convex. Thus,

letting di = Ed(Si; Ŝi), we have that

I(Um; Ŝm) ≥ m
1

m

m∑

i=1

R̄P (di) ≥ mR̄P (D). (28)
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B. The Channel Function and Derivation of Theorem 2

In the general (non-memoryless, non-degraded) case the channel function GQn (17) does not tenzorise. However,

we have the following basic properties.

Lemma 4: The function GQn(t) is monotone non-increasing and concave.

Proof. Monotonicity of GQn(t) follows by definition. For concavity, let (W0, X
n
0 ) and (W1, X

n
1 ) be random vari-

ables that attain GQn(t0) andGQn(t1) with equality. Let A ∼ Ber(α) be statistically independent of (W0, X
n
0 ,W1, X

n
1 ),

and define (W̃ , X̃n) = ((A,WA), X
n
A). We have that

I(X̃n;Y n
1 |W̃ ) = I(Xn

A;Y
n
1 |WA, A)

= (1− α)I(Xn
0 ;Y

n
1 |W0) + αI(Xn

1 ;Y
n
1 |W1)

= (1− α)t0 + αt1, (29)

and by definition of GQn(t),

GQn(αt0 + (1− α)t1) = GQn(I(X̃n;Y n
1 |W̃ ))

≥ I(Y n
2 ; W̃ )

= I(Y n
2 ;A) + I(Y n

2 ;WA|A)
≥ αGQn(t0) + (1 − α)GQn(t1). (30)

We are now in a position to prove Theorem 2. The proof is essentially a generalization of the technique developed

by Reznik, Feder and Zamir for the Gaussian joint source-channel coding problem [15]. Their proof relied heavily

on the entropy-power inequality (EPI), which is replaced by the functions FP (t) and GQn(t) in the proof below.

We remark that although Theorem 2 is stated and proved for channels without a cost constraint, such a constraint

can be included by constraining the distribution of Xn in the computation of GQn(t), in the obvious way.

Proof of Theorem 2. Let Ŝm
1 , Ŝ

m
2 be the estimates produced from the outputs Y n

1 and Y n
2 , respectively. We have

mR̄P (D2) ≤ I(Um, Ŝm
2 ) (31)

≤ I(Um;Y n
2 ) (32)

≤ GQn(I(Xn;Y n
1 |Um)) (33)

≤ GQn (I(Sm;Y n
1 |Um)) (34)

≤ GQn (FP⊗m (I(Sm;Y n
1 ))) (35)

= GQn

(

mFP

(
I(Sm;Y n

1 )

m

))

(36)

≤ GQn

(

mFP

(

I(Sm; Ŝm
1 )

m

))

(37)

≤ GQn (mFP (R(D1))) ,

where (31) follows from Lemma 3, (32) follows from the data processing inequality (DPI), (33) from definition

of GQn , (34) from the DPI and monotonicity of GQn , (35) from definition of FP⊗m , (36) from tensorization of

FP⊗m , and (37) from the DPI.

Note that Um plays a two-fold role here: in (33) we used the Markov chain Um − Xn − (Y n
1 , Y

n
2 ), whereas

in (31) and (35) we used Um−Sm−Y n
1 . Thus, the source functions FP (t) and R̄P (D), and the broadcast function

GQn(t) are coupled via the same auxiliary variable Um. This is also the main weakness of the bound above: Even

though the same Um, whose distribution is fixed and memoryless once we choose the channel PU|S , appears in

both Markov chains, in the transition from (32) to (33), we have used the definition of GQn , which involves a

maximization with respect to Um. As will be shown in the sequel, in the special case where Qn is degraded and

memoryless, the auxiliary random variables achieving the maximum in the definition of GQn(t) are of the form

(Wn, Xn) ∼ P⊗n
WX , i.e., n-letter memoryless distribution. We therefore see that for such Qn, the random variables

(Um, Xn), where Um is m-letter memoryless, cannot achieve the maximum in the definition of GQn(t), unless

m = n. Thus, the inequality (33) must be strict in this case.
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IV. OUTER BOUND FOR THE BINARY SPHERICAL-NOISE JSCC BROADCAST PROBLEM

In this section we derive an explicit bound for the binary spherical-noise JSCC broadcast problem (Definition 3),

namely we prove Theorem 4. To that end, we first establish Theorem 3 .

A. Proof of Theorem 3

For specializing Theorem 2 to the binary case, we need to evaluate or at least bound the source and channel

functions. The crucial part is a bound on the (non single-letter) channel function, as follows.

Lemma 5: Let Qn = QY n
1 ,Y n

2 |Xn(yn1 , y
n
2 |xn) be the additive spherical-noise broadcast channel Y n

1 = Xn +Un
1 ,

Y2 = Xn + Un
2 , where Un

1 ∼ Uniform (Snδ1,n) and Un
2 ∼ Uniform

(
Sn(δ1∗δ2),n

)
, (Un

1 , U
n
2 ) ⊥⊥ Xn. Then,

1

n
GQn(nt) ≤ log 2− hb

(
δ2 ∗ h−1

b (hb(δ1) + t)
)
+ Γ(n, δ2), (38)

where

Γ(n, δ2) ,

√

δ2
n

log

(
n

δ2

)

+
logn+ 1

2n
. (39)

Proof. Let (W,Xn) satisfy the Markov chain W −Xn− (Y n
1 = Xn +Un

1 , Y
n
2 = Xn +Un

2 ). We begin by writing

H(Y n
2 |W ) = H(Xn + Un

1 + Zn
3 |W ) + [H(Xn + Un

2 |W )−H(Xn + Un
1 + Zn

3 |W )] , (40)

where Zn
3 ∼ Ber(δ2)

⊗n. We will upper bound the absolute value of the term in the square brackets via coupling.

Consider the following joint distribution on (Un
2 , U

n
1 + Zn

3 ):

• Let Π be a uniform random permutation on [n] = {1, . . . , n}.

• Let T = T0 + T1 where T0 ∼ Binomial(n(1− δ1), δ2) and T1 ∼ Binomial(nδ1, 1− δ2) are independent.

• Set U2,Π(i) = 1 for i = 1, . . . , (δ1 ∗ δ2)n and U2,Π(i) = 0 for i = (δ1 ∗ δ2)n+ 1, . . . , n.

• Set U1,Π(i) + Z3,Π(i) = 1 for i = 1, . . . , T and U1,Π(i) + Z3,Π(i) = 0 for i = T + 1, . . . , n.

Clearly Un
2 and Un

1 +Z
n
3 have the correct marginal distributions. Moreover, the expected Hamming distance between

these vectors satisfies

EwH(Un
2 + (Un

1 + Zn
3 )) = E|T − n(δ1 ∗ δ2)|

= E

√

(T − n(δ1 ∗ δ2))2

≤
√

Var(T )

=
√

Var(T1) + Var(T2)

=
√

nδ2(1− δ2)

≤
√

nδ2, (41)

where the first inequality follows from Jensen’s inequality and the fact that E(T ) = n(δ1 ∗ δ2). Now, applying [21,

Proposition 8] (see also [22]), we obtain for δ2 < 1/2

|H(Xn + Un
2 |W )−H(Xn + Un

1 + Zn
3 |W )| ≤

√

nδ2 log

(
n

δ2

)

. (42)

Thus, we can use Mrs. Gerber’s Lemma (MGL) to lower bound (40) as

H(Y n
2 |W ) ≥ H(Xn + Un

1 + Zn
3 |W )−

√

nδ2 log

(
n

δ2

)

≥ nϕδ2

(
H(Xn + Un

1 |W )

n

)

−
√

nδ2 log

(
n

δ2

)

