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Abstract

We investigate the problem of the successive refinement for Wyner-Ziv coding with degraded side information and obtain a
complete characterization of the rate region for the quadratic vector Gaussian case. The achievability part is based on the evaluation
of the Tian-Diggavi inner bound that involves Gaussian auxiliary random vectors. For the converse part, a matching outer bound
is obtained with the aid of a new extremal inequality. Herein, the proof of this extremal inequality depends on the integration of
the monotone path argument and the doubling trick as well as information-estimation relations.
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Extremal inequality, lossy source coding, mean squared error, rate region, side information, successive refinement, vector
Gaussian source, Wyner-Ziv problem.

I. INTRODUCTION

The research on network source coding can be traced back to the seminal work by Slepian and Wolf [1], where they
considered, among other things, the problem of lossless source coding with side information at the decoder. Wyner and Ziv
[2] studied the lossy source coding version of this problem (which later bears their names) and characterized its information-
theoretic limit. Subsequently, the Wyner-Ziv problem was extended in various ways. One particular extension, known as
successive refinement for Wyner-Ziv coding with degraded side information, is as follows: A source is encoded and decoded,
in a successive manner, to meet different distortion constraints with the aid of progressively enhanced decoder side information.
This extended Wyner-Ziv problem was tackled by Steinberg and Merhav [3] for the two-stage case and by Tian and Diggavi [4]
for the multi-stage case. Specifically, the computable characterizations of rate regions in the discrete memoryless setting (with
a general distortion measure) and in the scalar Gaussian setting (with the quadratic error distortion measure) were obtained
accordingly.

In this paper, we consider the same extended Wyner-Ziv problem with a particular attention paid to the vector Gaussian
setting (under covariance distortion constraints). The heart of the present paper is a new inequality regarding the optimality
of the Gaussian solution to a certain extremal problem. It is well known that extremal inequalities play an important role
in characterizing the fundamental limits of Gaussian network source and channel coding problems is well known. Indeed,
they are indispensable to the converse argument for the Gaussian broadcast channel coding problem [5]–[14], the Gaussian
interference channel coding problem [15]–[17], the Gaussian multi-terminal source coding problem [18]–[22], the secret key
generation problem [23], the Gaussian multiple description problem [24]–[27], and others [28], [29]. Basic extremal inequalities
that rely on the differential-entropy-maximizing property of the Gaussian distribution can only handle simple situations where
the objective functional can be greedily optimized. When there are two or more conflicting terms, Shannon’s entropy power
inequality is often used to resolve the tension. However, the proportionality condition on the relevant covariance matrices
needed for the tightness of the entropy power inequality is quite restrictive, typically only satisfied in scalar source and channel
coding problems. As a consequence, more sophisticated extremal inequalities are needed to deal with vector Gaussian sources
and channels. The proofs of such extremal inequalities, as well as the proof of the entropy power inequality, are often proved
by invoking the monotone path argument or its variants. The conventional monotone path argument nevertheless appears to
have its own limitations. For example, it fails to yield a tight outer bound on the capacity region of the two-user vector
Gaussian broadcast channel with private and common messages. The desired result is eventually obtained by Geng and Nair
[30] through a different approach involving so-called doubling trick. On the other hand, this approach obscures some useful
information regarding the optimal Gaussian solution. Fortunately, this problem can be remedied via a systematic integration
of the monotone path argument and the doubling trick, as shown by Wang and Chen [31] in their new proof of Courtade’s
extremal inequality [32]. In this work, we make use of this integrated strategy, together with the properties of the minimum
mean square error (MMSE) and the Fisher information, to establish a new extremal inequality, which is further leveraged to
characterize the rate region of the aforementioned extended Wyner-Ziv problem in the vector Gaussian source setting. It will

Y. Xu and J. Lu are with the School of Information Science and Engineering, Southeast University, Nanjing, 210096, China (email: {yinfeixu,
lujian1980}@seu.edu.cn).

X. Guang is with the School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China (email: xguang@nankai.edu.cn).
J. Chen is with the Department of Electrical and Computer Engineering, McMaster University, ON, L8S 4K1, Canada (email: junchen@ece.mcmaster.ca).
This paper was presented in part at the 2019 IEEE International Symposium on Information Theory.

ar
X

iv
:2

00
2.

07
32

4v
1 

 [
cs

.I
T

] 
 1

8 
Fe

b 
20

20



2

Encoder 1

Encoder 2

Encoder L

Decoder 1

Y n
1

Decoder 2

Y n
2

Decoder L

Y n
L

X̂n
1

X̂n
2

X̂n
L

Xn

Fig. 1. Successive refinement for Wyner-Ziv coding with degraded side information.

be seen that the new extremal inequality avoids the comparison of distortion matrices, and thus is particularly handy when
dealing with a large number of covariance distortion constraints.

The rest of this paper is organized as follows. We present the problem formulation and the main result in Section II. Section
III is devoted to proving a new extremal inequality, which constitutes the main technical part of this paper. The main result is
proved in Section IV. We conclude the paper in Section V.

II. PROBLEM STATEMENT AND MAIN RESULT

Let X be a p× 1-dimensional random vector with mean zero and covariance matrix K0 � 0. Moreover, let

Yi = X +Ni, i ∈ [1 : L], (1)

where Ni is a p× 1-dimensional random vector with mean zero and covariance matrix Ki � 0, i ∈ [1 : L]. It is assumed that

K1 � . . . �KL−1 �KL, (2)

and X , Ni −Ni+1, i ∈ [1 : L], are mutually independent and jointly Gaussian1. This assumption implies that

X → YL → YL−1 → . . .→ Y1 (3)

forms a Markov chain. Let (X(t), Yi(t), i ∈ [1 : L])∞t=1 be i.i.d. copies of (X,Yi, i ∈ [1 : L]).
The system model can be described as follows (see also Fig. 1).
• L encoding functions (φ

(n)
i , i ∈ [1 : L]):

φ
(n)
i : Xn 7→ M(n)

i , i ∈ [1 : L], (4)

where φ(n)i maps the source sequence Xn to the codeword Mi(X
n), i ∈ [1 : L].

• L decoding functions (ϕ
(n)
i , i ∈ [1 : L]):

ϕ
(n)
i :

∏
j∈[1:i]

M(n)
j × Yni 7→ X̂n, i ∈ [1 : L], (5)

where ϕ(n)
i produces the source reconstruction X̂n

i (Mj , j ∈ [1 : i], Y ni ) by using codewords (Mj , j ∈ [1 : i]) and side
information Y ni . In particular, under covariance distortion contraints, there is no loss of optimality in assuming that φ(n)i

performs MMSE estimation, i.e., X̂n
i (Mj , j ∈ [1 : i], Y ni ) = E[Xn|Mj , j ∈ [1 : i], Y ni ], i ∈ [1 : L].

