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Abstract—This paper addresses the rumor source identification
problem, where the goal is to find the origin node of a rumor in a
network among a given set of nodes with the rumor. In this paper,
we focus on a network represented by a regular tree which does
not have any cycle and in which all nodes have the same number

of edges connected to a node. For this network, we clarify that,
with quite high probability, the origin node is within the distance
“3” from the node selected by the optimal estimator, where the
distance is the number of edges of the unique path connecting
two nodes. This is clarified by the probability distribution of the
distance between the origin and the selected node.

I. INTRODUCTION

In social networks, a rumor spreads like an infectious

disease. In fact, it can be modeled as an infectious disease

[2], [3]. The most common theme of studies about a rumor

(or infectious disease) is to analyze mechanisms of a spreading

behavior of a rumor in a given network [4], [5].

Unlike this type of studies, we address the rumor source

identification problem introduced by Shah and Zaman [3]. The

goal of this problem is to find the origin node of a rumor

(rumor source) in a network among a given set of nodes with

the rumor. If the rumor source can be detected, it is available

to find a weak node which spreads a computer virus, to give

ranking to websites for a search engine, etc. For this problem,

Shah and Zaman [3] introduced the optimal estimator and

analyzed the correct detection probability of it for some types

of networks. This probability asymptotically goes to one for a

very special network called geometric tree (see [3, Sec. IV.D]).

However, they analytically or experimentally showed that the

probability is asymptotically not high or goes to zero for many

other networks such as regular trees, small-world networks,

and scale-free networks, where a regular tree is a network

which does not have any cycle and in which all nodes have

the same degree, i.e, the number of edges connected to a node.

Although the optimal estimator may not find the rumor

source, it actually selects a node near the rumor source. This

fact is known experimentally (cf. [3, Sect. V.B] and [6, Sect.

8]) and is not known analytically to the best of our knowledge.

In this paper, we focus on this fact and clarify it analytically.

Especially, we focus on regular trees and clarify that, with

quite high probability, the rumor source is within the distance

“3” from the node selected by the optimal estimator, where the

An earlier version was presented at SITA2014 [1]. In this paper, we
improved notations, added Corollary 1, revised proofs, and corrected the
bound of Theorem 3 and many errors.

distance is the number of edges of the unique path connecting

two nodes. This is clarified by the probability distribution of

the distance between the rumor source and the selected node.

II. RUMOR SOURCE IDENTIFICATION PROBLEM

In this section, we introduce the rumor source identification

problem and show some known results of this problem.

Let G be an undirected and connected graph. Let V(G)
denote the set of nodes and E(G) denote the set of edges of the

graph G. We denote the edge connecting two nodes i, j ∈ V(G)
by the set of nodes {i, j} ∈ E(G). In this paper, we consider

the case where G is a regular tree, that is, the graph does not

have any cycle, and all nodes have the same degree† δ ≥ 3.

We assume that the number of nodes is countably infinite in

order to avoid boundary effects.

A rumor spreads in a given regular tree G. Initially, the only

one node v1 ∈ V(G) (the rumor source) possesses a rumor.

The node possessing the rumor infects it to connected adjacent

nodes, and these nodes keep it forever. For {i, j} ∈ E(G),
let τij ∈ R be a real-valued random variable (RV) that

represents the rumor spreading time from the node i to the

node j after i gets the rumor. In this model, spreading times

{τij : {i, j} ∈ E(G)} are independent and drawn according

to the exponential distribution with the unit mean. Thus, the

cumulative distribution function F of τij is represented as

F (x) = 1 − e−x if x ≥ 0, and F (x) = 0 if x ≤ 0. This

spreading model is sometimes called the susceptible-infected

(SI) model [3].

Suppose that we observe a network consisted of n infected

nodes in the graph G at some time. Since the rumor spreads

to the connected adjacent nodes, this network is a connected

subgraph of G. We denote the RV of this network by Gn and

its realization as Gn. We only know an observed network and

do not know the realization of spreading times on edges. Then,

the goal of the rumor source identification problem is to find

the rumor source v1 among V(Gn) given Gn.

For this problem, the optimal estimator is the maximum

likelihood (ML) estimator ϕML(Gn) (cf. [3]) defined as

ϕML(Gn) , argmax
v∈V(Gn)

Pr{Gn|v},

†The line graph (δ = 2) is not concerned in this paper because this case is
somewhat difficult to treat in a unified manner. However, essential argument
for this case is the same as the case where δ ≥ 3.
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where ties broken uniformly at random and Pr{Gn|v} is the

probability observing Gn under the SI model assuming v is

the rumor source. For this optimal estimator, let Cn be the

correct detection probability when a graph of n infected nodes

is observed, i.e., Cn = Pr{ϕML(Gn) = v1}. Shah and Zaman

[7] showed the asymptotic behavior of Cn as the next theorem.

Theorem 1 ( [7, Theorem 3.1]): For a regular tree with

degree δ ≥ 3, it holds that

lim
n→∞

Cn = δI1/2

(

1

δ − 2
,
δ − 1

δ − 2

)

− (δ − 1), (1)

where Ix(a, b) is the regularized incomplete beta function

defined as Ix(a, b) ,
Γ(a+b)
Γ(a)Γ(b)

∫ x

0 ta−1(1 − t)b−1dt, and Γ(·)
is the Gamma function.

According to this theorem, when δ = 3, limn→∞ Cn =
0.25. Moreover, it rapidly converges to 1− ln(2) ≈ 0.307 as δ
goes to infinity (cf. [7, Corollary 1 and Figure 3]). This means

that, unfortunately, the correct detection probability is not very

high for regular trees.

III. MAIN RESULTS

In this section, we show that the ML estimator can select a

node near the rumor source with high probability.

To this end, we clarify the probability distribution of the

distance d (≥ 1) between the rumor source and the node

selected by the ML estimator. We denote this probability by

Dn(d) and define it as

Dn(d) , Pr{dG(V̂n, v1) = d}, (2)

where V̂n = ϕML(Gn) and dG(v, w) denotes the distance

between nodes v and w in the graph G. Note that Dn(0) = Cn.

When δ = 3, we can clarify a closed-form expression of

the asymptotic behavior of Dn(d) as the next theorem.

Theorem 2: Let δ = 3. Then, for any d ≥ 1, we have

lim
n→∞

Dn(d) = f(d),

where

f(d) = 3 · 2d−1(−1)d

×

(

1

4
+

d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

.

We denote the rising factorial x(x+1)(x+2) · · · (x+k−1)

by xk. The next theorem gives tight upper and lower bounds

of limn→∞ Dn(d) for more general degrees.

Theorem 3: For any δ ≥ 3, d ≥ 1, and m ≥ d+1, we have

0 ≤ lim
n→∞

Dn(d)− g(δ, d,m) ≤ ǫm,
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Fig. 1.
∑

d

l=0
f(l) and

∑
d

l=0
g(6, l, 40).