, (43)
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where ϕδ2(x) = hb(δ2 ∗ h−1(x)) is the MGL function. Further bounding, we have

H(Y n
2 |W ) = nϕδ2

(
H(Xn + Un

1 |Xn) +H(Xn + Un
1 |W )−H(Xn + Un

1 |Xn,W )

n

)

−
√

nδ2 log

(
n

δ2

)

= nϕδ2

(
H(Un

1 ) + I(Xn;Y n
1 |W )

n

)

−
√

nδ2 log

(
n

δ2

)

≥ nϕδ2

(
nhb(δ1)− 1

2 (logn+ 1) + I(Xn;Y n
1 |W )

n

)

−
√

nδ2 log

(
n

δ2

)

(44)

= nϕδ2

(

hb(δ1) +
I(Xn;Y n

1 |W )

n
− logn+ 1

2n

)

−
√

nδ2 log

(
n

δ2

)

≥ nϕδ2

(

hb(δ1) +
I(Xn;Y n

1 |W )

n

)

− logn+ 1

2
ϕ′
δ2

(

hb(δ1) +
I(Xn;Y n

1 |W )

n

)

−
√

nδ2 log

(
n

δ2

)

,

where in (44) we substitute [23, Chapter 10, Lemma 7] to lower-bound H(Un
1 ), and in the last inequality we

have defined the MGL derivative ϕ′
δ2
(x) = d

dxϕδ2(x), and used the convexity of x 7→ ϕδ2(x) [20]. Recalling that

ϕ′
δ2
(x) ≤ 1 due to [24, Theorem 2.6] (or alternatively, as can be seen directly from the expression for ϕ′

δ2
(x)

derived in [20]), we have obtained

H(Y n
2 |W ) ≥ nhb

(

δ2 ∗ h−1
b

(

hb(δ1) +
I(Xn;Y n

1 |W )

n

))

− nΓ(n, δ2), (45)

and the claim now follows since H(Y n
2 ) ≤ n log 2.

The treatment of the source functions is much simpler. As it is identical to the i.i.d. binary problem, we defer the

derivation to Section VI-B, where we show that for S ∼ Ber(p) and the choice U = S +N , where N ∼ Ber(q)
is statistically independent of S, we have:

FP (t) ≥ t− hb(q ∗ p) + hb
(
q ∗ h−1

b (hb(p)− t)
)

(46)

R̄P (D) = hb(q ∗ p)− hb(q ∗D), (47)

for 0 ≤ D ≤ p. Substituting these expressions for p = 1/2 and the channel-function bound of Lemma 5 in

Theorem 2, Theorem 3 is immediately obtained.

B. Local Analysis: From Theorem 3 to Theorem 4

Our next goal is to manipulate the bound from Theorem 3 in order to obtain a lower bound on the sum-distortion.

The proof of the following Lemma is brought in Appendix D, and is based on several auxiliary lemmas, which are

stated and proved in Appendix C.

Lemma 6: Consider the binary spherical-noise JSCC broadcast problem of Definition 3. If (D1, D2) is achievable,

then for any τ > 0 we have

D2 −D1 ≤ 1 + 2D2τ

2D2τ

ρC(δ1 ∗ δ2)−R(D2) + ρΓ(n, δ2)

log
(

1−D2

D2

) + (δ1 ∗ δ2 − δ1)
log
(

1−δ1
δ1

)

log
(

1−D2

D2

)
Φ(δ1)

Φ(D2)
(1 + τ)

g(D1)

g(D2)
,

(48)

where Φ(t) is defined in (8a), Γ(n, δ2) is defined in (39), and

C(t) = R(t) , log 2− hb(t), (49)

g(t) , (1− 2t) log

(
1− t

t

)

= (1− 2t)h′b(t). (50)

We will also need the following lemma, proved in Appendix E.

Lemma 7: Let Φ(t) and D(ρ, δ) be as defined in (8a) and (7), respectively. For every ρ > 1 and 0 < δ < 1/2
for which D(ρ, δ) > 0, it holds that

f(ρ, δ) ,
1

ρ

Φ(δ)

Φ(D(ρ, δ))
< 1.
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Finally, we will also need the next proposition, which is a simple variation of the source-channel separation

theorem for spherical noise. The proof is given in Appendix A

Proposition 1: For any encoder/decoder pair D, E and any k ∈ [−nδ, n(1− δ)] it holds that

Ψ(k) ≥ D

(

ρ, δ +
k

n

)

+O
(
logn

n

)

, (51)

where Ψ(·) was defined in (10).

Using Lemma 6, Lemma 7, and Proposition 1, we can now prove Theorem 4, which is the main result of this

subsection.

Proof of Theorem 4. First note that for ǫ > 0, we can approximate D(ρ, δ + ε) as

D(ρ, δ + ε) = D(ρ, δ) + ǫD′(ρ, δ) +O(ε2), (52)

where

D′(ρ, δ) ,
∂

∂δ
D(ρ, δ) = ρ

h′b(δ)

h′b(D(ρ, δ))
= ρ

log
(
1−δ
δ

)

log
(

1−D(ρ,δ)
D(ρ,δ)

) . (53)

Taking ǫ = a√
n

, this implies that

D(ρ, δ)−D(ρ, δ1) =
a√
n
D′(ρ, δ) +O

(
1

n

)

(54a)

D(ρ, δ1 ∗ δ2)−D(ρ, δ) =
a√
n
D′(ρ, δ) +O

(
1

n

)

. (54b)

and thus, subtracting (54b) from (54a), we obtain

D(ρ, δ1 ∗ δ2) +D(ρ, δ1)− 2D(ρ, δ) = O
(
1

n

)

, (55)

Now, by Proposition 1 we have:

D1 ≥ D(ρ, δ1) +O
(
logn

n

)

(56a)

D2 ≥ D(ρ, δ1 ∗ δ2) +O
(
logn

n

)

. (56b)

Using (54b) and (56b), we can assert:

D2 −D(ρ, δ) = (D2 −D(ρ, δ1 ∗ δ2)) + (D(ρ, δ1 ∗ δ2)−D(ρ, δ))

≥ a√
n
D′(ρ, δ) +O

(
logn

n

)

. (57)

Let η = η(ρ, δ). We now claim that we can assume without loss of generality:

D1 −D(ρ, δ1) <
aη√
n

(58a)

D2 −D(ρ, δ1 ∗ δ2) <
aη√
n
, (58b)

To see why this is true, assume to the contrary that one of them, say the first, does not hold. Then, by (56b) and

(55),

D1 +D2 ≥ D(ρ, δ1) +D2 +
aη√
n

≥ D(ρ, δ1) +D(ρ, δ1 ∗ δ2) +
aη√
n
+O

(
logn

n

)

= 2D(ρ, δ) +
aη√
n
+O

(
logn

n

)

,

which is stronger than the desired bound.
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We now proceed to bound the difference D2 − D1 invoking Lemma 6 and using (58). By the concavity of

t 7→ hb(t) and (58b) we have that

hb(D2) = hb (D(ρ, δ1 ∗ δ2) + (D2 −D(ρ, δ1 ∗ δ2)))
≤ hb(D(ρ, δ1 ∗ δ2)) +

aη√
n
h′b(D(ρ, δ1 ∗ δ2)), (59)

which implies that

ρC(δ1 ∗ δ2)−R(D2) = ρC(δ1 ∗ δ2)− log 2 + hb (D2))

≤ aη√
n
h′b(D(ρ, δ1 ∗ δ2))

=
aη√
n
log

(
1−D(ρ, δ1 ∗ δ2)
D(ρ, δ1 ∗ δ2)

)

. (60)