1Here NL+1 is a null random vector with covariance matrix KL+1 = 0.
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Definition 1: A rate tuple (Ri, i ∈ [1 : L]) is said to be achievable subject to covariance distortion constraints (Di � 0, i ∈
[1 : L]) if there exists a sequence of encoding functions (φ

(n)
i , i ∈ [1 : L]) and decoding functions (ϕ

(n)
i , i ∈ [1 : L]) such that

lim sup
n→∞

1

n
log
∣∣∣M(n)

i

∣∣∣ ≤ Ri, i ∈ [1 : L], (6)

lim sup
n→∞

1

n

n∑
t=1

E
[(
X(t)− X̂i(t)

)(
X(t)− X̂i(t)

)T]
�Di, i ∈ [1 : L]. (7)

The rate region R∗(Di, i ∈ [1 : L]) is defined as the set of all such achievable rate tuples.
The following theorem states a computable characterization of R∗(Di, i ∈ [1 : L]), which is the main result of this paper.
Theorem 1: R∗(Di, i ∈ [1 : L]) = R(Di, i ∈ [1 : L]), where R(Di, i ∈ [1 : L]) is the convex hull of the set of

(Ri, i ∈ [1 : L]) such that

R1 ≥
1

2
log
|K−10 +K−11 +B1|
|K−10 +K−11 |

, (8)

i∑
j=1

Rj ≥
1

2
log
|K−10 +K−11 +B1|
|K−10 +K−11 |

+

i∑
j=2

1

2
log
|K−10 +K−1j +

∑j
k=1 Bk|

|K−10 +K−1j +
∑j−1
k=1 Bk|

, i ∈ [2 : L], (9)

for some (Bi, i ∈ [1 : L]) satisfying

Bi � 0, i ∈ [1 : L], (10)
i∑

j=1

Bj �D−1i −K−10 −K−1i , i ∈ [1 : L]. (11)

The proof of Theorem 1 can be found in Section IV, and it relies critically on the extremal inequality established in
Section III.

III. AN EXTREMAL INEQUALITY

Theorem 2: Given µ1 ≥ µ2 ≥ · · · ≥ µL ≥ 0, let (B∗i , i ∈ [1 : L]) be any positive semi-definite matrices such that
i∑

j=1

B∗j �D−1i −K−10 −K−1i , i ∈ [1 : L], (12)

and

µi
2

K−10 +K−1i +

i∑
j=1

B∗j

−1 − µi+1

2

K−10 +K−1i+1 +

i∑
j=1

B∗j

−1 = Ψi −Ψi+1 + Λi, i ∈ [1 : L− 1], (13)

µL
2

K−10 +K−1L +

L∑
j=1

B∗j

−1 = ΨL + ΛL, (14)

B∗iΨi = 0, i ∈ [1 : L], (15)K−10 +K−1i +

i∑
j=1

B∗j −D−1i

Λi = 0, i ∈ [1 : L], (16)

for some positive semi-definite matrices (Ψi, i ∈ [1 : L]) and (Λi, i ∈ [1 : L]). For any random objects (Wi, i ∈ [1 : L])
satisfying the Markov chain contraint

(Wi, i ∈ [1 : L])→ X → YL → YL−1 → . . .→ Y1 (17)

and the covariance distortion constraints

cov(X|Yi,Wj , j ∈ [1 : i]) �Di, i ∈ [1 : L], (18)

the following extremal inequality holds:
L−1∑
i=1

(µih(Yi|Wj , j ∈ [1 : i])− µi+1h(Yi+1|Wj , j ∈ [1 : i])− (µi − µi+1)h(X|Wj , j ∈ [1 : i]))

+ µLh(YL|Wj , j ∈ [1 : L])− µLh(X|Wj , j ∈ [1 : L])
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≥
L−1∑
i=1

−µi+1

2
log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1i+1 +

i∑
j=1

B∗j

∣∣∣∣∣∣+ µi
2

log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1i +

i∑
j=1

B∗j

∣∣∣∣∣∣


+
µL
2

log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1L +

L∑
j=1

B∗j

∣∣∣∣∣∣ . (19)

Remark 1: For the special case L = 2, Λ1 = 0, and µ1 = µ2 = 1, the extremal inequality (19) can be regarded as a variant
of [11, Theorem 5], the original proof of which relies on the enhancement argument developed in [33]. However, when L > 2,
the enhancement argument appears to be inadequate for resolving the difficulty caused by the introduction of (Ψi, i ∈ [1 : L])
and (Λi, i ∈ [1 : L]). We shall overcome this difficulty via a judicious application of the monotone path argument and the
doubling trick.

For notational simplicity, we define

∆−1i , K−10 +

i∑
j=1

B∗j , i ∈ [1 : L]. (20)

The proof of Theorem 2 is divided into four steps.

A. Constructing the Monotone Path

We first construct 3L zero-mean Gaussian random vectors

XG
1 , . . . , X

G
L , Y

G
1 , . . . , Y

G
L , Ỹ

G
2 , . . . , Ỹ

G
L+1,

which are independent of (Xi, Yi,Wi, i ∈ [1 : L]). Specifically, they are defined as follows.
1) : Let XG

L , WG
i , i ∈ [2 : L], be mutually independent Gaussian random vectors with covariance matrices ∆L, ∆i−1−∆i,

i ∈ [2 : L], respectively. We define
XG
i = XG

i+1 +WG
i+1, i ∈ [1 : L− 1]. (21)

It is easy to see that
XG
i ∼ N (0,∆i) , i ∈ [1 : L]. (22)

2) : Let NG
i −NG

i+1, i ∈ [1 : L], be mutually independent Gaussian random vectors with covariance matrices Ki −Ki+1,
i ∈ [1 : L], respectively. We assume that (NG

i , i ∈ [1 : L+ 1]) is independent of (XG
i , i ∈ [1 : L]). Define

Y Gi = XG
i +NG

i , i ∈ [1 : L], (23)

Ỹ Gi = XG
i−1 +NG

i , i ∈ [2 : L+ 1]. (24)

It is clear that

Y Gi ∼ N (0,∆i +Ki) , i ∈ [1 : L], (25)

Ỹ Gi ∼ N (0,∆i−1 +Ki) , i ∈ [2 : L+ 1]. (26)

Using the covariance preserved transform (see, e.g., [34]), we define

Xi,γ =
√

1− γX +
√
γXG

i , i ∈ [1 : L], (27)

Yi,γ =
√
1− γYi +

√
γY Gi , i ∈ [1 : L], (28)

Ỹi,γ =
√
1− γYi +

√
γỸ Gi , i ∈ [2 : L+ 1]2, (29)

Y ∗i,γ =
√
γYi −

√
1− γY Gi , i ∈ [1 : L], (30)

for any γ ∈ (0, 1). Consider the following function:

g(γ) =

L−1∑
i=1

(
µih(Yi,γ |Y ∗i,γ ,Wj , j ∈ [1 : i])− µi+1h(Ỹi+1,γ |Y ∗i,γ ,Wj , j ∈ [1 : i])

− (µi − µi+1)h(Xi,γ |Y ∗i,γ ,Wj , j ∈ [1 : i])
)

+ µLh(YL,γ |Y ∗L,γ ,Wj , j ∈ [1 : L])− µLh(XL,γ |Y ∗L,γ ,Wj , j ∈ [1 : L]). (31)

2Here YL+1 = X and ỸL+1,γ = XL,γ .
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Notice that g(0) coincides with the left-hand side of (19) while g(1) coincides with the right-hand side of (19). Therefore, it
suffices to show that g(γ) decreases monotonically along the path parameterized by γ, i.e.,

d

dγ
g(γ) ≤ 0, γ ∈ (0, 1). (32)

Remark 2: The construction of (Y ∗i,γ , i ∈ [1 : L]) is inspired by the doubling trick introduced in [30]. A similar construction
can be found in [31].