∑
3

l=0
f(l) ≈ 0.968.∑

3

l=0
g(6, l, 40) ≈ 0.985.

where ǫm = e2(8 + 5m+m2)2−m+3,

g(δ, d,m) = δ(δ − 1)d−1
m
∑

k=d+1

p1(δ, d, k)p2(δ, k),

p1(δ, d, k) =
2

(δ − 2)d
( 1
δ−2 )

k−1

( 2
δ−2 )

k
ζd−1
k−2

(

1

δ − 2

)

,

p2(δ, k) = I1/2

(

k − 1 +
1

δ − 2
,
δ − 1

δ − 2

)

− (δ − 1)I1/2

(

k − 1 +
δ − 1

δ − 2
,

1

δ − 2

)

,

ζdk (x) =
∑

1≤j1<j2<···<jd≤k

(

∏d
i=1

1
ji+x

)

, and ζ0k(x) = 1 for

any k ≥ 0.

ζdk (x) is a partial sum of the multiple Hurwitz zeta function

(cf. e.g. [8]) or the shifted multiple harmonic sums (cf. e.g.

[9]). We note that the difference of bounds (i.e., ǫm) does not

depend on degrees.

These theorems imply that the ML estimator can select a

node near the rumor source with high probability. This is clear

from the next corollary and its numerical results (Fig. 1).

Corollary 1: Let δ = 3. Then, for any d ≥ 0, we have

lim
n→∞

Pr{dG(V̂n, v1) ≤ d} =

d
∑

l=0

f(l).

More generally, for any δ ≥ 3, d ≥ 0, and m ≥ d + 1, we

have

0 ≤ lim
n→∞

Pr{dG(V̂n, v1) ≤ d} −
d
∑

l=0

g(δ, l,m) ≤ d · ǫm.

Here, f(0) and g(δ, 0,m) denote the right-hand side of (1).

Proof: By noticing that Pr{dG(V̂n, v1) ≤ d} =
∑d

l=0 Dn(l), the corollary is immediately obtained by The-

orems 1-3.

Since ǫ40 ≈ 10−7, Fig. 1 gives almost exact numerical

results of limn→∞ Pr{dG(V̂n, v1) ≤ d}. We note that nu-

merical results for other degrees δ are almost the same (see

Fig. 2). Thus, these results show that the rumor source is

within the distance 3 from the node selected by the ML

estimator with quite high probability. We note that Khim

and Loh [6, Corollary 2] gave another lower bound of

limn→∞ Pr{dG(V̂n, v1) ≤ d}. However, it is quite looser than

our bound and is zero at least values of parameters d and δ
are within the rage in Fig. 1 and Fig. 2.
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Fig. 2.
∑

d

l=0
f(l) (i.e., the case where δ = 3) and

∑
d

l=0
g(δ, l, 40) (i.e.,

the case where δ ≥ 4).

IV. PROOFS OF THEOREMS

In this section, we prove our main theorems. We will

denote n-length sequences of RVs (X1, X2, · · · , Xn) and its

realizations (x1, x2, · · · , xn) by Xn and xn, respectively. For

the sake of brevity, we denote V(G) by V and V(Gn) by Vn.

For any node v ∈ V in a regular tree with degree δ ≥ 3,

there are δ neighbors. Thus, there are δ subtrees rooted at these

δ neighbors with the parent node v. In other words, the regular

tree is divided into these δ subtrees and the node v. Let Xj(v)
be the number of infected nodes in the jth subtree among those

subtrees (j = 1, 2 · · · , δ). When v is not the rumor source, let

δth subtree contain the rumor source v1. Note that, if v is an

infected node, we have
∑δ

j=1 Xj(v) = n−1. The next lemma

is a key lemma to prove our main theorems.

Lemma 1: For a node v ∈ V , let X(v) =
max1≤j≤δ{Xj(v)}. Then, we have

Pr{V̂n = v|v ∈ Vn, X(v) < n/2} = 1,

Pr{V̂n = v|v ∈ Vn, X(v) = n/2} = 1/2,

Pr{V̂n = v|v ∈ Vn, X(v) > n/2} = 0.

Since this lemma can be obtained by [10, Proposition 1]

(see also [10, Lemma 6]), we prove this in Appendix C.

We denote the set of nodes with distance d (≥ 1) from the

rumor source by V(d). Note that the number of elements of

V(d) is δ(δ − 1)d−1. Then, Dn(d) can be represented as

Dn(d) = Pr{dG(V̂n, v1) = d}

= Pr{V̂n ∈ V(d)}

=
∑

v(d)∈V(d)

Pr{V̂n = v(d)}

=
∑

v(d)∈V(d)

Pr{v(d) ∈ Vn, V̂n = v(d)}

=
∑

v(d)∈V(d)

(

Pr{v(d) ∈ Vn, V̂n = v(d), X(v(d)) < n/2}

+ Pr{v(d) ∈ Vn, V̂n = v(d), X(v(d)) = n/2}

+Pr{v(d) ∈ Vn, V̂n = v(d), X(v(d)) > n/2}
)

=
∑

v(d)∈V(d)

(

Pr{v(d) ∈ Vn, X(v(d)) < n/2}

+1/2Pr{v(d) ∈ Vn, X(v(d)) = n/2}
)

, (3)

where the last equality comes from Lemma 1.

On the other hand, let {Vi}∞i=1 be the sequence of RVs each

representing ith infected node, where V1 = v1 with probability

1. Then, we have Vn = {V1, V2, · · · , Vn}. This implies that the

event {v(d) ∈ Vn} is equal to the event ∪n
k=d+1{Vk = v(d)}.

Hence, we have

Pr{v(d) ∈ Vn, X(v(d)) < n/2}

= Pr{∪n
k=d+1{Vk = v(d)}, X(v(d)) < n/2}

= Pr{∪n
k=d+1{Vk = v(d), X(v(d)) < n/2}}

=
n
∑

k=d+1

Pr{Vk = v(d), X(v(d)) < n/2}

=

⌈n/2⌉
∑

k=d+1

Pr{Vk = v(d), X(v(d)) < n/2}

=

⌈n/2⌉
∑

k=d+1

∑

xδ:
∑δ

j=1 xj=n−1,

max1≤j≤δ{xj}<n/2

Pr{Vk = v(d), Xδ(v(d)) = xδ}, (4)

where Xδ(v) = (X1(v), X2(v), · · · , Xδ(v)). We also have

Pr{v(d) ∈ Vn, X(v(d)) = n/2}

=

⌊n/2⌋+1
∑

k=d+1

∑

xδ:
∑δ

j=1 xj=n−1,

max1≤j≤δ{xj}=n/2

Pr{Vk = v(d), Xδ(v(d)) = xδ}.

Thus, we need to obtain closed-form expressions of

Pr{Vk = v(d)} and Pr{Xδ(v(d)) = xδ|Vk = v(d)}.