Substituting in Lemma 6, we have for any τ > 0:

D2 −D1 ≤ 1 + 2D2τ

2D2τ

aη√
n
log
(

1−D(ρ,δ1∗δ2)
D(ρ,δ1∗δ2)

)

+ ρΓ(n, δ2)

log
(

1−D2

D2

) +
2a√
n

log
(

1−δ1
δ1

)

log
(

1−D2

D2

)
Φ(δ1)

Φ(D2)
(1 + τ)

g(D1)

g(D2)
. (61)

The functions t 7→ log
(
1−t
t

)
, t 7→ Φ(t), and t 7→ g(t) are continuous at 0 < t < 1/2. Thus, recalling that

a < log2 (n), by the assumption that 0 < D(ρ, δ) < 1/2, (58a) and (58b), we have that

log
(

1−D(ρ,δ1∗δ2)
D(ρ,δ1∗δ2)

)

log
(

1−D2

D2

) = 1 +O
(
log2 (n)√

n

)

log
(

1−δ1
δ1

)

log
(

1−D2

D2

) =
log
(
1−δ
δ

)

log
(

1−D(ρ,δ)
D(ρ,δ)

)

(

1 +O
(
log2 (n)√

n

))

=
D′(ρ, δ)

ρ

(

1 +O
(
log2 (n)√

n

))

Φ(δ1)

Φ(D2)
=

Φ(δ)

Φ(D(ρ, δ))

(

1 +O
(
log2 (n)√

n

))

= ρf(ρ, δ)

(

1 +O
(
log2 (n)√

n

))

,

where f(·, ·) is as defined in (8b). In addition, under our assumptions on δ1 and δ2, we have that Γ(n, δ2) =
O(n−3/4 logn). Thus, (61) amounts to the following upper bound on the difference D2 −D1:

D2 −D1 ≤ 1√
n

(

aη
1 + 2D(ρ, δ)τ

2D(ρ, δ)τ
+ 2aD′(ρ, δ)f(ρ, δ)(1 + τ)

)

+O(n−3/4 logn). (62)

Combining with (57) now yields

D1 +D2 − 2D(ρ, δ) = 2(D2 −D(ρ, δ))− (D2 −D1)

≥ 2a√
n
D′(ρ, δ)− 1√

n

(

aη
1 + 2D(ρ, δ)τ

2D(ρ, δ)τ
+ 2aD′(ρ, δ)f(ρ, δ)(1 + τ)

)

+O(n−3/4 logn)

=
1√
n

(

2aD′(ρ, δ) (1− f(ρ, δ)(1 + τ))− aη
1 + 2D(ρ, δ)τ

2D(ρ, δ)τ

)

+O(n−3/4 logn). (63)

Now, since 0 < f(ρ, δ) < 1 by Lemma 7, we can take

τ =
1− f(ρ, δ)

2f(ρ, δ)
> 0, (64)

for which (63) becomes

D1 +D2 − 2D(ρ, δ) ≥ aη(ρ, δ)√
n

+O(n−3/4 logn), (65)

as desired.
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V. PROOF OF THEOREM 1

We now turn back to the original point-to-point finite-blocklength JSCC problem. The outline of the proof was

already given in Section II-A. Here we give the complete proof. First, without loss of generality we may restrict

attention to δ ∈
{

0
n ,

1
n , . . . , 1

}
as

D∗(n, ρ, δ) ≥ D∗
(

n, ρ,
⌊nδ⌋
n

)

, (66)

and we may therefore write

∆∗(n, ρ, δ) = D∗(n, ρ, δ)−D(ρ, δ)

≥ D∗
(

n, ρ,
⌊nδ⌋
n

)

−D

(

ρ,
⌊nδ⌋
n

)

+

[

D

(

ρ,
⌊nδ⌋
n

)

−D(ρ, δ)

]

= ∆∗
(

n, ρ,
⌊nδ⌋
n

)

+O
(
1

n

)

, (67)

where the last equality follows since D
(

ρ, ⌊nδ⌋n

)

−D(ρ, δ) = O
(
1
n

)
.

As in Section II-A, we define the integer-valued random variable K = wH(Zn) − δn, and for a given en-

coder/decoder pair (E ,D) we have that

E

[
1

m
dH (Sm,D (E(Sm) + Zn))

]

= E [Ψ(K) ] , (68)

where

Ψ(k) = ΨD,E(k) , E

[
1

m
dH (Sm,D (E(Sm) + Un

k ))

]

, (69)

and Un
k is uniform over Sδn+k,n. In terms of this function, we have

∆∗(n, ρ, δ) = E [Ψ(K)−D(ρ, δ)] .

We proceed by partitioning K into two regimes:

K1 = {K : |K| ≤ √
n log2(n)}

K2 = {K :
√
n log2(n) < |K|},

and asserting:

∆∗(n, ρ, δ) =
2∑

i=1

Pr (K ∈ Ki)E [Ψ(K)−D(ρ, δ)|K ∈ Ki] . (70)

and lower bound each of the two terms.

To lower bound the second term it suffices to note that Pr (K ∈ K2) = O( 1n ) and that Φ(K) − D(ρ, δ) is

bounded, such that its the total contribution is at most O( 1n ). For the first term, define for all natural k

γ(k) =
Pr(K = k)− Pr(K = −k)
Pr(K = k) + Pr(K = −k) , (71)
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and write:

E

[

Ψ(K)−D(ρ, δ)

∣
∣
∣
∣
|K| = k0

]

= Pr(K = k0 | |K| = k0) [Ψ(k0)−D(ρ, δ)]

+ Pr(K = −k0 | |K| = k0) [Ψ(−k0)−D(ρ, δ)]

=
1 + γ(k0)

2
[Ψ(k0)−D(ρ, δ)] +

1− γ(k0)

2
[Ψ(−k0)−D(ρ, δ)] ,

=
1 + γ(k0)

2

[(

Ψ(k0)−D

(

ρ, δ +
k0
n

))

+

(

D

(

ρ, δ +
k0
n

)

−D(ρ, δ)

)]

+
1− γ(k0)

2

[(

Ψ(−k0)−D

(

ρ, δ − k0
n

))

+

(

D

(

ρ, δ − k0
n

)

−D(ρ, δ)

)]

=
1 + γ(k0)

2

[(

Ψ(k0)−D

(

ρ, δ +
k0
n

))]

+
1− γ(k0)

2

[(

Ψ(−k0)−D

(

ρ, δ − k0
n

))]

+
1

2

[(

D

(

ρ, δ +
k0
n

)

−D(ρ, δ)

)

+

(

D

(

ρ, δ − k0
n

)

−D(ρ, δ)

)]

+
γ(k0)

2

[(

D

(

ρ, δ +
k0
n

)

−D(ρ, δ)

)

−
(

D

(

ρ, δ − k0
n

)

−D(ρ, δ)

)]

.