B. Derivative of g(γ)

In this step, we utilize a vector generalization of I-MMSE relationship from [35]. First rewrite (31) as

g(γ) =

L−1∑
i=1

(
µih(Yi,γ , Y

∗
i,γ |Wj , j ∈ [1 : i])− µi+1h(Ỹi+1,γ , Y

∗
i,γ |Wj , j ∈ [1 : i])

− (µi − µi+1)h(Xi,γ , Y
∗
i,γ |Wj , j ∈ [1 : i])

)
+ µLh(YL,γ , Y

∗
L,γ |Wj , j ∈ [1 : L])− µLh(XL,γ , Y

∗
L,γ |Wj , j ∈ [1 : L]). (33)

In view of (28) and (30), it can be verified that

h
(
Yi,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

= h
(√

1− γYi +
√
γY Gi ,

√
γYi −

√
1− γY Gi

∣∣∣Wj , j ∈ [1 : i]
)

(34)

= h
(
Yi, Y

G
i

∣∣∣Wj , j ∈ [1 : i]
)
, i ∈ [1 : L]. (35)

Since Yi and Y Gi do not depend on γ, it follows that

d

dγ
h
(
Yi, Y

G
i

∣∣∣Wj , j ∈ [1 : i]
)
= 0, i ∈ [1 : L]. (36)

Moreover, as shown in Appendices B and C,

d

dγ
h
(
Xi,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1− γ)
tr
{
(∆−1i +K−1i )−1

(
J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
−∆−1i

)}
, i ∈ [1 : L]. (37)

d

dγ
h
(
Ỹi+1,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1− γ)
tr
{((

∆−1i +K−1i
)−1 − (∆−1i +K−1i+1

)−1)( (
∆−1i +K−1i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
, i ∈ [1 : L− 1]. (38)

Combining (35), (36), (37), and (38) gives

− 2(1− γ) d
dγ
g(γ)

=

L−1∑
i=1

tr
{(
µi+1

(
∆−1i +K−1i

)−1 − µi+1

(
∆−1i +K−1i+1

)−1) ((
∆−1i +K−1i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
+

L−1∑
i=1

tr
{
(µi − µi+1)(∆

−1
i +K−1i )−1

(
J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
−∆−1i

)}
+ tr

{
µL(∆

−1
L +K−1L )

(
J
(
XL,γ

∣∣∣Y ∗L,γ ,Wj , j ∈ [1 : L]
)
−∆−1L

)}
, γ ∈ (0, 1). (39)

Hence, for the purpose of proving (32), it suffices to show that (39) is greater than or equal to 0.
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C. Lower Bound of (39)

In this step, we establish a lower bound of (39) with the Karush-Kuhn-Tucker (KKT) conditions in (13) and (14) properly
incorporated. First notice that the covariance matrix of random vector( √

1− γNi+1 +
√
γNG

i+1√
γNi −

√
1− γNG

i

)
is given by (

Ki+1 0
0 Ki

)
. (40)

So
√
1− γNi+1 +

√
γNG

i+1 is independent of
√
γNi −

√
1− γNG

i , which, together with (30), implies that
√
1− γNi+1 +√

γNG
i+1 is independent of Y ∗i,γ as well. For i ∈ [1 : L− 1], we have

Ỹi+1,γ = Xi,γ +
√
1− γNi+1 +

√
γNG

i+1. (41)

In view of the fact that
√
1− γNi+1 +

√
γNG

i+1 is independent of Xi,γ , the Fisher information inequality (see Lemma 5 in
Appendix A) can be invoked to show(

∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

=
(
I + ∆−1i Ki+1

)
J
(
Xi,γ +

√
1− γNi+1 +

√
γNG

i+1

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
) (

Ki+1∆
−1
i + I

)
−∆−1i Ki+1∆

−1
i −∆−1i (42)

� J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
+ ∆−1i Ki+1J

(√
1− γNi+1 +

√
γNG

i+1

)
Ki+1∆

−1
i

−∆−1i Ki+1∆
−1
i −∆−1i (43)

= J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
−∆−1i . (44)

Since Ki �Ki+1, it follows that (
∆−1i +K−1i

)−1 − (∆−1i +K−1i+1

)−1 � 0. (45)

Therefore,

− 2(1− γ) d
dγ
g(γ)

≥
L−1∑
i=1

tr
{(

µi
(
∆−1i +K−1i

)−1 − µi+1

(
∆−1i +K−1i+1

)−1)( (
∆−1i +K−1i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
− tr

{
µL(∆

−1
L +K−1L )

(
J
(
XL,γ

∣∣∣Y ∗L,γ ,Wj , j ∈ [1 : L]
)
−∆−1L

)}
(46)

=

L−1∑
i=1

tr
{
(Ψi −Ψi+1 + Λi)

( (
∆−1i +K−1i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
+ tr

{
(ΨL + ΛL)

(
J
(
ỸL+1,γ

∣∣∣Y ∗L,γ ,Wj , j ∈ [1 : L]
)
−∆−1L

)}
, (47)

where (47) is due to the KKT properties in (13) and (14). Via suitable rearrangement, this lower bound can be written in the
following equivalent form:

− 2(1− γ) d
dγ
g(γ)

≥ tr
{

Ψ1

((
∆−11 +K−12

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗1,γ ,W1

)
K2

(
∆−11 +K−12

)
−∆−11 (∆1 +K2)∆−11

)}
(48a)

+

L∑
i=2

tr
{

Ψi

( (
∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−
(
∆−1i−1 +K−1i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
)
Ki

(
∆−1i−1 +K−1i

)
−∆−1i (∆i +Ki+1)∆−1i + ∆−1i−1 (∆i−1 +Ki)∆−1i−1

)}
(48b)
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+

L∑
i=1

tr
{

Λi

( (
∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
. (48c)

Now it suffices to show that (48a)-(48c) are all lower bounded by 0.

D. Lower Bound of (48a)
From (190) in Appendix C,(

∆−11 +K−12

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗1,γ ,W1

)
K2

(
∆−11 +K−12

)
−∆−11 (∆1 +K2)∆−11

=
1− γ
γ

∆−11 (∆1 +K2)
(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)((

(∆1 +K2)
−1

+ (K1 −K2)
−1
)−1

− 1

γ
cov

(
Y2

∣∣∣Ỹ2,γ , Y ∗1,γ ,W1

))(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)
(∆1 +K2)∆−11 . (49)

Combining the data processing inequality for MMSE (see Lemma 8 in Appendix A) and (181) gives

cov
(
Y2

∣∣∣Ỹ2,γ , Y ∗1,γ ,W1

)
� cov

(
Y2

∣∣∣Ỹ2,γ , Y ∗1,γ)
=

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1

. (50)

Substituting (50) into (49) yields the following lower bound:(
∆−11 +K−12

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗1,γ ,W1

)
K2

(
∆−11 +K−12

)
−∆−11 (∆1 +K2)∆−11

� (1− γ)2

γ2
∆−11 (∆1 +K2)

(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)( γ

1− γ

(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)−1

− 1

1− γ

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1)

(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)
(∆1 +K2)∆−11 (51)

=
1− γ
γ

∆−11 (∆1 +K2)
(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1 (

(K0 +K2)
−1 − (∆1 +K2)

−1
)
(∆1 +K2)∆−11

(52)

=
1− γ
γ

∆−11 (∆1 +K2)
(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1

(K0 +K2)
−1

(∆1 −K0)∆−11 (53)

=
1− γ
γ

∆−11 (∆1 +K2)
(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1

(K0 +K2)
−1

K−10

(
K−10 −∆−11

)
. (54)

From the complementary slackness condition in (15), i.e.,

B∗1Ψ1 =
(
K−10 −∆−11

)
Ψ1 = 0, (55)

we have

tr
{

Ψ1

((
∆−11 +K−12

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗1,γ ,W1

)
K2

(
∆−11 +K−12

)
−∆−11 (∆1 +K2)∆−11

)}
(56)

≥ tr
{1− γ

γ
∆−11 (∆1 +K2)

(
(∆1 +K2)

−1
+ (K1 −K2)

−1
)

(
(K0 +K2)