A. Closed-Form Expression of Pr{Vk = v(d)}

Let N (v) be the set of neighboring nodes of v in the graph

G. Suppose that the set V̂ of nodes are infected with a rumor,

and any other nodes are not infected. Then, we denote the

set of boundary nodes which may be infected by the infected

nodes V̂ by B(V̂), i.e., B(V̂) = {∪v∈V̂ N (v)}\V̂ . Let Sn be

the set of ordered n nodes on possible paths of infection,

i.e., Sn = {vn ∈ Vn : vi+1 ∈ B({v1, · · · , vi})}, where

vn = (v1, v2, · · · , vn). Since {τij} are independent and these

have the memoryless property, an infecting node is uniformly

selected from boundary nodes at each step. Hence, we have

for any vn−1 ∈ Sn−1 and vn ∈ B({v1, · · · , vn−1}),

Pr{Vn = vn|V
n−1 = vn−1} =

1

|B({v1, · · · , vn−1})|

=
1

(n− 1)δ − 2(n− 2)
. (5)



Let (v(d,0), v(d,1), · · · , v(d,d)) be the (shortest) path from

the rumor source v1 = v(d,0) to v(d) = v(d,d). Then, for d ≥ 1
and k ≥ d + 1, the kth infected node is v(d) if and only if

the following event occurs for some j1, j2, · · · , jd such that

2 ≤ j1 < j2 < · · · < jd−1 < jd = k:

{Vj1 = v(d,1), Vj2 = v(d,2), · · · , Vjd = v(d,d)}

= {V2 6= v(d,1), V3 6= v(d,1), · · · , Vj1−1 6= v(d,1), Vj1 = v(d,1),

Vj1+1 6= v(d,2), · · · , Vj2−1 6= v(d,2), Vj2 = v(d,2), · · · ,

Vjd−1+1 6= v(d,d), · · · , Vjd−1 6= v(d,d), Vjd = v(d,d)}

= ∩d
i=1

{

∩ji−1
l=ji−1+1 {Vl 6= v(d,i)}, Vji = v(d,i)

}

= ∩d
i=1Ei,

where Ei = {∩ji−1
l=ji−1+1{Vl 6= v(d,i)}, Vji = v(d,i)} and j0 =

1. Hence, if d ≥ 2 and k ≥ d+ 1, we have

Pr{Vk = v(d)}

=
∑

2≤j1<j2<···<jd−1<jd=k

Pr
{

∩d
i=1Ei

}

=
∑

2≤j1<j2<···<jd−1≤k−1

Pr
{

∩d
i=1Ei

}

(a)
=

∑

2≤j1<j2<···<jd−1≤k−1

d
∏

i=1

Pr
{

Ei| ∩
i−1
m=1 Em

}

(b)
=

∑

2≤j1<j2<···<jd−1≤k−1

d
∏

i=1

(

1

(ji − 1)δ − 2(ji − 2)

×

ji−1
∏

l=ji−1+1

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l − 2)



 (6)

=
∑

2≤j1<j2<···<jd−1≤k−1

d
∏

i=1

(

1

(ji − 1)δ − 2(ji − 2)− 1

×

ji
∏

l=ji−1+1

(l − 1)δ − 2(l− 2)− 1

(l − 1)δ − 2(l − 2)

)

=
∑

2≤j1<j2<···<jd−1≤k−1

( d
∏

i=1

1

(ji − 1)δ − 2(ji − 2)− 1

)

×

( d
∏

i=1

ji
∏

l=ji−1+1

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l − 2)

)

=
∑

2≤j1<j2<···<jd−1≤k−1

( d
∏

i=1

1

(ji − 1)δ − 2(ji − 2)− 1

)

×

jd
∏

l=2

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l − 2)

=

(

k
∏

l=2

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l− 2)

)

∑

2≤j1<j2<···<jd−1≤k−1

×

(

d
∏

i=1

1

(ji − 1)δ − 2(ji − 2)− 1

)

=

( k
∏

l=2

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l− 2)

)

1

(k − 1)δ − 2(k − 2)− 1

×
∑

2≤j1<j2<···<jd−1≤k−1

( d−1
∏

i=1

1

(ji − 1)δ − 2(ji − 2)− 1

)

=

∏k−1
l=2 (l − 1)δ − 2(l− 2)− 1
∏k

l=2(l − 1)δ − 2(l − 2)

∑

2≤j1<j2<···<jd−1≤k−1

×

( d−1
∏

i=1

1

(ji − 1)δ − 2(ji − 2)− 1

)

=

∏k−1
l=2 (l − 1)(δ − 2) + 1

∏k
l=2(l − 1)(δ − 2) + 2

×
∑

2≤j1<j2<···<jd−1≤k−1

( d−1
∏

i=1

1

(ji − 1)(δ − 2) + 1

)

=

∏k−1
l=2 (δ − 2)

(

l − 1 + 1
δ−2

)

∏k
l=2(δ − 2)

(

l − 1 + 2
δ−2

)

×
∑

2≤j1<j2<···<jd−1≤k−1

( d−1
∏

i=1

1

(δ − 2)
(

ji − 1 + 1
δ−2

)

)

=
(δ − 2)k−2

(δ − 2)k−1

∏k−1
l=2

(

l − 1 + 1
δ−2

)

∏k
l=2

(

l − 1 + 2
δ−2

)

1

(δ − 2)d−1

×
∑

2≤j1<j2<···<jd−1≤k−1

( d−1
∏

i=1

1

ji − 1 + 1
δ−2

)

=
1

(δ − 2)d

∏k−1
l=2

(

l − 1 + 1
δ−2

)

∏k
l=2

(

l − 1 + 2
δ−2

)

×
∑

2≤j1<j2<···<jd−1≤k−1

( d−1
∏

i=1

1

ji − 1 + 1
δ−2

)

=
1

(δ − 2)d

∏k−2
l=1

(

l + 1
δ−2

)

∏k−1
l=1

(

l + 2
δ−2

)

×
∑

1≤j1<j2<···<jd−1≤k−2

( d−1
∏

i=1

1

ji +
1

δ−2

)

=
2

(δ − 2)d

1
δ−2

∏k−2
l=1

(

l + 1
δ−2

)

2
δ−2

∏k−1
l=1

(

l + 2
δ−2

)

×
∑

1≤j1<j2<···<jd−1≤k−2

( d−1
∏

i=1

1

ji +
1

δ−2

)

=
2

(δ − 2)d

∏k−2
l=0

(

l + 1
δ−2

)

∏k−1
l=0

(

l + 2
δ−2

)

×
∑

1≤j1<j2<···<jd−1≤k−2

( d−1
∏

i=1

1

ji +
1

δ−2

)



=
2

(δ − 2)d

(

1
δ−2

)k−1

(

2
δ−2

)k
ζd−1
k−2

( 1

δ − 2

)

= p1(δ, d, k), (7)

where (a) comes from the chain rule of the probability, and

(b) comes from Appendix A.

The remaining case is that d = 1 and k ≥ d + 1 (= 2). In

this case, we have

Pr{Vk = v(d)}

= Pr {E1}

(a)
=

(

1

(j1 − 1)δ − 2(j1 − 2)

×

j1−1
∏

l=j0+1

(l − 1)δ − 2(l− 2)− 1

(l − 1)δ − 2(l − 2)





=

(

1

(j1 − 1)δ − 2(j1 − 2)− 1

×

j1
∏

l=j0+1

(l − 1)δ − 2(l− 2)− 1

(l − 1)δ − 2(l − 2)





=

(

1

(k − 1)δ − 2(k − 2)− 1

k
∏

l=2

(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l− 2)

)

=

(

1

(k − 1)(δ − 2) + 1

k
∏

l=2

(l − 1)(δ − 2) + 1

(l − 1)(δ − 2) + 2

)

=

(

2

(k − 1)(δ − 2) + 1

k
∏

l=1

(l − 1)(δ − 2) + 1

(l − 1)(δ − 2) + 2

)

=

(

2

δ − 2

1

k − 1 + 1
δ−2

k
∏

l=1

l − 1 + 1
δ−2

l − 1 + 2
δ−2

)

=

(

2

δ − 2

1

k − 1 + 1
δ−2

k−1
∏

l=0

l + 1
δ−2

l + 2
δ−2

)

=
2

δ − 2

∏k−2
l=0

(

l + 1
δ−2

)

∏k−1
l=0

(

l + 2
δ−2

)

=
2

δ − 2

(

1
δ−2

)k−1

(

2
δ−2

)k
, (8)

where (a) comes from Appendix A. Thus, by recalling that

ζd−1
k−2

(

1
δ−2

)

= 1 if d = 1 and k ≥ 2, (8) implies that (7) also

holds in this case.