(72)

In order to bound these quantities, we approximate D(ρ, δ+ t) = D(ρ, δ)+c1t+c2t
2+O(t3), for some c1, c2 ∈ R,

such that
(

D

(

ρ, δ +
k0
n

)

−D(ρ, δ)

)

+

(

D

(

ρ, δ − k0
n

)

−D(ρ, δ)

)

= O
(
k20
n2

)

, (73)

and that
(

D

(

ρ, δ +
k0
n

)

−D(ρ, δ)

)

−
(

D

(

ρ, δ − k0
n

)

−D(ρ, δ)

)

= O
(
k0
n

)

. (74)

In addition, in Appendix B we give Lemma 9, showing that4 for k0 < n2/3,

γ(k0) = O
(

max

(
k0
n
,
k30
n2

))

, (75)

which amounts to

γ(k0) = O
(
log6 (n)√

n

)

, ∀k0 ≤ √
n log2(n). (76)

Applying (73)-(76) under the condition k0 ≤ √
n log2(n), and noting that by Proposition 1

Ψ(k0) ≥ D

(

ρ, δ +
k0
n

)

+O
(
logn

n

)

,

we see that (72) amounts to:

E

[

Ψ(K)−D(ρ, δ)

∣
∣
∣
∣
|K| = k0

]

≥ 1− |γ(k0)|
2

[(

Ψ(k0)−D

(

ρ, δ +
k0
n

))

+

(

Ψ(−k0)−D

(

ρ, δ − k0
n

))]

+O
(
log8 n

n

)

. (77)

Now, applying (73) and (76) again, we see that (77) can be further bounded as

E

[

Ψ(K)−D(ρ, δ)

∣
∣
∣
∣
|K| = k0

]

≥ 1

2
[(Ψ(k0) + Ψ(−k0)− 2D (ρ, δ))]

(

1 +O
(
log6 (n)√

n

))

+O
(
log8 n

n

)

.

(78)

4A similar result can be shown for any distribution with a finite third moment using bounds on the (unsigned) Gaussian approximation error
such as a theorem by Essen which appears in [25, Theorem 5.22]. However, we prefer to present the explicit calculation for the binomial
distribution.
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Letting a = k0/
√
n we have that by definition of D(·) (12), Ψ(k0) + Ψ(−k0) ≥ D(a). Thus, the contribution of

K1 in (70) is at most:

Pr (K ∈ K1)E

[

D

(
K√
n

)

− 2D (ρ, δ)

∣
∣
∣
∣
K ∈ K1

](

1 +O
(
log6 (n)√

n

))

+O
(
log8 n

n

)

. (79)

Now, using Theorem 4, we have that for any fixed 0 < a < log2 (n),

D(a) ≥ 2D(ρ, δ) +
a√
n
η(ρ, δ) +O(n−3/4 logn) (80)

where η(ρ, δ) is as defined in (8c). Substituting in (79), we are left with:

η(ρ, δ)√
n

Pr (K ∈ K1)E

[ |K|√
n

∣
∣
∣
∣
K ∈ K1

](

1 +O
(
log6 (n)√

n

))

+O
(
log8 n

n

)

+O(n−3/4 logn)

=

√

δ(1− δ)η(ρ, δ)√
n

Pr

(

|W | < log2 (n)
√

δ(1− δ)

)

E

[

|W |
∣
∣
∣
∣
|W | < log2 (n)

√

δ(1 − δ)

](

1 +O
(
log6 (n)√

n

))

+O(n−3/4 logn),

(81)

where the random variable W = 1√
δ(1−δ)

K√
n

has zero mean and unit variance. Now let WG be a standard Gaussian.

By using non-uniform bounds on the rate of convergence in the central limit theorem such as the the theorem of

Bikelis (see [25, 5.10.4]) , we have that

Pr

(

|W | < log2 (n)
√

δ(1 − δ)

)

E

[

|W |
∣
∣
∣
∣
|W | < log2 (n)

√

δ(1− δ)

]

= Pr

(

|WG| <
log2 (n)
√

δ(1− δ)

)

E

[

|WG|
∣
∣
∣
∣
|WG| <

log2 (n)
√

δ(1− δ)

]

+O
(

1√
n

)

=

√

2

π
+O

(
1√
n

)

. (82)

Thus we obtained

∆∗(n, ρ, δ) ≥
√

δ(1− δ)

2πn
η(ρ, δ) +O(n−3/4 logn), (83)

as desired.

VI. AUXILIARY RESULTS: DEGRADED MEMORYLESS CHANNELS

We now consider the special case where the channelQn is degraded and memoryless. i.e.,Qn
Y n
1 ,Y n

2 |Xn(yn1 , y
n
2 |xn) =

∏n
i=1QY1|X(y1i|xi)QY2|Y1

(y2i|y1i). Although this case is not required for our main result, we bring it as a

demonstration of the power of Theorem 2.

We start with the the following lemma, which can be viewed as a restatement of the degraded broadcast channel

converse theorem.

Lemma 8: If Qn is a degraded memoryless broadcast channel, the function GQ⊗n tensorizes, i.e.,

GQ⊗n(nt) = nGQ(t).

Proof. We use induction. For any (W,Xn) satisfying the Markov chain W −Xn − Y n
1 − Y n

2 we have

I(Xn;Y n
1 |W ) = I(Y n−1

1 ;Xn−1|W ) + I(Xn;Y1,n|W,Y n−1
1 ).
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Consequently,

GQ

(
I(Xn;Y n

1 |W )

n

)

= GQ

(
I(Y n−1

1 ;Xn−1|W ) + I(Xn;Y1,n|W,Y n−1
1 )

n

)

= GQ

(
n− 1

n

I(Y n−1
1 ;Xn−1|W )

n− 1
+
I(Xn;Y1,n|W,Y n−1

1 )

n

)

≥ n− 1

n
GQ

(
I(Y n−1

1 ;Xn−1|W )

n− 1

)

+
1

n
GQ

(
I(Xn;Y1,n|W,Y n−1

1 )
)

(84)

where we have used the concavity of t 7→ GQ(t) in the last inequality. Invoking the induction hypothesis, we get

GQ

(
I(Xn;Y n

1 |W )

n

)

=
GQ⊗(n−1)

(
I(Y n−1

1 ;Xn−1|W )
)
+GQ

(
I(Xn;Y1,n|W,Y n−1

1 )
)

n

≥ I(Y n−1
2 ,W ) + I(Y2,n;W,Y

n−1
1 )

n
, (85)

where the last inequality follows from the definition of GQ⊗(n−1)(t) and GQ(t) and the fact that W − Xn −
Y n−1
1 − Y n−1

2 and (W,Y n−1
1 )−Xn− Y1,n− Y2,n are indeed Markov chains. Note that we have the Markov chain

Y2,n − (W,Y n−1
1 )− Y n−1

2 , and therefore

I(Y2,n;W,Y
n−1
1 ) ≥ I(Y2,n;W,Y

n−1
2 )

≥ I(Y2,n;W |Y n−1
2 ). (86)

Substituting (86) into (85) gives

nGQ

(
I(Xn;Y n

1 |W )

n

)

≥ I(Y n−1
2 ,W ) + I(Y2,n;W |Y n−1

2 )

= I(Y n
2 ;W ),

such that GQ⊗n(nt) ≤ nGQ(t). On the other hand,

GQ⊗n(nt) , max
W,Xn : W−Xn−(Y n

1 ,Y n
2 )

I(Xn;Y n
1 |W )≥nt

I(Y n
2 ;W )

≥ max
Wn,Xn : Wn−Xn−(Y n

1 ,Y n
2 )

I(Xn;Y n
1 |Wn)≥nt

I(Y n
2 ;Wn) (87)

= nGQ(t), (88)

where the maximization in (87) is with respect all i.i.d. (Wn, Xn) ∼ P⊗n
WX .

The following corollary is an immediate consequence of Theorem 2 and Lemma 8.