−1
+

1− γ
γ

(∆1 +K2)
−1

+
1

γ
(K1 −K2)

−1
)−1

(K0 +K2)
−1

K−10

(
K−10 −∆−11

)
Ψ1

}
= 0. (57)

This proves that (48a) is lower bounded by 0.
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E. Lower Bound of (48b)

To the end of showing that (48b) is lower bounded by 0, we introduce

N ′i+1 ,
√
1− γ (Ni −Ni+1) +

√
γ
(
NG
i −NG

i+1

)
, i ∈ [1 : L]. (58)

Note that N ′i+1 is a Gaussian random vector with covariance matrix Ki−Ki+1 and is independent of (Ỹi+1,γ , Y
∗
i,γ). Moreover,

Ỹi,γ = Ỹi+1,γ +N ′i+1, i ∈ [2 : L]. (59)

In view of the fact that N ′i+1 is independent of Y ∗i,γ , we can invoke the Fisher information inequality (see Lemma 5 in Appendix
A) to show(

∆−1i−1 +K−1i
)
KiJ

(
Ỹi,γ

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
)
Ki

(
K−1i + ∆−1i−1

)
=
(
∆−1i−1Ki + I

)
J
(
Ỹi+1,γ +N ′i+1

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
) (

I +Ki∆
−1
i−1
)

(60)

�
(
∆−1i−1Ki+1 + I

)
J
(
Ỹi+1,γ

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
) (

I +Ki+1∆
−1
i−1
)
+ ∆−1i−1 (Ki −Ki+1)∆−1i−1 (61)

�
(
∆−1i−1Ki+1 + I

)
J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
) (

I +Ki+1∆
−1
i−1
)
+ ∆−1i−1 (Ki −Ki+1)∆−1i−1 (62)

=
(
∆−1i−1 +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
K−1i+1 + ∆−1i−1

)
+ ∆−1i−1 (Ki −Ki+1)∆−1i−1, (63)

where (62) follows by the Markov chain contraint
(
Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]

)
→
(
Y ∗i,γ ,Wj , j ∈ [1 : i]

)
→ Ỹi+1,γ and the data

processing inequality for Fisher information (see Lemma 7 in Appendix A). Meanwhile, due to the complementary slackness
condition in (15), i.e.,

B∗iΨi =
(
∆−1i −∆−1i−1

)
Ψi = 0, i ∈ [2 : L], (64)

we have

tr
{

Ψi

( (
∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−
(
∆−1i−1 +K−1i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
)
Ki

(
∆−1i−1 +K−1i

)
−∆−1i (∆i +Ki+1)∆−1i + ∆−1i−1 (∆i−1 +Ki)∆−1i−1

)}
= tr

{
Ψi

( (
∆−1i−1 +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i−1 +K−1i+1

)
−
(
∆−1i−1 +K−1i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗i−1,γ ,Wj , j ∈ [1 : i− 1]
)
Ki

(
∆−1i−1 +K−1i

)
+ ∆−1i−1 (Ki −Ki+1)∆−1i−1

)}
≥ 0, i ∈ [2 : L]. (65)

This proves that (48b) is lower bounded by 0.

F. Lower Bound of (48c)

To the end of showing that (48c) is lower bounded by 0, we introduce

N ′′i+1 ,
√
γ (Ni −Ni+1)−

√
1− γ

(
NG
i −NG

i+1

)
, i ∈ [1 : L]. (66)

Note that N ′′i+1 is a Gaussian random vector with covariance matrix Ki −Ki+1 and is independent of (Yi+1, Ỹ
G
i+1). It can

be verified that

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
= cov

(
Yi+1

∣∣∣√1− γỸi+1,γ +
√
γY ∗i,γ , Ỹi+1,γ ,Wj , j ∈ [1 : i]

)
(67)

= cov
(
Yi+1

∣∣∣(1− γ)Yi+1 +
√
γ(1− γ)Ỹ Gi+1 + γYi −

√
γ(1− γ)Y Gi , Ỹi+1,γ ,Wj , j ∈ [1 : i]

)
(68)

= cov

(
Yi+1

∣∣∣Yi+1 +
√
γN ′′i+1, Yi+1 +

√
γ

1− γ
Ỹ Gi+1,Wj , j ∈ [1 : i]

)
(69)

� cov

(
Yi+1

∣∣∣ (1− γ
γ

(∆i +Ki+1)
−1

+
1

γ
(Ki −Ki+1)

−1
)
Yi+1 +

√
1− γ
γ

(∆i +Ki+1)
−1
Ỹ Gi+1

+

√
1

γ
(Ki −Ki+1)

−1
N ′′i+1,Wj , j ∈ [1 : i]

)
. (70)
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where (70) is due to the data processing inequality for MMSE (see Lemma 8 in Appendix A).
Let

P i+1 ,

(
1− γ
γ

(∆i +Ki+1)
−1

+
1

γ
(Ki −Ki+1)

−1
)−1

, (71)

SGi+1 ,P i+1

(√
1− γ
γ

(∆i +Ki+1)
−1
Ỹ Gi+1 +

√
1

γ
(Ki −Ki+1)

−1
N ′′i+1

)
. (72)

It follows by the theory of linear MMSE estimtion that

Ni −Ni+1 = SGi+1 + TGi+1, (73)

where TGi+1 is a Gaussian random vector with covariance matrix Ki −Ki+1 − P i+1, and is independent of SGi+1.
Due to the Markov chain

(Wj , j ∈ [1 : i])→ Yi+1 → Yi+1 + SGi+1 → Yi+1 + SGi+1 + TGi+1, (74)

we can invoke Lemma 6 in Appendix A to show that

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)−1
(75)

� cov
(
Yi+1

∣∣∣Yi+1 + SGi+1,Wj , j ∈ [1 : i]
)−1

(76)

� cov
(
Yi+1

∣∣∣Yi+1 + SGi+1 + TGi+1,Wj , j ∈ [1 : i]
)−1
− (Ki −Ki+1)

−1
+ P−1i+1 (77)

= cov
(
Yi+1

∣∣∣Yi,Wj , j ∈ [1 : i]
)−1

+
1− γ
γ

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)
. (78)

1) : Note that the following Markov chain condition holds:

(Wj , j ∈ [1 : i])→ X → Yi+1 → Yi. (79)

Since X , Yi, and Yi+1) are jointly Gaussian, it follows that

E [Yi+1|X,Yi] (80)

= (Ki −Ki+1)K
−1
i X +Ki+1K

−1
i Yi. (81)

Furthermore, we have

Yi+1 =(Ki −Ki+1)K
−1
i

(
X + Ñi+1

)
+Ki+1K

−1
i Yi, (82)

where Ñi+1 is a zero-mean Gaussian random vector with covariance matrix

K̃i+1 =
(
K−1i+1 −K−1i

)−1 � 0, (83)

and is independent of (X,Yi). Therefore,

cov
(
Yi+1

∣∣∣Yi,Wj , j ∈ [1 : i]
)

= cov
(
(Ki −Ki+1)K

−1
i

(
X + Ñi+1

) ∣∣∣Yi,Wj , j ∈ [1 : i]
)

(84)

� (Ki −Ki+1)K
−1
i

(
Di +

(
K−1i+1 −K−1i

)−1)
K−1i (Ki −Ki+1) , (85)

where (85) is because of covariance distortion constraint cov(X|Yi,Wj , j ∈ [1 : i]) �Di in (18).
2) : It can be verified that(

(∆i +Ki+1)
−1

+ (Ki −Ki+1)
−1
)−1

=
(
K−1i+1 − (Ki+1 −Ki)

−1 −K−1i+1 + (∆i +Ki+1)
−1
)−1

(86)