Consequently, (7) holds for any d ≥ 1 and k ≥ d+ 1.

B. Closed-Form Expression of Pr{Xδ(v(d)) = xδ|Vk = v(d)}

Suppose that the kth infected node is vk. Since we consider

a regular tree, vk has δ neighboring nodes {vk,1, · · · , vk,δ}.

Let Yj(vk) be the number of infected nodes of the subtree

rooted at vk,j with the parent node vk after vk is infected. Let

the subtree rooted at vk,δ contain the rumor source. Thus, at

the time that vk is infected, it holds that Xδ(vk) = k − 1.

From then on, an infecting node is uniformly selected from

boundary nodes at each step. We note that Xj(vk) = Yj(vk)
for all j ∈ {1, 2, · · · , δ − 1}, and Xδ(vk) = Yδ(vk) + k − 1.

Then, numbers {Yj(vk)} are drawn according to the Pólya’s

urn model with δ colors balls (cf. [3] and [10]): Initially, bj
balls of color Cj (j = 1, 2, · · · , δ) are in the urn, where bj = 1
if j 6= δ and bj = (k− 1)(δ− 2)+ 1 if j = δ. At each step, a

single ball is uniformly drawn form the urn. Then, the drawn

ball is returned with additional m = δ − 2 balls of the same

color. Repeat this drawing process.

Yj(vk) corresponds to the number of times that the balls

of color Cj are drawn. According to [11, Chap. 4], when the

total number of drawing balls is n − k, the joint distribution

of Y δ(vk) = (Y1(vk), · · · , Yδ(vk)) is given by

Pr{Y δ(vk) = yδ}

=
(n− k)!

y1! · · · yδ!

∏δ
j=1 bj(bj +m) · · · (bj + (yj − 1)m)

b(b+m) · · · (b+ (n− k − 1)m)
, (9)

where b =
∑δ

j=1 bj and
∑δ

j=1 yj = n − k. We note that the

above probability only depends on n, k and δ.

Now, by definition, we have

Pr{Xδ(v(d)) = xδ|Vk = v(d)}

= Pr{Y δ(v(d)) = (x1, x2, · · · , xδ−1, xδ − k + 1)}. (10)

C. Proof of Theorem 2

When δ = 3, according to (7), (9) and (10), we have

Pr{Vk = v(d)} =
2

(k + 1)k
ζd−1
k−2(1), (11)

Pr{X3(v(d)) = x3|Vk = v(d)} =

(

x3

k−1

)

(

n+1
k+1

) , (12)

for any d ≥ 1 and k ≥ d+ 1.

When n is odd, we have Pr{v(d) ∈ Vn, X(v) = n/2} = 0.

Thus, we only consider the first term of (3). According to (7),

(9) and (10), (4) can be represented as

⌈n/2⌉
∑

k=d+1

2

(k + 1)k
ζd−1
k−2(1)

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k−1

)

(

n+1
k+1

)

=

(n+1)/2
∑

k=d+1

2

k + 1
ζd−1
k−2(1)

(

(n+3)/2
k+1

)

(

n+1
k+1

) ,

where the equality follows since

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k − 1

)

=

(n−1)/2
∑

x3=k−1

∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k − 1

)

=

(n−1)/2
∑

x3=k−1

(n−1)/2
∑

x2=(n−1)/2−x3

(

x3

k − 1

)



=

(n−1)/2
∑

x3=k−1

(x3 + 1)

(

x3

k − 1

)

= k

(n−1)/2
∑

x3=k−1

(

x3 + 1

k

)

= k

(

(n+ 3)/2

k + 1

)

.

Thus, we have

Dn(d) = 3 · 2d−1

(n+1)/2
∑

k=d+1

2

k + 1
ζd−1
k−2 (1)

(

(n+3)/2
k+1

)

(

n+1
k+1

) .

In a similar way, we have Dn(d) for even n as follows:

Dn(d) = 3 · 2d−1

n/2+1
∑

k=d+1

2

k + 1
ζd−1
k−2 (1)

×

(

n/2+1
k+1

)

+ n
2(n+2)

(

n/2+1
k

)

(

n+1
k+1

) .

This is because

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k − 1

)

+
1

2

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}=n/2

(

x3

k − 1

)

(a)
=

n/2−1
∑

x3=k−1

x3

(

x3

k − 1

)

+

n/2−1
∑

x3=k−1

(

x3

k − 1

)

+
n

4

(

n/2

k − 1

)

=





n/2−1
∑

x3=k−1

(x3 + 1)

(

x3

k − 1

)



+
n

4

k

n/2 + 1

(

n/2 + 1

k

)

=





n/2−1
∑

x3=k−1

(x3 + 1)

(

x3

k − 1

)



+ k
n

4

2

n+ 2

(

n/2 + 1

k

)

= k





n/2−1
∑

x3=k−1

(

x3 + 1

k

)



+ k
n

2(n+ 2)

(

n/2 + 1

k

)

= k

(

n/2 + 1

k + 1

)

+ k
n

2(n+ 2)

(

n/2 + 1

k

)

,

where (a) follows since

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k − 1

)

=

n/2−1
∑

x3=k−1

∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}<n/2

(

x3

k − 1

)

=

n/2−1
∑

x3=k−1

n/2−1
∑

x2=n/2−x3

(

x3

k − 1

)

=

n/2−1
∑

x3=k−1

x3

(

x3

k − 1

)

,

and

∑

x3:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}=n/2

(

x3

k − 1

)

=

n/2
∑

x3=k−1

∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}=n/2

(

x3

k − 1

)

=

n/2−1
∑

x3=k−1

∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}=n/2

(

x3

k − 1

)

+
∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤3{xj}=n/2,x3=n/2

(

n/2

k − 1

)

=

n/2−1
∑

x3=k−1

∑

x2:
∑3

i=1
xi=n−1,

max1≤j≤2{xj}=n/2

(

x3

k − 1

)

+
∑

x2:x1+x2=n/2−1

(

n/2

k − 1

)

=

n/2−1
∑

x3=k−1

2

(

x3

k − 1

)

+
n

2

(

n/2

k − 1

)

.

Since ζdk (1) = ζdk+1(0)− ζd−1
k (1) for any d ≥ 1 and k ≥ d

(see Appendix D), we have for any d ≥ 2 and k ≥ d+ 1,

ζd−1
k−2(1) =ζd−1

k−1(0)− ζd−2
k−2(1)

=ζd−1
k−1(0)− ζd−2

k−1(0) + ζd−3
k−2(1)

=ζd−1
k−1(0)− ζd−2

k−1(0) + ζd−3
k−1(0)− ζd−4

k−2(1)

...