Corollary 1: Consider the degraded memoryless JSCC broadcast problem. If (D1, D2) is achievable, then for

any P = PSPU|S , defined by a choice of an auxiliary channel PU|S ,

R̄P (D2) ≤ ρ ·GQ

(
FP (R(D1))

ρ

)

. (89)

This bound can be obtained as a special case of [16, Theorem 5] (see also [17]), by observing that the boundary of

the degraded memoryless broadcast channel Q (without common message) is given by (C1, GQ(C1)) [19, Theorem

5.2].5

5In fact, the techniques developed in [16] should suffice to establish our Theorem 2. We nevertheless found it more convenient to prove the
theorem using properties of the general functions FP (t), R̄P (D), and GQn (t), as those functions have a major role in other problems in
network information theory, see [1] for more details.
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It is not difficult to see that the separation bounds for the extreme cases where only one distortion is of interest

are obtained by setting U = ∅ or U = S for D1 and D2, respectively. When ρ = 1 and the “not to code” conditions

[26] hold, these choices give the tightest bound possible. Otherwise, other choices can give tighter bounds, as

demonstrated in the examples below.

A. Quadratic Gaussian Case

Let S ∼ N (0, σ2), and d(Sj , Ŝj) = (Sj − Ŝj)
2. We choose U that is the output of an AWGN channel with input

S and noise that is Gaussian (0, δ2). Using the EPI, one can verify that the corresponding source functions satisfy

FP (t) = t− 1

2
log

(
δ2 + σ2

δ2 + σ2e−t

)

R̄P (D) =
1

2
log

(
δ2 + σ2

δ2 +D

)

,

where FP is attained by taking V that is the output of an AWGN with input S. Furthermore, let Qn be the

(memoryless degarded) AWGN broadcast channel, Y1 = X + Z1, Y2 = Y1 + Z2, where Z1 ∼ N (0, N1), Z2 ∼
N (0, N2), (X,Z1, Z2) mutually independnet, where the channel input is subject to a quadratic cost constraint P .

Using the EPI again, one can verify that

GQ(t) =
1

2
log

(
P +N1 +N2

N1e2t +N2

)

,

where the function is attained by (W,X) that are jointly Gaussian. Combining with the source functions above

and with the quadratic-Gaussian rate-distortion function, and applying Corollary 1, we recover the Reznic, Feder,

Zamir outer bound [15, Theorem 1]: For all δ,

δ2 + σ2

δ2 +D2
≤
(

1 +
P

N1 +N2

)ρ






N1 +N2

N1

(
σ2

D1 · δ2+D1

δ2+σ2

) 1
ρ

+N2






ρ

.

B. Binary-Hamming Case

We now address the case where S is a Bernoulli(p) source, and d(Sj , Ŝj) is the Hamming distortion measure.

1) The Source Functions: We define PU|S by taking U = S +N , where N ∼ Ber(q) is independent of S.

Proposition 2: For 0 ≤ t ≤ hb(p)

FP (t) ≥ t− hb(q ∗ p) + hb
(
q ∗ h−1 (hb(p)− t)

)
, (90)

with equality for p = 1/2.

Proof. By the Markov structure, we have that I(S;V ) = I(U ;V ) + I(S;V |U). Thus,

I(S;V |U) = I(S;V )−H(U) +H(U |V )

≥ I(S;V )−H(U) + hb(q ∗ h−1(H(S|V )))

= I(S;V )−H(U) + hb(q ∗ h−1(H(S)− I(S;V )))

= I(S;V )− hb(q ∗ p) + hb(q ∗ h−1(hb(p)− I(S;V ))),

where the inequality follows from Mrs. Gerber’s Lemma [20]. Note that equality holds iff H(S|V = v) = H(S|V )
for all v ∈ V , which is the case for p = 1/2 and V = S +A, where A ∼ Ber(h−1

b (1− I(S;V ))).
Proposition 3: For 0 ≤ D ≤ p

R̄P (D) = hb(q ∗ p)− hb(q ∗D). (91)



20

Proof. For every PŜ|S satisfying the constraint E(S + Ŝ) ≤ D, we must have that

I(U ; Ŝ) = H(U)−H(U |Ŝ)
= H(U)−H(U + Ŝ|Ŝ)
≥ H(U)−H(U + Ŝ)

= H(U)−H(N + S + Ŝ)

= hb(q ∗ p)− hb(q ∗ E(S + Ŝ))

≥ hb(q ∗ p)− hb(q ∗D).

To see that this lower bound is tight, take the reverse test channel S = Ŝ + V where V ∼ Ber(D) is statistically

independent of (Ŝ, N).
2) Erasure Channel: Consider first the case where Qn is a (memoryless degraded) erasure broadcast channel,

i.e., Yi is X w.p. 1 − ǫi and erased otherwise, for i = 1, 2, where ǫ2 ≥ ǫ1, and the source is i.i.d. Bernoulli (p),

and the Hamming distortion measure is used. One can verify that:

GQ(t) =
1− ǫ2
1− ǫ1

(log 2− ǫ1 − t).

Combining with Propositions 2 and 3 and substituting in Corollary 1, one obtains the bound (for p = 1/2):

log 2− hb(D2 ∗ q)
(1− ǫ2) log 2

+
hb(D1 ∗ q)− hb(D1)

(1− ǫ1) log 2
≤ ρ,

which recovers the bound of [27] (which was also recovered in [17]).

3) Binary Symmetric Channel: Next, we consider the (memoryless degraded) binary symmetric channel, Y1 =
X + Z1, and Y2 = Y1 + Z2, where Z1 ∼ Ber(δ1), Z2 ∼ Ber(δ2), and (X,Z1, Z2) are mutually independent.

Proposition 4: For the binary symmetric degraded channel

GQ(t) = log 2− hb
(
δ2 ∗ h−1

b (hb(δ1) + t)
)
, (92)

for 0 ≤ t ≤ log 2− hb(δ1).
Proof. For any (W,X) satisfying the Markov chain W −X − (Y1 = X + Z1)− (Y2 = Y1 + Z2), we have

H(Y2|W ) ≥ hb
(
δ2 ∗ h−1

b (H(Y1|W ))
)

= hb
(
δ2 ∗ h−1

b (H(Y1|X) +H(Y1|W )−H(Y1|X,W ))
)

= hb
(
δ2 ∗ h−1

b (H(Y1|X) + I(X ;Y1|W ))
)

= hb
(
δ2 ∗ h−1

b (hb(δ1) + I(X ;Y1|W ))
)
,

where the inequality stems from Mrs. Gerber’s Lemma and the fact that Y2 = Y1+Z2, with equality if X ∼ Ber(1/2)
and W = X +A for A ∼ Ber(η), where I(Y2;W ) = log 2 − hb(η ∗ δ1 ∗ δ2). Noticing that I(Y2;W ) = H(Y2)−
H(Y2|W ) ≤ log 2−H(Y2|W ), with equality for X ∼ Ber(1/2), the proof is completed.

We can now combine this result with Propositions 2 and 3 and substitute in Corollary 1, to obtain the following

theorem.

Theorem 5: For the JSCC broadcast problem with a Ber(p) source, Hamming distortion and a binary symmetric

channel, suppose that the pair (D1, D2) is achievable. Then, for any 0 ≤ q ≤ 1/2, it holds that

hb(q ∗ p)− hb(q ∗D2) ≤ ρ
[
log 2− hb

(
δ2 ∗ h−1

b (A1)
)]
,

where

A1 = hb(δ1) +
1

ρ
[h(q ∗D1)− h(D1)− h(q ∗ p) + h(p)] .

For p = 1/2, the bound significantly simplifies as on the left hand side hb(q ∗p) = log 2, while on the right hand

side

A1 = hb(δ1) +
hb(q ∗D1)− hb(D1)

ρ
. (93)
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Following the treatment of the Gaussian-quadratic case in [15], we consider the case where the distortion of the

“weak” user is optimal. That is, let D∗
2 = D(ρ, δ1 ∗ δ2), where the function D(ρ, δ) is as defined in (7). For the

special case of D2 = D∗
2 . We can take q → 0 in Theorem 5, and applying some straightforward algebra, we obtain

the following.