= Ki+1

((
K−1i+1 −K−1i

)−1 − (∆−1i +K−1i+1

)−1)−1
Ki+1 (87)

= Ki+1

(
K−1i+1 −K−1i

) ((
∆−1i +K−1i

)−1
+
(
K−1i+1 −K−1i

)−1) (
K−1i+1 −K−1i

)
Ki+1 (88)

� (Ki −Ki+1)K
−1
i

(
Di +

(
K−1i+1 −K−1i

)−1)
K−1i (Ki −Ki+1) , (89)

where (89) is because of ∆−1i +K−1i �D−1i .
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Combing (85) and (89) yields

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
� γ (Ki −Ki+1)K

−1
i

(
Di +

(
K−1i+1 −K−1i

)−1)
K−1i (Ki −Ki+1) . (90)

In view of (190), we have(
∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

= ∆−1i (∆i +Ki+1)
(
J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
− (∆i +Ki+1)

−1
)
(∆i +Ki+1)∆−1i (91)

=
1− γ
γ

∆−1i (∆i +Ki+1)
(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

((
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)−1
− 1

γ
cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

))
(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)
(∆i +Ki+1)∆−1i (92)

� 1− γ
γ

(
∆−1i +K−1i

) ((
∆−1i +K−1i

)−1 −Di

) (
∆−1i +K−1i

)
(93)

=
1− γ
γ

(
∆−1i +K−1i

)
Di

(
D−1i −∆−1i −K−1i

)
. (94)

From the complementary slackness condition in (16), i.e.,(
∆−1i +K−1i −D−1i

)
Λi = 0, i ∈ [1 : L], (95)

we have

tr

{
Λi

((
∆−1i +K−1i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
− 1

γ
∆−1i (∆i +Ki+1)∆−1i

)}
(96)

≥ tr

{
1− γ
γ

Λi

(
∆−1i +K−1i

)
Di

(
D−1i −∆−1i −K−1i

)}
= 0, i ∈ [1 : L]. (97)

This proves that (48c) is lower bounded by 0.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is divided into three steps. We first adapt the argument in [3], [4] to show that every rate tuple in
R(Di, i ∈ [1 : L]) is achievable, i.e., R(Di, i ∈ [1 : L]) ⊆ R∗(Di, i ∈ [1 : L]). We then study the supporting hyperplanes of
R(Di, i ∈ [1 : L]) and characterize the optimal solution of the relevant minimization problem via KKT analysis. Finally we
derive a matching converse by leveraging the extremal inequality in Theorem 2.

A. Achievability

It is easy to adapt the achevability argument in [3], [4] to prove the following result.
Lemma 1: (Ri, i ∈ [1 : L]) ∈ R∗(Di, i ∈ [1 : L]) if there exist auxiliary random vectors (Wi, i ∈ [1 : L]) jointly Gaussian

with (X,Yi, i ∈ [1 : L]) satisfying
• the Markov chain constraint

(Wi, i ∈ [1 : L])→ X → YL → YL−1 → . . .→ Y1, (98)

• the rate constraints

R1 ≥ I(X;W1|Y1), (99)
i∑

j=1

Rj ≥ I(X;W1|Y1) +
i∑

j=2

I(X;Wj |Wj−1, . . . ,W1, Yj), i ∈ [2 : L], (100)

• the covariance distortion constraints

cov(X|Yi,Wj , j ∈ [1 : i]) �Di, i ∈ [1 : L]. (101)
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Equipped with Lemma 1, we proceed to show that every rate tuple in R(Di, i ∈ [1 : L]) is achievable. First choose auxiliary
Gaussian random vectors (Wi, i ∈ [1 : L]) such that

cov(X|Wj , j ∈ [1 : i]) =

K−10 +

i∑
j=1

Bj

−1 , i ∈ [1 : L]. (102)

It can be verified that

h(X|Yi,Wj , j ∈ [1 : i])

=
1

2
log

∣∣∣∣∣∣∣(2πe)
K−10 +K−1i +

i∑
j=1

Bj

−1
∣∣∣∣∣∣∣ , i ∈ [1 : L], (103)

h(X|Yi+1,Wj , j ∈ [1 : i])

=
1

2
log

∣∣∣∣∣∣∣(2πe)
K−10 +K−1i+1 +

i∑
j=1

Bj

−1
∣∣∣∣∣∣∣ , i ∈ [1 : L− 1]. (104)

Moreover, we have

h(X|Yi) = h(X|X +Ni) =
1

2
log
∣∣∣(2πe) (K−10 +K−1i

)−1∣∣∣ , i ∈ [1 : L], (105)

cov (X|Yi,Wj , j ∈ [1 : i]) =

K−10 +K−1i +

i∑
j=1

Bj

−1 , i ∈ [1 : L]. (106)

Now one can readily prove R(Di, i ∈ [1 : L]) ⊆ R∗(Di, i ∈ [1 : L]) by invoking Lemma 1 and a timesharing argument.

B. Supporting Hyperplane Characterization

Since R(Di, i ∈ [1 : L]) is convex, it is completely specified by its supporting hyperplanes. The characterization of the
supporting hyperplanes boils down to solving the following optimization problem

R∗ , inf
(R1,...,RL)∈R(Di,i∈[1:L])

L∑
i=1

µiRi, (107)

where µ1 ≥ µ2 ≥ . . . ≥ µL ≥ 0. It is clear that

R∗ = min
(Bi,i∈[1:L])

µ1

2
log
|K−10 +K−11 +B1|
|K−10 +K−11 |

+

L∑
i=2

µi
2

log
|K−10 +K−1i +

∑i
j=1 Bj |

|K−10 +K−1i +
∑i−1
j=1 Bj |

(108)

subject to Bi � 0, i ∈ [1;L],
i∑

j=1

Bj �D−1i −K−10 −K−1i , i ∈ [1;L].

Theorem 3: The minimizer (B∗i , i ∈ [1 : L]) of (108) must satisfy

µi
2

K−10 +K−1i +

i∑
j=1

B∗j

−1 − µi+1

2

K−10 +K−1i+1 +

i∑
j=1

B∗j

−1 = Ψi −Ψi+1 + Λi, i ∈ [1 : L− 1], (109)

µL
2

K−10 +K−1L +

L∑
j=1

B∗j

−1 = ΨL + ΛL, (110)

for some positive semi-definite matrices (Ψi, i ∈ [1 : L]) and (Λi, i ∈ [1 : L]) such that

B∗iΨi = 0, i ∈ [1 : L], (111)K−10 +K−1i +

i∑
j=1

B∗j −D−1i

Λi = 0, i ∈ [1 : L]. (112)
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Proof: The Lagrangian of (108) is given by

µ1

2
log
|K−10 +K−11 +B1|
|K−10 +K−11 |

+

L∑
i=2

µi
2

log
|K−10 +K−1i +

∑i
j=1 Bj |

|K−10 +K−1i +
∑i−1
j=1 Bj |

−
L∑
i=1

tr{BiΨi + (K−10 +K−1i −D−1i +

i∑
j=1

Bj)Λi}, (113)

where positive semi-definite matrices (Ψi, i ∈ [1 : L]) and (Λi, i ∈ [1 : L]) serve as Lagrange multipliers. Note that (109)-(112)
follow directly form the KKT conditions. The proof is complete by verifying a set of constraint qualifications in [36, Sections
4-5].

Remark 3: It is worth noting that (109)-(112) in Theorem 3 correspond exactly to (13)-(16) in Theorem 2.