=

d
∑

l=1

(−1)d−lζl−1
k−1(0),

where ζ0k−1(0) = 1. Note that this holds even if d = 1 and

k ≥ d+ 1. Since it holds [12], [13] that

ζl−1
k−1(0) =

1

(k − 1)!

[

k

l

]

for any l ≥ 1 and k ≥ l, we have for any d ≥ 1 and k ≥ d+1,

ζd−1
k−2 (1) =

d
∑

l=1

(−1)d−lζl−1
k−1(0)

=

d
∑

l=1

(−1)d−l 1

(k − 1)!

[

k

l

]

= (−1)d−k 1

(k − 1)!

d
∑

l=1

(−1)k−l

[

k

l

]

=
(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l),



where [kl ] is the unsigned Stirling numbers of the first kind

[14] and s(k, l) is the signed Stirling numbers of the first kind

[14] defined as s(k, l) , (−1)k−l
[

k
l

]

. Thus, we have for odd

n ≥ 3,

Dn(d) = 3 · 2d−1

(n+1)/2
∑

k=d+1

2

k + 1

(

(n+3)/2
k+1

)

(

n+1
k+1

)

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l),

(13)

and for even n ≥ 2,

Dn(d) = 3 · 2d−1

n/2+1
∑

k=d+1

2

k + 1

(

n/2+1
k+1

)

+ n
2(n+2)

(

n/2+1
k

)

(

n+1
k+1

)

×
(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l). (14)

Now, the well-known Lebesgue’s dominated convergence

theorem and the fact that

lim
m→∞

(

((2m+1)+3)/2
k+1

)

(

(2m+1)+1
k+1

) = lim
m→∞

(

m+2
k+1

)

(

2m+2
k+1

)

=
1

2k+1

and

lim
m→∞

(

(2m)/2+1
k+1

)

+ (2m)
2((2m)+2)

(

(2m)/2+1
k

)

(

(2m)+1
k+1

)

lim
m→∞

(

m+1
k+1

)

+ m
2(m+1)

(

m+1
k

)

(

2m+1
k+1

)

=
1

2k+1
,

implies (see a precise derivation in Appendix E)

lim
n→∞

Dn(d) = 3 · 2d−1
∞
∑

k=d+1

1

2k
1

k + 1

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l).

(15)

Thus, we can evaluate the probability as follows:

lim
n→∞

Dn(d)

= 3 · 2d−1
∞
∑

k=d+1

(−1)d+k

2k
1

k + 1

1

(k − 1)!

d
∑

l=1

s(k, l)

= 3 · 2d−1(−1)d
d
∑

l=1

∞
∑

k=d+1

k

k + 1

(− 1
2 )

k

k!
s(k, l)

= 3 · 2d−1(−1)d
d
∑

l=1

(

−
d
∑

k=l

k

k + 1

(− 1
2 )

k

k!
s(k, l)

+

∞
∑

k=l

k

k + 1

(− 1
2 )

k

k!
s(k, l)

)

(a)
= 3 · 2d−1(−1)d

d
∑

l=1

(

−
d
∑

k=l

k

k + 1

(− 1
2 )

k

k!
s(k, l)

+(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

= 3 · 2d−1(−1)d

(

−
d
∑

l=1

d
∑

k=l

k

k + 1

(− 1
2 )

k

k!
s(k, l)

+
d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

= 3 · 2d−1(−1)d

(

−
d
∑

k=1

k
∑

l=1

k

k + 1

(− 1
2 )

k

k!
s(k, l)

+
d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

= 3 · 2d−1(−1)d

(

−
d
∑

k=1

k

k + 1

(− 1
2 )

k

k!

k
∑

l=1

s(k, l)

+
d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

(b)
= 3 · 2d−1(−1)d

(

−
1

2

(− 1
2 )

1

+

d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

= 3 · 2d−1(−1)d
(

1

4

+

d
∑

l=1

(−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

))

= f(d),

where (a) comes from Appendix B, and (b) follows since
∑k

l=1 s(k, l) = 1 if k = 1 and
∑k

l=1 s(k, l) = 0 if k 6= 1.

This completes the proof of Theorem 2.

D. Proof of Theorem 3

In this section, we denote I1/2(k − 1 + δ−1
δ−2 ,

1
δ−2 ) by

I(1)(δ, k) and I1/2(k − 1 + 1
δ−2 ,

δ−1
δ−2 ) by I(2)(δ, k).

Let Ej(v
(d)) , {Xj(v

(d)) < n/2}. Due to (3), we have

Pr{v(d) ∈ Vn, V̂n = v(d)}

≥ Pr
{

v(d) ∈ Vn, X(v(d)) < n/2
}

≥ Pr{v(d) ∈ Vn,∩
δ
j=1Ej(v

(d))}

=

⌈n/2⌉
∑

k=d+1

Pr
{

Vk = v(d),∩δ
j=1Ej(v

(d))
}

=

⌈n/2⌉
∑

k=d+1

Pr
{

Vk = v(d)
}

Pr
{

∩δ
j=1 Ej(v

(d))|Vk = v(d)
}

(a)

≥

⌈n/2⌉
∑

k=d+1

Pr
{

Vk = v(d)
}

(

Pr
{

Eδ(v
(d))|Vk = v(d)

}

− Pr
{

∪δ−1
j=1 [Ej(v

(d))]c|Vk = v(d)
}

)



≥

⌈n/2⌉
∑

k=d+1

Pr
{

Vk = v(d)
}

(

Pr
{

Eδ(v
(d))|Vk = v(d)

}

−
δ−1
∑

j=1

Pr
{

[Ej(v
(d))]c|Vk = v(d)

}

)

(b)
=

⌈n/2⌉
∑

k=d+1

Pr{Vk = v(d)}
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

, (16)

where (a) comes from the fact that

Pr{∩m
i=1Ai} ≥ Pr{Am} − Pr{∪m−1

i=1 Ac
i},

and (b) comes from the symmetric property of Ei(v(d)) for all

1 ≤ i ≤ δ − 1. Similarly, by letting Fj(v
(d)) , {Xj(v

(d)) ≤
n/2}, we have

Pr{v(d) ∈ Vn, V̂n = v(d)}

≤ Pr
{

v(d) ∈ Vn, X(v(d)) ≤ n/2
}

≤ Pr{∪n
k=d+1Vk = v(d),∩δ

i=1Fi(v
(d))}

=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d),∩δ
i=1Fi(v

(d))}

=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}Pr{∩δ
i=1Fi(v

(d))|Vk = v(d)}

=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}

×

(

1− Pr{∪δ
i=1[Fi(v

(d))]c|Vk = v(d)}

)

(a)
=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}

×

(

1−
δ
∑

i=1

Pr{[Fi(v
(d))]c|Vk = v(d)}

)

=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

, (17)

where (a) comes from the fact that events [F1(v
(d))]c,

[F2(v
(d))]c, · · · , [Fδ(v

(d))]c are disjoint.