Corollary 2: For the JSCC broadcast problem with a binary source and a binary symmetric channel, suppose

that the pair (D1, D
∗
2) is achievable, where D∗

2 = D(ρ, δ1 ∗ δ2). Then,

g(D1) ≥ g(p) +
g(δ1)

g(δ1 ∗ δ2)
[g(D∗

2)− g(p)] , (94)

where g(t) , (1− 2t) log
(
1−t
t

)
.

Similarly, for the special case of D1 = D∗
1 = D(ρ, δ1), we can take q → 1/2 in Theorem 5, and after applying

some straightforward algebra, obtain the following.

Corollary 3: For the JSCC broadcast problem with a binary source and a binary symmetric channel, suppose

that the pair (D∗
1 , D2) is achievable, where D∗

1 = D(ρ, δ1). Then,

(1− 2D2)
2 ≤ (1− 2 · δ2 ∗D∗

1)
2

+ (1− 2p)2
(
1− (1− 2 · δ2 ∗D∗

1)
2
)
. (95)

In particular, for p = 1/2,

D2 ≥ δ2 ∗D∗
1 . (96)

VII. DISCUSSION: THE REMAINING GAP TO ACHIEVABLE PERFORMANCE

In this work we have shown an example, where ∆∗
n = Ω

(
n−1/2

)
. It is natural, of course, to ask whether such

performance is also achievable.

Consider a separation-based scheme: the source is quantized to a rate Rn with expected distortion D0,n. This

code is matched to a channel code with the same rate. Upon correct channel decoding we have distortion D0,n,

while incorrect decoding gives disortion that is trivially upper bounded by 1. If the channel error probability is pn,

this scheme yields

Dn ≤ (1− pn)D0,n + pn. (97)

Now, we know that for the lossy source problem it is possible to achieve

D0,n ≤ D(ρRn) +O
(
logn

n

)

,

Thus,

∆n ≤ D0,n −D∗
∞ + pn [1−D0,n]

= D(ρRn)−D(ρC) +O(pn) +O
(
logn

n

)

= O(C −Rn) +O(pn) +O
(
logn

n

)

. (98)

In order for both the first term and the second term to decrease, we must choose Rn in the moderate-deviations

regime. Using [28], [29] we have that:

log pn = O(n(C −Rn)
2).

Substituting, we find that a separation-based scheme achieves

∆n = O
(√

logn

n

)

. (99)

Next, one can consider the combination of successive-refinement (SR) source coding with a digital channel

broadcast code, possibly with many layers to track well the channel quality, as done in the context of Gaussian

channels in different formulations regarding the high signal-to-noise ratio regime [30], [31], [32]. However, one
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may verify that these techniques will not improve upon the order of convergence of a separation-based scheme

due to the following consideration. The first layer of the SR code will have to be allocated a rate that is the same

order below capacity as in the separation scheme. In order to reduce distortion, we will need a layer that will be

correctly decoded when the empirical channel is above capacity in the same
√

logn/n order. But substituting in

the broascast channel converse, it turns out that this refinement layer will be able to carry a very low rate, failing

to reduce the distortion by the required amount.

We see that the limitation of digital schemes stems from two effects.

1) A broadcast code for two empirical channels that are symmetric around capacity, carries a sum-rate that is

much lower than capacity.

2) The threshold effect: a digital JSCC scheme that performs well around capacity, cannot accommodate for bad

channel conditions.

Indeed, recalling that our converse bound is based upon bounding the channel function GQ that is intimately related

to the converse for the digital BC problem, it can be seen as reflecting the first effect. However, it does not reflect

the second, hence the remaining gap between the achievable and converse bounds, It remains to be seen, whether

this threshold effect indeed applies to all relevant schemes.

One indication that the threshold effect might be unavoidable are the results of [33], which show that linear codes

with any non-zero minimal distance necessarily admit medium-sized error vectors that result in maximal Hamming

distortion for the input bits. One approach for finding codes with graceful-degradation (or adaptation to channel

conditions) was suggested in [34], see [35], [36] for more results.

As a possible coding scheme to improve upon separation, we can consider coding for the simplest case - a binary

erasure channel (BEC). In this case, we only need to produce a good lossy source code which produces from m
(source) bits n coded bits with the following “fountain-code-like” property: if any subset of mR(D) of these coded

bits is available (i.e. these positions are not erased by the BEC) then the source can be reconstructed with distortion

mD, and this property should hold for a small range of D = D∗
∞ ± c/

√
n. Since the channel returns nC +

√
nV Z

unerased bits (Z ∼ N (0, 1)), by averaging we would get distortion D∗
∞(1+ o(1/

√
n)). So the only remaining task

is to construct this “fountain-like” rate-distortion code. Whether such a code exists is an open problem, although

known results about multiple-description problem (see, e.g., [37] in a Gaussian setting) suggest that the required

property is not possible for all subsets of coded bits (without restriction on their size).

APPENDIX A

PROOF OF PROPOSITION 1

By the definition of Ψ(k) and the binary symmetric rate-distortion function, we have that for any encoder and

decoder pair (E ,D) it holds that

I (Sm;D (E(Sm) + Un
k )) ≥ m (log 2− hb(Ψ(k))) . (100)

Using the data processing inequality we obtain

I (Sm;D (E(Sm) + Un
k )) ≤ I (E(Sm); E(Sm) + Un

k ) . (101)

Recalling that [23, Chapter 10, Lemma 7]

H(Un
k ) ≥ nhb

(

δ +
k

n

)

− logn

2
− 1

2
log

(

2π

(

δ +
k

n

)(

1− δ − k

n

))

≥ nhb

(

δ +
k

n

)

− logn

2
− 1

2
, (102)

we have that for any random vector Xn in {0, 1}n

I(Xn;Xn + Un
k ) ≤ H(Xn + Un

k )−H(Un
k )

≤ n log 2− nhb

(

δ +
k

n

)

+
logn

2
+

1

2
. (103)

Thus, combining (100), (101), and (103), and recalling that ρ = n/m, we have

log 2− hb (Ψ(k)) ≤ ρ

(

log 2− hb

(

δ +
k

n

)

+
logn+ 1

2n

)

, (104)

which yields the desired result.
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APPENDIX B

THE ASYMMETRY OF THE BINOMIAL DISTRIBUTION

Lemma 9: For nδ ∈ Z define the integer random variable K = Binomial(n, δ)−nδ. For any integer 0 ≤ k < n2/3

it holds that

Pr (K = k)

Pr (K = k) + Pr (K = −k) =
1

2
+

1

4

(1 − 2δ)

δ(1− δ)

[
k2

n

1

3δ(1− δ))
− 1

]
k

n
+ o

(
k3

n2

)

.

Proof. Using the binomial distribution, we have

Γ ,
Pr (K = k)

Pr (K = −k)

=

(
n

nδ+k

) (
δ

1−δ

)k

(
n

nδ−k

) (
δ

1−δ

)−k

=
(nδ − k)!

(nδ + k)!

(n(1− δ) + k)!

(n(1− δ)− k)!