C. Converse

It is easy to adapt the converse argument in [3], [4] to prove the following result.
Lemma 2: For any (Ri, i ∈ [1 : L]) ∈ R∗(Di, i ∈ [1 : L]) and any ε > 0, there exist auxiliary random objects jointly

distributed with (X,Yi, i ∈ [1 : L]) satisfying
• the Markov chain constraint

(Wi, i ∈ [1 : L])→ X → YL → YL−1 → . . .→ Y1, (114)

• the rate constraints

R1 + ε ≥ I(X;W1|Y1), (115)
i∑

j=1

(Rj + ε) ≥ I(X;W1|Y1) +
i∑

j=2

I(X;Wj |Wj−1, . . . ,W1, Yj), i ∈ [2 : L], (116)

• the covariance distortion constraints

cov(X|Yi,Wj , j ∈ [1 : i]) �Di + εI, i ∈ [1 : L]. (117)

Now we proceed to show that R∗(Di, i ∈ [1 : L]) ⊆ R(Di, i ∈ [1 : L]). For any (R1, . . . , RL) ∈ R∗(Di, i ∈ [1 : L]) and
any ε > 0, it follows by Lemma 2, Theorem 3, and Theorem 2 that

L∑
i=1

µi(Ri + ε)

≥ µ1I(X;W1|Y1) +
i∑

j=2

µiI(X;Wj |Wj−1, . . . ,W1, Yj) (118)

= µ1h(X|Y1) +
L−1∑
i=1

(µih(Yi|Wj , j ∈ [1 : i])− µi+1h(Yi+1|Wj , j ∈ [1 : i])− (µi − µi+1)h(X|Wj , j ∈ [1 : i]))

+ µLh(YL|Wj , j ∈ [1 : L])− µLh(X|Wj , j ∈ [1 : L]) (119)

≥ −µ1

2
log
∣∣(2πe)−1 (K−10 +K−1i

)∣∣+ L−1∑
i=1

−µi+1

2
log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1i+1 +

i∑
j=1

B∗j (ε)

∣∣∣∣∣∣
+
µi
2

log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1i +

i∑
j=1

B∗j (ε)

∣∣∣∣∣∣
+

µL
2

log

∣∣∣∣∣∣(2πe)−1
K−10 +K−1L +

L∑
j=1

B∗j (ε)

∣∣∣∣∣∣ , (120)

where (B∗i (ε), i ∈ [1 : L]) denotes the minimizer of (108) with (Di, i ∈ [1 : L]) replaced by (Di + εI, i ∈ [1 : L]). Now one
can readily show

L∑
i=1

µiRi ≥ R∗ (121)

via a simple limiting argument. This completes the proof of Theorem 1.
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V. CONCLUSION

We have studied the problem of successive refinement for Wyner-Ziv coding with degraded side information and obtained
a computable characterization of the rate region in the quadratic vector Gaussian setting. From the technical perspective, our
main contribution is a new extremal inequality, which is established via a refined monotone path argument inspired by the
doubling trick in [30]. In a recent paper [37], Unal and Wagner considered the vector Gaussian Heegard-Berger/Kaspi problem
with no degradedness assumption on side information and obtained several conclusive results through careful comparisons of
the relevant covariance distortions. In contrast, our proof technique does not require such comparisons and thus is potentially
better suited to the non-degraded side information case. It is of considerable interest to investigate whether this technique can
yield new results beyond those in [37].

APPENDIX A
PRELIMINARIES ON FISHER INFORMATION AND MMSE

Here is a summary of some basic properties of Fisher information and MMSE, which will be used extensively in the proof
of extremal inequality (19).

We begin with the definition of conditional Fisher information matrix and MMSE matrix.
Definition 2: Let (X,U) be a pair of jointly distributed random vectors with differentiable conditional probability density

function:
f(x|u) , f(xi, i ∈ [1 : m]|u). (122)

The vector-valued score function is defined as

∇ log f(x|u) =
[
∂ log f(x|u)

∂x1
, · · · , ∂ log f(x|u)

∂xm

]T
. (123)

The conditional Fisher information of X respect to U is given by

J(X|U) = E
[
(∇ log f(x|u)) · (∇ log f(x|u))T

]
. (124)

Definition 3: Let (X,Y, U) be a set of jointly distributed random vectors. The conditional covariance matrix of X given
(Y,U) is defined as

cov(X|Y,U) = E
[
(X − E[X|Y,U ]) · (X − E[X|Y,U ])

T
]
. (125)

Lemma 3 (Matrix Version of de Bruijn’s Identity): Let (X,U) be a pair of jointly distributed random vectors, and N ∼
N(0,Σ) be a Gaussian random vector independent of (X,U). Then

∇Σh(X +N |U) =
1

2
J(X +N |U). (126)

Lemma 3 is a conditional version of [38, Theorem 1], which provides a link between differential entropy and Fisher
information.

Lemma 4: Let (X,U) be a pair of jointly distributed random vectors, and N ∼ N (0,Σ) be a Gaussian random vector
independent of (X,U). Then

J(X +N |U) + Σ−1 cov(X|X +N,U)Σ−1 = Σ−1. (127)

The complementary identity in Lemma 4 provides a link between Fisher information and MMSE, and its proof can be found
in [38, Corollary 1].

Lemma 5: Let (X,Y, U) be a set of jointly distributed random vectors. Assume that X and Y are conditionally independent
given U . Then for any square matrix A and B,

(A+B)J(X + Y |U)(A+B)T � AJ(X|U)AT +BJ(Y |U)BT . (128)

Proof: From the conditional version of matrix Fisher information inequality in [39, Appendix II], we have

J(X + Y |U) �KJ(X|U)KT + (I −K)J(Y |U)(I −K)T , (129)

for any square matrix K. Setting
K = (A+B)−1A (130)

proves (128).
Lemma 6: Let X be a Gaussian random vector and U be an arbitrary random vector. Let N1 and N2 be two zero-mean

Gaussian random vectors, independent of (X,U), with covariance matrices Σ1 and Σ2, respectively. If

Σ2 � Σ1 � 0, (131)
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then
cov

(
X
∣∣X +N1, U

)−1 −Σ−11 � cov
(
X
∣∣X +N2, U

)−1 −Σ−12 . (132)

Lemma 6 can be proved by combining the Cramér-Rao inequality and the complementary identity in Lemma 4. See [31,
Lemma 4] for details.

Lemma 7 (Data Processing Inequality for Fisher Information): Let (X,U, V ) be a set of jointly distributed random vectors.
Assume that U → V → X form a Markov chain. Then

J(X|U) � J(X|V ). (133)

Lemma 7 is analogous to [40, Lemma 3], and can be easily proved using the chain rule of Fisher information matrix [40,
Lemma 1].

Lemma 8 (Data Processing Inequality for MMSE): Let (X,U, V ) be a set of jointly distributed random vectors. Assume
U → V → X form a Markov chain. Then

cov(X|U) � cov(X|V ). (134)

See [41, Proposition 5] for a detailed proof of Lemma 8.