By using the same way as in [10, Chapter III.B] (see also [7,

Section 4.1.5]), we have (see a precise derivation in Appendix

F)

lim
n→∞

Pr{E1(v
(d))|Vk = v(d)} = lim

n→∞
Pr{F1(v

(d))|Vk = v(d)}

= 1− I(1)(δ, k), (18)

lim
n→∞

Pr{Eδ(v
(d))|Vk = v(d)} = lim

n→∞
Pr{Fδ(v

(d))|Vk = v(d)}

= I(2)(δ, k). (19)

According to these equalities, (16), (17), and the dominated

convergence theorem, we have (see a precise derivation in

Appendix G)

lim
n→∞

Dn(d) = δ(δ − 1)d−1
∞
∑

k=d+1

p1(δ, d, k)

× (I(2)(δ, k)− (δ − 1)I(1)(δ, k)) (20)

≥ g(δ, d,m), ∀m ≥ d+ 1,

where g(δ, d,m) is a partial sum of (20), and the inequality

comes from the fact that (according to (17), (18), and (19))

0 ≤ lim
n→∞

Pr{Vk = v(d),∩δ
i=1Fi(v

(d))}

= lim
n→∞

Pr{Vk = v(d)}
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

= p1(δ, d, k)(I
(2)(δ, k)− (δ − 1)I(1)(δ, k)), ∀k ≥ d+ 1.

On the other hand, we have

g(δ, d, l)− g(δ, d, l− 1)

= δ(δ − 1)d−1p1(δ, d, l)(I
(2)(δ, l)− (δ − 1)I(1)(δ, l))

(a)

≤ I(2)(δ, l)− (δ − 1)I(1)(δ, l)

≤ I(2)(δ, l)

= I1/2

(

l − 1 +
1

δ − 2
,
δ − 1

δ − 2

)

(b)

≤ 4e2l(l + 1)2−l+1,

where (a) comes from the fact that

1 ≥ Pr
{

∪v(d)∈V(d){Vl = v(d)}
}

=
∑

v(d)∈V(d)

Pr{Vl = v(d)}

= δ(δ − 1)d−1p1(δ, d, l),

and (b) comes from the same (but a bit improved) inequality

in [7, Sect. 4.5]. Thus, for any M ≥ m+ 1, we have

g(δ, d,M)− g(δ, d,m) =

M
∑

l=m+1

(g(δ, d, l)− g(δ, d, l− 1))

≤
M
∑

l=m+1

4e2l(l + 1)2−l+1.

Since limM→∞ g(δ, d,M) = limn→∞ Dn(d), we have

0 ≤ lim
n→∞

Dn(d)− g(δ, d,m)

= lim
M→∞

g(δ, d,M)− g(δ, d,m)

= lim
M→∞

(g(δ, d,M)− g(δ, d,m))

≤
∞
∑

l=m+1

4e2l(l + 1)2−l+1

= e2(8 + 5m+m2)2−m+3, ∀m ≥ d+ 1.

This completes the proof of Theorem 3.



APPENDIX A

We have

Pr{Ei| ∩
i−1
m=1 Em}

= Pr
{

∩ji−1
l=ji−1+1 {Vl 6= v(d,i)}, Vji = v(d,i)

∣

∣ ∩i−1
m=1 Em

}

= Pr

{

Vji = v(d,i)
∣

∣

∣

∣

ji−1
⋂

l=ji−1+1

{Vl 6= v(d,i)},
i−1
⋂

m=1

Em

}

× Pr

{ ji−1
⋂

l=ji−1+1

{Vl 6= v(d,i)}

∣

∣

∣

∣

i−1
⋂

m=1

Em

}

= Pr

{

Vji = v(d,i)
∣

∣

∣

∣

ji−1
⋂

l=ji−1+1

{Vl 6= v(d,i)},
i−1
⋂

m=1

Em

}

× Pr

{

{Vji−1+1 6= v(d,i)}, · · · , {Vji−1 6= v(d,i)}

∣

∣

∣

∣

i−1
⋂

m=1

Em

}

= Pr{Vji = v(d,i)| ∩ji−1
l=ji−1+1 {Vl 6= v(d,i)},∩i−1

m=1Em}

×

ji−1
∏

l=ji−1+1

Pr{Vl 6= v(d,i)| ∩l−1
m=ji−1+1 {Vm 6= v(d,i)},

∩i−1
m=1 Em}, (21)

where we use the converntion that if ji = ji−1 + 1,

ji−1
∏

l=ji−1+1

Pr{Vl 6= v(d,i)| ∩l−1
m=ji−1+1 {Vm 6= v(d,i)},∩i−1

m=1Em}

= 1.

On the other hand, we have

Pr{Vl 6= v(d,i)| ∩l−1
m=ji−1+1 {Vm 6= v(d,i)},∩i−1

m=1Em}

= Pr{Vl 6= v(d,i)| ∪vl−1∈Pl,i
{V l−1 = vl−1}}

=
Pr{Vl 6= v(d,i),

⋃

vl−1∈Pl,i
{V l−1 = vl−1}}

Pr{
⋃

vl−1∈Pl,i
{V l−1 = vl−1}}

=

∑

vl−1∈Pl,i
Pr{Vl 6= v(d,i), V l−1 = vl−1}

∑

vl−1∈Pl,i
Pr{V l−1 = vl−1}

=
∑

vl−1∈Pl,i

Pr{Vl 6= v(d,i)|V l−1 = vl−1}Pr{V l−1 = vl−1}
∑

vl−1∈Pl,i
Pr{V l−1 = vl−1}

=
∑

vl−1∈Pl,i

(1 − Pr{Vl = v(d,i)|V l−1 = vl−1})

×
Pr{V l−1 = vl−1}

∑

vl−1∈Pl,i
Pr{V l−1 = vl−1}

(a)
=

(l − 1)δ − 2(l− 2)− 1

(l − 1)δ − 2(l − 2)

∑

vl−1∈Pl,i
Pr{V l−1 = vl−1}

∑

vl−1∈Pl,i
Pr{V l−1 = vl−1}

=
(l − 1)δ − 2(l − 2)− 1

(l − 1)δ − 2(l− 2)
, (22)

where Pl,i = {vl−1 ∈ Sl−1 : vjh = v(d,h), ∀h ∈ {1, · · · , i −
1}, vm 6= v(d,i), ∀m ∈ {ji−1 +1, · · · , l− 1}}, and (a) comes

from (5). Similarly, we have

Pr{Vji = v(d,i)| ∩ji−1
l=ji−1+1 Vl 6= v(d,i),∩i−1

m=1Em}

= Pr{Vji = v(d,i)| ∪vji−1∈Pi
{V ji−1 = vji−1}}

=
Pr{Vji = v(d,i),∪vji−1∈Pi

{V ji−1 = vji−1}}

Pr{∪vji−1∈Pi
{V ji−1 = vji−1}}

=

∑

vji−1∈Pi
Pr{Vji = v(d,i), V ji−1 = vji−1}

∑

vji−1∈Pi
Pr{V ji−1 = vji−1}

=
∑

vji−1∈Pi

Pr{Vji = v(d,i)|V ji−1 = vji−1}

×
Pr{V ji−1 = vji−1}

∑

vji−1∈Pi
Pr{V ji−1 = vji−1}

=
1

(ji − 1)δ − 2(ji − 2)
, (23)

where

Pi ,
{

vji−1 ∈ Sji−1 : vjh = v(d,h) ∀h ∈ {1, · · · , i− 1},

vl 6= v(d,i) ∀l ∈ {ji−1 + 1, · · · , ji − 1}
}

.