(
δ

1− δ

)2k

=
(n(1− δ))2k

∏2k
i=1

(

1− k
(1−δ)n + i

n(1−δ)

)

(nδ)2k
∏2k

i=1

(
1− k

δn + i
nδ

)

(
δ

1− δ

)2k

=

2k∏

i=1

1− k
(1−δ)n + i

n(1−δ)

1− k
δn + i

nδ

(105)

Letting bi =
i
n − k

n , we have

log Γ =

2k∑

i=1

log(1 +
1

1− δ
bi)−

2k∑

i=1

log(1 +
1

δ
bi). (106)

Recalling that log(1 + x) = x− x2

2 + o(x2), we see that

log Γ =

(
1

1− δ
− 1

δ

) 2k∑

i=1

bi −
1

2

(
1

(1− δ)2
− 1

δ2

) 2k∑

i=1

b2i + o

(
k3

n2

)

. (107)

Furthermore, we have

2k∑

i=1

bi =
k

n
+

k−1∑

j=−(k−1)

j

n
=
k

n
(108a)

2k∑

i=1

b2i =
k2

n2
+ 2

k−1∑

j=0

i2

n2
=
k2

n2
+

2

n2

(k − 1) · k · (2k − 1)

6
=

2

3

k3

n2
+ o

(
k3

n2

)

(108b)

Thus,

log Γ = − 1− 2δ

δ(1− δ)

k

n
+

1− 2δ

(δ(1− δ))2
k3

3n2
+ o

(
k3

n2

)

=
(1− 2δ)

δ(1− δ)

[
k2

n

1

3δ(1− δ))
− 1

]
k

n
+ o

(
k3

n2

)

. (109)

Since ex = 1 + x+O(x2), it follows that

Γ = 1 +
(1− 2δ)

δ(1− δ)

[
k2

n

1

3δ(1− δ))
− 1

]
k

n
+ o

(
k3

n2

)

. (110)

Now, since the required result is Γ/(1 + Γ), it follows easily.
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APPENDIX C

AUXILIARY LEMMAS

Lemma 10 (MGL linearization): For any 0 ≤ δ1, δ2 ≤ 1/2 and −hb(δ1) < x < log 2− hb(δ1) we have that

hb
(
δ2 ∗ h−1

b (hb(δ1) + x)
)
≥ hb(δ1 ∗ δ2) +

g(δ1 ∗ δ2)
g(δ1)

x, (111)

where g(t) = (1− 2t) log
(
1−t
t

)
, as defined in (50).

Proof. Let ϕδ2(t) = hb
(
δ2 ∗ h−1

b (t)
)

and recall that by [20] we have that t 7→ ϕδ2(t) is convex, and

ϕ′
δ2(t) =

d

dt
ϕδ2(t) = (1− 2δ2)

h′b(δ2 ∗ h−1
b (t))

h′b(h
−1
b (t))

. (112)

Consequently,

ϕ′
δ2(hb(δ1)) = (1− 2δ2)

h′b(δ1 ∗ δ2)
h′b(δ1)

(113)

=
(1− 2δ2)(1− 2δ1)

(1 − 2δ1)

h′b(δ1 ∗ δ2)
h′b(δ1)

(114)

=
(1− 2(δ1 ∗ δ2))

(1 − 2δ1)

h′b(δ1 ∗ δ2)
h′b(δ1)

(115)

=
g(δ1 ∗ δ2)
g(δ1)

. (116)

Now, by convexity, we have

hb
(
δ2 ∗ h−1

b (hb(δ1) + x)
)
≥ ϕδ2(hb(δ1)) + ϕ′

δ2(hb(δ1))x, (117)

and the statement follows by substituting (116) into (117).

Lemma 11 (Properties of g(t)): The function t 7→ g(t) = (1−2t) log
(
1−t
t

)
is convex in [0, 1/2] and its derivative

is given by

g′(t) =
d

dt
g(t) = −κ(t), (118)

where

κ(t) , 2 log

(
1− t

t

)

+
1− 2t

t(1− t)
. (119)

Proof. Calculating g′(t) is straightforward. Furthermore, all three functions t 7→ 2 log
(
1−t
t

)
, t 7→ 1 − 2t, and

t 7→ 1
t(1−t) are decreasing in [0, 1/2], so κ(t) is decreasing, g′(t) increasing, and g′′(t) > 0.

Lemma 12 (Properties of βq(t)): Let βq(t) , hb(q ∗ t) − hb(t). The function t 7→ βq(t) is convex, and its

derivative satisfies

β′
q(t) =

d

dt
βq(t) = −φ(q, t), (120)

where

φ(q, t) , 2q log

(
1− t

t

)

+ (1− 2q) log

(

1 + q 1−2t
t

1− q 1−2t
1−t

)

. (121)

Furthermore, for t ∈ [0, 1/2]

φ(q, t) ≥ q · κ(t) · ν(q, t), (122)

where κ(t) is as in (119), and

ν(q, t) ,
1− 2q

1 + q 1−2t
t

. (123)
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Moreover,

βq(t) ≤ q · g(t). (124)

Proof. Convexity follows by noting that βq(t) = I(X ;X + Z), where X ∼ Ber(q) and Z ∼ Ber(t). Calculation

of β′
q(t) is straightforward. In order to lower bound φ(q, t), we note that

log

(

1 + q
1− 2t

t

)

≥ q
1−2t

t

1 + q 1−2t
t

(125)

− log

(

1− q
1− 2t

1− t

)

≥ q
1− 2t

1− t
, (126)

and therefore

(1− 2q) log

(

1 + q 1−2t
t

1− q 1−2t
1−t

)

≥ q
1− 2q

1 + q 1−2t
t

(
1− 2t

t
+

1− 2t

1− t

)

(127)

= q
1− 2t

t(1− t)

1− 2q

1 + q 1−2t
t

, (128)

which gives

φ(q, t) ≥ q

(

2 log

(
1− t

t

)

+
1− 2t

t(1− t)

1− 2q

1 + q 1−2t
t

)

(129)

≥ q

(

2 log

(
1− t

t

)

+
1− 2t

t(1− t)

)

︸ ︷︷ ︸

κ(t)

(
1− 2q

1 + q 1−2t
t

)

︸ ︷︷ ︸

ν(q,t)

.

To prove (124), we apply the concavity of t 7→ hb(t) to obtain

βq(t) = hb(q ∗ t)− hb(t)

= hb(t+ q(1− 2t))− hb(t)

≤ q(1− 2t)h′b(t)

= qg(t).

APPENDIX D

PROOF OF LEMMA 6

By Theorem 3, we have that for any 0 < q < 1/2

log 2− hb(q ∗D2) ≤ ρ

[

log 2− hb

(

δ2 ∗ h−1
b

(

hb(δ1) +
hb(q ∗D1)− hb(D1)

ρ

))]

+ ρΓ(n, δ2). (130)

Now, applying Lemma 10, we can write

hb

(

δ2 ∗ h−1
b

(

hb(δ1) +
hb(q ∗D1)− hb(D1)

ρ

))

≥ hb(δ1 ∗ δ2) +
g(δ1 ∗ δ2)
g(δ1)

βq(D1)

ρ
, (131)

where βq(·) is as defined in Lemma 12. By combining (130) and (131), we obtain

log 2− hb(D2)− [hb(q ∗D2)− hb(D2)] ≤ ρ(log 2− h(δ1 ∗ δ2))−
g(δ1 ∗ δ2)
g(δ1)

βq(D1) + ρΓ(n, δ2), (132)

which, recalling the definition of C(t) and R(t), reduces to

ρC(δ1 ∗ δ2)−R(D2) ≥
g(δ1 ∗ δ2)
g(δ1)

βq(D1)− βq(D2)− ρΓ(n, δ2). (133)
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By Lemma 11, the function t 7→ g(t) is convex, and consequently

g(δ1 ∗ δ2) = g(δ1 + (1 − 2δ1)δ2) ≥ g(δ1) + δ2 · (1− 2δ1)g
′(δ1). (134)

Thus, we obtain

ρC(δ1 ∗ δ2)−R(D2) ≥ βq(D1)− βq(D2) + δ2
(1− 2δ1)g

′(δ1)

g(δ1)
βq(D1)− ρΓ(n, δ2) (135)