APPENDIX B
DERIVATIVE OF THE BIVARIATE DIFFERENTIAL ENTROPY h

(
Xi,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
In view of (27) and (30), we have

h
(
Xi,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
(135)

= h
(√

1− γX +
√
γXG

i ,
√
γYi −

√
1− γY Gi |Wj , j ∈ [1 : i]

)
(136)

= h

(
X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi

∣∣∣Wj , j ∈ [1 : i]

)
+
n

2
log γ +

n

2
log(1− γ). (137)

Recall from (23) that
Y Gi = XG

i +NG
i . (138)

The covariance matrix of ( √
γ/(1− γ)XG

i

−
√

(1− γ)/γY Gi

)
is given by

Σi,∗ ,

(
γ

1−γ∆i −∆i

−∆i
1−γ
γ (∆i +Ki)

)
. (139)

It is easy to verify that

Σ−1i,∗ =

(
1−γ
γ (∆−1i +K−1i ) K−1i

K−1i
γ

1−γK
−1
i

)
(140)

and

∇γΣi,∗ =

(
1

(1−γ)2 ∆i 0

0 − 1
γ2 (∆i +Ki)

)
. (141)

Combining (140) and (141) gives
tr
{
(∇γΣi,∗)Σ−1i,∗

}
= 0, (142)

Σ−1i,∗ (∇γΣi,∗)Σ−1i,∗ =

(
− 1
γ2 (∆

−1
i +K−1i ) 0

0 1
(1−γ)2K

−1
i

)
. (143)

By invoking the chain rule of matrix calculus and Lemma 3 in Appendix A, we have

d

dγ
h
(
Xi,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
=

d

dγ

{
h

(
X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi

∣∣∣Wj , j ∈ [1 : i]

)
+
n

2
log γ +

n

2
log(1− γ)

}
(144)

=
1

2
tr

{
(∇γΣi,∗) J

((√
1

1−γX
T
i,γ

√
1
γY
∗
i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
+
n

2

(
1

γ
− 1

1− γ

)
. (145)
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It can be verified

tr

{
(∇γΣi,∗) J

((√
1

1−γX
T
i,γ

√
1
γY
∗
i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
= tr

{
(∇γΣi,∗)Σ−1i,∗ −Σ−1i,∗ (∇γΣi,∗)Σ−1i,∗

cov

((
XT Y Ti

)T ∣∣∣X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi ,Wj , j ∈ [1 : i]

)}
(146)

= tr
{(− 1

γ2 (∆
−1
i +K−1i ) 0

0 1
(1−γ)2K

−1
i

)

cov

((
XT Y Ti

)T ∣∣∣X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi ,Wj , j ∈ [1 : i]

)}
, (147)

where (146) follows by Lemma 4 in Appendix A, and (147) is due to (142) and (143). Notice that

cov

((
XT Y Ti

)T ∣∣∣X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi

)
=

((
K0 K0

K0 K0 +Ki

)−1
+ Σ−1i,∗

)−1
(148)

=

((
K−10 +K−1i −K−1i
−K−1i K−1i

)
+

(
1−γ
γ (∆−1i +K−1i ) K−1i

K−1i
γ

1−γK
−1
i

))−1
(149)

=

((
K−10 + 1−γ

γ ∆−1i + 1
γK

−1
i

)−1
0

0 (1− γ)Ki

)
. (150)

Thus, we have the Markov chain

(Wj , j ∈ [1 : i])→ X →
(
X +

√
γ

1− γ
XG
i , Yi −

√
1− γ
γ

Y Gi

)
→ Yi. (151)

As a consequence,

cov
((
XT Y Ti

)T ∣∣∣Xi,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
=

(
cov

(
X
∣∣∣Xi,γ , Yi,γ ,Wj , j ∈ [1 : i]

)
0

0 (1− γ)Ki

)
. (152)

By combining (145), (147) and (152), we obtain

d

dγ
h
(
Xi,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2
tr

{(
− 1
γ2 (∆

−1
i +K−1i ) 0

0 1
(1−γ)2K

−1
i

)(
cov

(
X
∣∣∣Xi,γ , Y

∗
i,γ ,Wj , j ∈ [1 : i]

)
0

0 (1− γ)Ki

)}

+
n

2

(
1

γ
− 1

1− γ

)
(153)

= − 1

2γ
tr

{
1

γ
(∆−1i +K−1i ) cov

(
X
∣∣∣Xi,γ , Y

∗
i,γ ,Wj , j ∈ [1 : i]

)
− I

}
(154)

= − 1

2γ
tr

{
(∆−1i +K−1i )

(
1

γ
cov

(
X
∣∣∣Xi,γ , Y

∗
i,γ ,Wj , j ∈ [1 : i]

)
− (∆−1i +K−1i )−1

)}
. (155)

On the other hand, it follows by the theory of linear MMSE estimation that
√
γXG

i = −
√
γ(1− γ)

(
∆−1i + (1− γ)K−1i

)−1
K−1i

(√
γNi −

√
1− γY Gi

)
+
√
γX̂G

i , (156)

where X̂i,γ is a Gaussian random vector with mean zero and covariance matrix
(
∆−1i + (1− γ)K−1i

)−1
, and is independent

of
√
γNi −

√
1− γY Gi . Thus, we have

Xi,γ =
√
1− γX +

√
γXG

i (157)

=
√
1− γX −

√
γ(1− γ)

(
∆−1i + (1− γ)K−1i

)−1
K−1i

(√
γNi −

√
1− γY Gi

)
+
√
γX̂G

i (158)
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=
√
1− γ

(
∆−1i + (1− γ)K−1i

)−1 (
∆−1i +K−1i

)
X +

√
γX̂G

i

−
√
γ(1− γ)

(
∆−1i + (1− γ)K−1i

)−1
K−1i Y ∗i,γ . (159)

The complementary Fisher information representation of cov
(
X
∣∣∣Xi,γ , Y

∗
i,γ ,Wj , j ∈ [1 : i]

)
can thereby be expressed as

cov
(
X
∣∣∣Xi,γ , Y

∗
i,γ ,Wj , j ∈ [1 : i]

)
(160)

= cov
(
X
∣∣∣√1− γ

(
∆−1i + (1− γ)K−1i

)−1 (
∆−1i +K−1i

)
X +

√
γX̂G

i , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
(161)

=
γ

1− γ
(
∆−1i +K−1i

)−1 (
∆−1i + (1− γ)K−1i − γJ

(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)) (

∆−1i +K−1i
)−1

. (162)

Equivalently, we can write(
∆−1i +K−1i

)( 1

γ
cov

(
X
∣∣∣Xi,γ , Ỹ

∗
i,γ ,Wj , j ∈ [1 : L]

)
− (∆−1i +K−1i )−1

)(
∆−1i +K−1i

)
(163)

=
γ

1− γ
∆−1i −

γ

1− γ
J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
. (164)

Finally, substituting (164) into (155) gives

d

dγ
h
(
Xi,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1− γ)
tr
{
(∆−1i +K−1i )−1

(
J
(
Xi,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
−∆−1i

)}
. (165)

APPENDIX C
DERIVATIVE OF THE BIVARIATE DIFFERENTIAL ENTROPY h

(
Ỹi+1,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
In view of (29) and (30),

h
(
Ỹi+1,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
(166)

= h
(√

1− γYi+1 +
√
γỸ Gi+1,

√
γYi −

√
1− γY Gi

∣∣∣Wj , j ∈ [1 : i]
)

(167)

= h

(
Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi

∣∣∣Wj , j ∈ [1 : i]

)
+
n

2
log γ +

n

2
log(1− γ). (168)

By the definition of Y Gi and Ỹ Gi+1 in (23) and (24) as well as the construction of
(
NG
i , i ∈ [1 : L]

)
, we can write

Y Gi = Ỹ Gi+1 +
(
NG
i −NG

i+1

)
, (169)

where NG
i −NG

i+1 is a Gaussian random vector with covariance matrix Ki −Ki+1, and is independent of Ỹ Gi+1. Therefore,
the covariance matrix of ( √

γ/(1− γ)Ỹ Gi+1

−
√

(1− γ)/γY Gi

)
is given by

Σ̃i ,

(
γ

1−γ (∆i +Ki) − (∆i +Ki)

− (∆i +Ki)
1−γ
γ (∆i +Ki+1)