By substituting (22) and (23) into (21), we have (6).

APPENDIX B

Let f(u, z) be a double series defined as

f(u, z) ,
∞
∑

k,l=0

k − 1

k!
s(k − 1, l)ulzk,

where we assume that s(−1, l) = 0. First of all, we show that

f(u, z) is absolutely convergent.

If we assume that
[

−1
l

]

= 0, we have

∞
∑

k=0

∞
∑

l=0

k

k!

[

k − 1

l

]

ulzk

=
∞
∑

k=1

∞
∑

l=0

k

k!

[

k − 1

l

]

ulzk

= z

∞
∑

k=0

∞
∑

l=0

k + 1

(k + 1)!

[

k

l

]

ulzk

= z

∞
∑

k=0

∞
∑

l=0

1

k!

[

k

l

]

ulzk

= z

∞
∑

k=0

1

k!

(

∞
∑

l=0

[

k

l

]

ul

)

zk

(a)
= z

∞
∑

k=0

1

k!
u(u+ 1) · · · (u + k − 1)zk

= z
∞
∑

k=0

1

k!
(−u)(−u− 1) · · · (−u− k + 1)(−1)kzk

= z

∞
∑

k=0

(−u)(−u− 1) · · · (−u− k + 1)

k!
(−z)k



= z

∞
∑

k=0

(

−u

k

)

(−z)k

(b)
= z(1− z)−u (∀u ∈ R, ∀z ∈ R s.t. |z| < 1),

where
(

a
k

)

denotes the generalized binomial coefficient defined

as for any real number a ∈ R,

(

a

k

)

,
a(a− 1) · · · (a− k + 1)

k!
,

(a) follows since

xk =

∞
∑

l=0

[

k

l

]

xl,

and (b) comes from the Maclaurin series for (1 + z)a which

is convergent if |z| < 1. Since |z(1 − z)−u| < ∞ for any

u ∈ R and z ∈ R such that |z| < 1, the above iterated series

is convergent. According to [15, Proposition 212], if u ≥ 0
and z ∈ [0, 1), the double series is also convergent, i.e.,

∞
∑

k,l=0

k

k!

[

k − 1

l

]

ulzk =

∞
∑

k=0

∞
∑

l=0

k

k!

[

k − 1

l

]

ulzk < ∞.

Since for any u, z, k, l ≥ 0,

0 ≤
k − 1

k!

[

k − 1

l

]

ulzk ≤
k

k!

[

k − 1

l

]

ulzk,

we also have, according to [15, Corollary 210],

∞
∑

k,l=0

k − 1

k!

[

k − 1

l

]

ulzk < ∞ (∀u ≥ 0, ∀z ∈ [0, 1)).

Now, for any u ∈ R and z ∈ R such that |z| < 1, we have

∞
∑

k,l=0

∣

∣

∣

∣

k − 1

k!
s(k − 1, l)ulzk

∣

∣

∣

∣

=

∞
∑

k,l=0

∣

∣

∣

∣

k − 1

k!
(−1)k−1−l

[

k − 1

l

]

ulzk
∣

∣

∣

∣

=
∞
∑

k,l=0

k − 1

k!

[

k − 1

l

]

|u|l|z|k < ∞.

This means that f(u, z) is absolutely convergent.

We note that, according to this fact and [15, Proposition

213], iterated series are equivalent for any u ∈ R and z ∈ R

such that |z| < 1, i.e.,

∞
∑

l=0

∞
∑

k=0

k − 1

k!
s(k − 1, l)zkul =

∞
∑

k=0

∞
∑

l=0

k − 1

k!
s(k − 1, l)ulzk.

(24)

Let

fl(z) ,

∞
∑

k=0

k − 1

k!
s(k − 1, l)zk.

Since

1

z
fl(z) =

1

z

∞
∑

k=0

k − 1

k!
s(k − 1, l)zk

=
1

z

∞
∑

k=1

k − 1

k!
s(k − 1, l)zk

=
1

z
z

∞
∑

k=0

k

(k + 1)!
s(k, l)zk

=

∞
∑

k=l

k

k + 1

zk

k!
s(k, l),

we need a closed-form expression of 1
z fl(z) for z = − 1

2 . To

this end, we evaluate the following series:
∞
∑

l=0

fl(z)u
l

=

∞
∑

l=0

∞
∑

k=0

k − 1

k!
s(k − 1, l)zkul

(a)
=

∞
∑

k=0

∞
∑

l=0

k − 1

k!
s(k − 1, l)ulzk

=

∞
∑

k=1

k − 1

k!

(

∞
∑

l=0

s(k − 1, l)ul

)

zk

(b)
=

∞
∑

k=1

k − 1

k!
u(u− 1) · · · (u− k + 2)zk

=
∞
∑

k=1

k − 1

u+ 1

(u+ 1)u(u− 1) · · · (u − k + 2)

k!
zk

=

∞
∑

k=1

k − 1

u+ 1

(

u+ 1

k

)

zk

(c)
=

1

u+ 1
+

∞
∑

k=0

k − 1

u+ 1

(

u+ 1

k

)

zk

=
1

u+ 1
+

∞
∑

k=0

k

u+ 1

(

u+ 1

k

)

zk

−
∞
∑

k=0

1

u+ 1

(

u+ 1

k

)

zk

=
1

u+ 1
+ z

∞
∑

k=0

k + 1

u+ 1

(

u+ 1

k + 1

)

zk

−
∞
∑

k=0

1

u+ 1

(

u+ 1

k

)

zk

=
1

u+ 1
+ z

∞
∑

k=0

(

u

k

)

zk −
1

u+ 1

∞
∑

k=0

(

u+ 1

k

)

zk

(d)
=

1

u+ 1
+ z(1 + z)u −

1

u+ 1
(1 + z)u+1

=
1

u+ 1
+ z(1 + z)u − (1 + z)

1

u+ 1
(1 + z)u

(e)
=

∞
∑

l=0

(−1)lul + z

∞
∑

l=0

(ln(1 + z))l

l!
ul



− (1 + z)

(

∞
∑

l=0

(−1)lul

)(

∞
∑

l=0

(ln(1 + z))l

l!
ul

)

=
∞
∑

l=0

(−1)lul + z
∞
∑

l=0

(ln(1 + z))l

l!
ul

− (1 + z)

∞
∑

l=0

(

l
∑

m=0

(ln(1 + z))m

m!
(−1)l−m

)

ul

=

∞
∑

l=0

(−1)lul + z

∞
∑

l=0

(ln(1 + z))l

l!
ul

− (1 + z)

∞
∑

l=0

(−1)l

(

l
∑

m=0

(− ln(1 + z))m

m!

)

ul

=

∞
∑

l=0

(

z
(ln(1 + z))l

l!

+(−1)l

(

1− (1 + z)

l
∑

m=0

(− ln(1 + z))m

m!