= βq(D1)− βq(D2)− ψ(δ1)δ2βq(D1)− ρΓ(n, δ2), (136)

where

ψ(t) , − (1− 2t)g′(t)

g(t)

= (1− 2t)
κ(t)

g(t)
, (137)

where κ(·) is as defined in Lemma 11. By Lemma 12, the function t 7→ βq(t) is convex, and consequently

βq(D1) = βq(D2 + (D1 −D2))

≥ βq(D2) + β′
q(D2)(D1 −D2)

= βq(D2) + φ(q,D2)(D2 −D1), (138)

where φ(·, ·) is as defined in Lemma 12. We have obtained

D2 −D1 ≤ [ρC(δ1 ∗ δ2)−R(D2)] + ψ(δ1)δ2βq(D1) + ρΓ(n, δ2)

φ(q,D2)
. (139)

By Lemma 12, we have that βq(D1) ≤ qg(D1), and consequently

D2 −D1 ≤ ρC(δ1 ∗ δ2)−R(D2) + ρΓ(n, δ2)

φ(q,D2)
+
ψ(δ1)δ2g(D1)

φ(q,D2)/q
(140)

≤ ρC(δ1 ∗ δ2)−R(D2) + ρΓ(n, δ2)

2q log
(

1−D2

D2

) + (δ1 ∗ δ2 − δ1)
ψ(δ1)

1− 2δ1

g(D2)

κ(D2)

1

ν(q,D2)

g(D1)

g(D2)
, (141)

where in the last inequality we have used the identity δ2 = δ1∗δ2−δ1
1−2δ1

, the fact that φ(q,D2) > 2q log
(

1−D2

D2

)

by (121) and that φ(q,D2) > q · κ(t) · ν(q, t) by (123). Let

τ ,
q

(1− 2q)D2
, (142)

such that 1
ν(q,D2)

= 1 + τ , and q = D2τ
1+2D2τ

. Since (141) holds for any 0 < q < 1/2, we have that for any τ > 0

D2 −D1 ≤ ρC(δ1 ∗ δ2)−R(D2) + ρΓ(n, δ2)

2D2τ
1+2D2τ

log
(

1−D2

D2

) + (δ1 ∗ δ2 − δ1)
ψ(δ1)

1 − 2δ1

g(D2)

κ(D2)
(1 + τ)

g(D1)

g(D2)
. (143)

Note that

ψ(t)

1− 2t
=
κ(t)

g(t)

=
2

1− 2t
+

1

t(1− t) log
(
1−t
t

)

= log

(
1− t

t

)

Φ(t), (144)

where Φ(t) is defined in (8a). Thus, (141) can be written as

D2 −D1 ≤ ρC(δ1 ∗ δ2)−R(D2) + ρΓ(n, δ2)

2D2τ
1+2D2τ

log
(

1−D2

D2

) + (δ1 ∗ δ2 − δ1)ρ
log
(

1−δ1
δ1

)

log
(

1−D2

D2

)
1

ρ

Φ(δ1)

Φ(D2)
(1 + τ)

g(D1)

g(D2)
, (145)

which establishes our claim.
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APPENDIX E

PROOF OF LEMMA 7

For any 0 < δ < 1/2 we have that f(1, δ) = 1. Thus, it suffices to show that ρ 7→ f(ρ, δ) is monotone decreasing.

Let ρ = ρ(d) be such that D(ρ, δ) = d > 0, which is well defined for d > 0. It is easy to see that

ρ(d) =
log 2− hb(d)

log 2− hb(δ)
=
R(d)

R(δ)
. (146)

Recalling that d < δ for ρ > 1, our claim is equivalent to the claim that for any 0 < d < δ it holds that

R(d)

R(δ)
Φ(d) > Φ(δ), (147)

which is equivalent to the claim that

ϑ(t) , Φ(t) · R(t), (148)

is monotone decreasing in t, which we now establish.

To this end, note that we can write

ϑ(t) =
γ(t)

g2(t)
, (149)

where

γ(t) , (1− 2t)R(t)κ(t), (150)

and κ(t) = −g′(t) is as defined in (119). We therefore have that

ϑ′(t) =
1

g4(t)

[
g2(t)γ′(t)− 2g(t)g′(t)γ(t)

]

=
1

g3(t)




g(t)γ

′(t) + 2κ(t)γ(t)
︸ ︷︷ ︸

ζ(t)




 . (151)

Since g(t) > 0 for all 0 < t < 1/2, we have to show that ζ(t) ≤ 0. We write

γ′(t) = κ(t)(1 − 2t)R′(t) + κ(t)R(t)[(1− 2t)′] + (1− 2t)R(t)κ′(t)

= −κ(t)g(t)− 2κ(t)R(t) + (1 − 2t)R(t)κ′(t), (152)

where the last equality follows since R′(t) = − log
(
1−t
t

)
, and therefore (1 − 2t)R′(t) = −g(t). Furthermore, as

(1− 2t)κ(t) = 2g(t) + (1−2t)2

t(1−t) , we also that

κ(t)γ(t) = 2g(t)κ(t)R(t) +
(1− 2t)2

t(1 − t)
κ(t)R(t). (153)

Thus,

ζ(t) = −κ(t)g2(t)− 2g(t)κ(t)R(t) + (1 − 2t)g(t)R(t)κ′(t) + 4g(t)κ(t)R(t) + 2
(1− 2t)2

t(1 − t)
κ(t)R(t)

= −κ(t)g2(t) + 2g(t)κ(t)R(t) + (1 − 2t)g(t)R(t)κ′(t) + 2
(1− 2t)2

t(1− t)
κ(t)R(t). (154)

Evaluating κ′(t) gives

κ′(t) = − 2

t(1− t)
− 1− 2t+ 2t2

(t(1 − t))2

= − 1

(t(1− t))2
. (155)



28

Substituting (155) into (154), gives

ζ(t) = −κ(t)g2(t) + 2g(t)κ(t)R(t)− R(t)g(t)(1 − 2t)

(t(1 − t))2
+ 2

(1− 2t)2

t(1− t)
κ(t)R(t)

= −g(t)
[

κ(t)g(t)− 2κ(t)R(t) +
R(t)(1− 2t)

(t(1− t))2
− 2

(1− 2t)

t(1− t) log
(
1−t
t

)κ(t)R(t)

]

= −g(t)
[

κ(t)g(t)− 2κ(t)R(t) +
R(t)(1− 2t)

(t(1− t))2
− 4R(t)(1− 2t)

t(1 − t)
− 2R(t)(1− 2t)2

t2(1− t)2 log
(
1−t
t

)

]

= −g(t)
[

κ(t)g(t)− 2κ(t)R(t) +
R(t)(1− 2t)3

(t(1− t))2
− 2R(t)(1− 2t)2

t2(1− t)2 log
(
1−t
t

)

]

= −g(t)









κ(t)g(t)− 2κ(t)R(t)
︸ ︷︷ ︸

A1(t)

+
R(t)(1− 2t)2

(t(1 − t))2
︸ ︷︷ ︸

A2(t)

[

1− 2

(

t+
1

log
(
1−t
t

)

)]

︸ ︷︷ ︸

A3(t)









.

It remains to show that the function A(t) = A1(t) + A2(t)A3(t) is positive in 0 < t < 1/2. To this end, one can

easily verify that A(0) = ∞ and A(1/2) = 0, and therefore, it suffices to verify that t 7→ A(t) is decreasing in

0 < t < 1/2. Indeed, it is straightforward to verify that t 7→ A1(t), t 7→ A2(t) and t 7→ A3(t) are decreasing, and

the details are omitted.
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