)
. (170)

It can be verified that

Σ̃
−1
i =

(
1−γ
γ

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

(Ki −Ki+1)
−1

(Ki −Ki+1)
−1 γ

1−γ (Ki −Ki+1)
−1

)
(171)

and

∇γΣ̃i =

(
1

(1−γ)2 (∆i +Ki+1) 0

0 − 1
γ2 (∆i +Ki)

)
. (172)

Combining (171) and (172) gives
tr
{(
∇γΣ̃i

)
Σ̃
−1
i

}
= 0, (173)

Σ̃
−1
i

(
∇γΣ̃i

)
Σ̃
−1
i =

(
− 1
γ2

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

0

0 1
(1−γ)2 (Ki −Ki+1)

−1

)
. (174)
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By invoking the chain rule of matrix calculus and Lemma 3 in Appendix A, we have

d

dγ
h
(
Ỹi+1,γ , Y

∗
i,γ |Wj , j ∈ [1 : i]

)
=

d

dγ

{
h

(
Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi

∣∣∣Wj , j ∈ [1 : i]

)
+
n

2
log γ +

n

2
log(1− γ)

}
(175)

=
1

2
tr

{(
∇γΣ̃i

)
J

((√
1

1−γ Ỹ
T
i+1,γ

√
1
γY
∗
i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
+
n

2

(
1

γ
− 1

1− γ

)
(176)

It can be verified that

tr

{(
∇γΣ̃i

)
J

((√
1

1−γ Ỹ
T
i+1,γ

√
1
γY
∗
i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
= tr

{(
∇γΣ̃i

)
Σ̃
−1
i − Σ̃

−1
i

(
∇γΣ̃i

)
Σ̃
−1
i

cov

((
Y Ti+1 Y Ti

)T ∣∣∣Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi ,Wj , j ∈ [1 : i]

)}
(177)

= tr
{(− 1

γ2

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

0

0 1
(1−γ)2 (Ki −Ki+1)

−1

)

cov

((
Y Ti+1 Y Ti

)T ∣∣∣Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi ,Wj , j ∈ [1 : i]

)}
, (178)

where (177) follows by Lemma 4 in Appendix A, and (178) is due to (173) and (174). Notice that

cov

((
Y Ti+1 Y Ti

)T ∣∣∣Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi

)
=

((
K0 +Ki+1 K0 +Ki+1

K0 +Ki+1 K0 +Ki

)−1
+ Σ̃

−1
i

)−1
(179)

=

((
(K0 +Ki+1)

−1
+ (Ki −Ki+1)

−1 − (Ki −Ki+1)
−1

− (Ki −Ki+1)
−1

(Ki −Ki+1)
−1

)

+

(
1−γ
γ

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

(Ki −Ki+1)
−1

(Ki −Ki+1)
−1 γ

1−γ (Ki −Ki+1)
−1

))−1
(180)

=

((
(K0 +Ki+1)

−1
+ 1−γ

γ (∆i +Ki+1)
−1

+ 1
γ (Ki −Ki+1)

−1
)−1

0

0 (1− γ) (Ki −Ki+1)

)
. (181)

Thus, we have the Markov chain

(Wj , j ∈ [1 : i])→ Yi+1 →
(
Yi+1 +

√
γ

1− γ
Ỹ Gi+1, Yi −

√
1− γ
γ

Y Gi

)
→ Yi. (182)

As a consequence,

cov
((
Y Ti+1 Y Ti

)T ∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
=

(
cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
0

0 (1− γ)(Ki −Ki+1)

)
. (183)

Combining (176), (178) and (183), we obtain

d

dγ
h
(
Ỹi+1,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2
tr

{(
− 1
γ2

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)

0

0 1
(1−γ)2 (Ki −Ki+1)

−1

)
(
cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
0

0 (1− γ)(Ki −Ki+1)

)}
+
n

2

(
1

γ
− 1

1− γ

)
(184)

= − 1

2γ
tr

{
1

γ

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)
cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
− I

}
. (185)
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On the other hand, it follows by the theory of linear MMSE estimation that

√
γỸ Gi+1 =−

√
γ(1− γ)

(
(∆i +Ki+1)

−1
+ (1− γ) (Ki −Ki+1)

−1
)−1

(Ki −Ki+1)
−1(√

γNi −
√
γNi+1 −

√
1− γY Gi

)
+
√
γŶ Gi+1, (186)

where Ŷi+1,γ is a Gaussian random vector with mean zero and covariance matrix(
(∆i +Ki+1)

−1
+ (1− γ) (Ki −Ki+1)

−1
)−1

, and is independent of
√
γ (Ni −Ni+1)−

√
1− γY Gi . Thus, we have

Ỹi+1 =
√
1− γYi+1 +

√
γỸ Gi+1

=
√
1− γYi+1 −

√
γ(1− γ)

(
(∆i +Ki+1)

−1
+ (1− γ) (Ki −Ki+1)

−1
)−1

(Ki −Ki+1)
−1(√

γNi −
√
γNi+1 −

√
1− γY Gi

)
+
√
γŶ Gi+1 (187)

=
√

1− γ
(
(∆i +Ki+1)

−1
+ (1− γ) (Ki −Ki+1)

−1
)−1 (

(∆i +Ki+1)
−1

+ (Ki −Ki+1)
−1
)
Yi+1

+
√
γŶ Gi+1 −

√
γ(1− γ)

(
(∆i +Ki+1)

−1
+ (1− γ) (Ki −Ki+1)

−1
)−1

(Ki −Ki+1)
−1
Y ∗i,γ . (188)

The complementary Fisher information representation of cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
can be thereby expressed as

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
=

γ

1− γ

(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)−1 (

(∆i +Ki+1)
−1

+ (1− γ) (Ki −Ki+1)
−1−

γJ
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
))(

(∆i +Ki+1)
−1

+ (Ki −Ki+1)
−1
)−1

. (189)

Equivalently, we can write(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)( 1

γ
cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y
∗
i,γ ,Wj , j ∈ [1 : i]

)
−
(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)−1)(

(∆i +Ki+1)
−1

+ (Ki −Ki+1)
−1
)

=
γ

1− γ
(∆i +Ki+1)

−1 − γ

1− γ
J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
. (190)

Substituting (190) into (185) gives

d

dγ
h
(
Ỹi+1,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1− γ)
tr

{(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)−1 (

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
− (∆i +Ki+1)

−1
)}

. (191)

Furthermore, it follows by the Woodbury matrix inversion lemma that(
(∆i +Ki+1)

−1
+ (Ki −Ki+1)

−1
)−1

= Ki+1

(
Ki+1 −Ki+1 (Ki+1 −Ki)

−1
Ki+1 −Ki+1 +Ki+1 (∆i +Ki+1)

−1
Ki+1

)−1
Ki+1 (192)

= Ki+1

((
K−1i+1 −K−1i

)−1 − (∆−1i +K−1i+1

)−1)−1
Ki+1 (193)

= Ki+1

(
∆−1i +K−1i+1

) ((
∆−1i +K−1i

)−1 − (∆−1i +K−1i+1

)−1) (
∆−1i +K−1i+1

)
Ki+1. (194)

So we can rewrite (191) as

d

dγ
h
(
Ỹi+1,γ , Y

∗
i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1− γ)
tr
{((

∆−1i +K−1i
)−1 − (∆−1i +K−1i+1

)−1)( (
∆−1i +K−1i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗i,γ ,Wj , j ∈ [1 : i]
)
Ki+1

(
∆−1i +K−1i+1

)
−∆−1i (∆i +Ki+1)∆−1i

)}
. (195)
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