))

ul,

where (a) comes from (24), (b) follows since
∑∞

l=0 s(k, l)u
l =

u(u−1) · · · (u−k+1), (c) comes from the fact that
(

u+1
k

)

= 1
if k = 0, (d) comes from Maclaurin series with respect to z
which are convergent if |z| < 1, and (e) comes from Maclaurin

series with respect to u which are convergent if |u| < 1.

Thus, for any z, u ∈ R such that |z| < 1 and |u| < 1, we

have
∞
∑

l=0

fl(z)u
l =

∞
∑

l=0

(

z
(ln(1 + z))l

l!

+(−1)l

(

1− (1 + z)

l
∑

m=0

(− ln(1 + z))m

m!

))

ul.

Since two power series are convergent in a neighborhood

of 0, all coefficients are equal (see [16, Corollary 3.8]). This

means that

fl(z) = z
(ln(1 + z))l

l!

+ (−1)l

(

1− (1 + z)
l
∑

m=0

(− ln(1 + z))m

m!

)

,

where |z| < 1. Thus, we have

1

z
fl(z) =

(ln(1 + z))l

l!

+ (−1)l

(

1

z
−

1 + z

z

l
∑

m=0

(− ln(1 + z))m

m!

)

.

Especially, when z = − 1
2 , we have

− 2fl(−1/2)

=
(ln(1/2))l

l!
+ (−1)l

(

−2 +

l
∑

m=0

(− ln(1/2))m

m!

)

= (−1)l
(ln 2)l

l!
+ (−1)l

(

−2 +

l
∑

m=0

(ln 2)m

m!

)

= (−1)l

(

(ln 2)l

l!
− 2 +

l
∑

m=0

(ln 2)m

m!

)

.

APPENDIX C

In this appendix, we prove Lemma 1.

First of all, we introduce some notations. Let R(v,Gn) be

the rumor centrality [3] of a node v in Gn, T v
w be the subtree

of Gn rooted at the node w with the ancestor node v, and |T v
w|

be the number of nodes in T v
w. Here, we assume that T v

w = ∅
and |T v

w| = 0 if w /∈ V(Gn). We note that the ML estimator

becomes (see. [3, Section II-C])

ϕML(Gn) = argmax
v∈V(Gn)

R(v,Gn).

Consider a sub-neighborhood Nl(v) ⊆ N (v), where N (v)
is the set of neighboring nodes of v in the graph G. For v ∈
V(Gn), if R(v,Gn) ≥ R(w,Gn) for all w ∈ Nl(v) ∩ V(Gn),
then v is called the local rumor center w.r.t. Nl(v). For the

local rumor center, we know the following properties (see. [10,

Proposition 1]):

• For a node v ∈ V(Gn), it holds that |T v
w| ≤

n
2 for all

w ∈ Nl(v) ⇔ the node v is a local rumor center w.r.t.

Nl(v).
• A node v ∈ V(Gn) is a local rumor center w.r.t. Nl(v)

⇒ it holds that

R(w′,Gn) < R(v,Gn), ∀w′ ∈
⋃

w∈Nl(v)

{T v
w \ {w}}.

• A node v ∈ V(Gn) is a local rumor center w.r.t. Nl(v)
⇒ there exists at most a node w ∈ Nl(v) such that

R(w,Gn) = R(v,Gn),

where the equality holds if and only if

|T v
w| =

n

2
.

According to these properties, for a node v ∈ V(Gn), if it

holds that |T v
w| ≤

n
2 for all w ∈ N (v), the node v is a (local)

rumor center w.r.t. N (v). Then, there exists at most a node

w ∈ N (v) such that

R(w′,Gn) < R(v,Gn), ∀w′ ∈ V(Gn)\{v, w},

and

R(w,Gn) = R(v,Gn),

where the equality holds if and only if

|T v
w| =

n

2
.

Hence, for a node v ∈ V(Gn), if X(v) < n/2, i.e.,

max{|T v
w|, w ∈ N (v)} < n/2, we have

R(w′,Gn) < R(v,Gn), ∀w′ ∈ V(Gn)\{v}.

Thus, the MAP estimator outputs v, and hence

Pr{V̂n = v|v ∈ Vn, X(v) < n/2} = 1.



For a node v ∈ V(Gn), if X(v) = n
2 , i.e., there exists a

node w ∈ N (v) such that |T v
w| =

n
2 and |T v

w′| < n
2 for any

other w′ ∈ N (v), we have

R(w′,Gn) < R(v,Gn), ∀w′ ∈ V(Gn)\{v, w},

and

R(w,Gn) = R(v,Gn).

Thus, the MAP estimator outputs v with probability 1/2, and

hence

Pr{V̂n = v|v ∈ Vn, X(v) = n/2} = 1/2.

For a node v ∈ V(Gn), if X(v) > n/2, i.e., max{|T v
w|, w ∈

N (v)} > n/2, the node v is not a local rumor center w.r.t.

N (v). Hence there exists w ∈ N (v) such that

R(w,Gn) > R(v,Gn).

Then, the MAP estimator does not output v, and hence

Pr{V̂n = v|v ∈ Vn, X(v) > n/2} = 0.

This completes the proof.

APPENDIX D

We note that

ζdk (0) =
∑

1≤j1<j2<···jd≤k

1

j1j2 · · · jd
.

and

ζdk (1) =
∑

1≤j1<j2<···<jd≤k

1

(j1 + 1) · · · (jd + 1)
.

Thus, for any d ≥ 1 and k ≥ d, we have

ζdk (1)

=

k−d+1
∑

j1=1

k−d+2
∑

j2=j1+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j1 + 1) · · · (jd + 1)

=
k−d+1
∑

j1=1

k−d+2
∑

j2=j1+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j1 + 1) · · · (jd + 1)

+

0
∑

j1=0

k−d+2
∑

j2=j1+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j1 + 1) · · · (jd + 1)

−
0
∑

j1=0

k−d+2
∑

j2=j1+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j1 + 1) · · · (jd + 1)

=
k−d+1
∑

j1=0

k−d+2
∑

j2=j1+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j1 + 1) · · · (jd + 1)

−
k−d+2
∑

j2=1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j2 + 1) · · · (jd + 1)

=

k+1−d+1
∑

j1=1

k−d+2
∑

j2=j1

k−d+3
∑

j3=j2+1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

j1(j2 + 1) · · · (jd + 1)

−
k−d+2
∑

j2=1

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

(j2 + 1) · · · (jd + 1)

=

k+1−d+1
∑

j1=1

k+1−d+2
∑

j2=j1+1

k−d+3
∑

j3=j2

· · ·
k−d+i
∑

ji=ji−1+1

· · ·
k−d+d
∑

jd=jd−1+1

×
1

j1j2(j3 + 1) · · · (jd + 1)

−
∑

1≤j2<j3<···<jd≤k

1

(j2 + 1) · · · (jd + 1)

=
k+1−d+1
∑

j1=1

k+1−d+2
∑

j2=j1+1

· · ·
k+1−d+i
∑

ji=ji−1+1

· · ·
k+1−d+d
∑

jd=jd−1+1

1

j1j2 · · · jd

−
∑

1≤j2<j3<···<jd≤k

1

(j2 + 1) · · · (jd + 1)

= ζdk+1(0)−
∑

1≤j1<j2<···<jd−1≤k

1

(j1 + 1) · · · (jd−1 + 1)

= ζdk+1(0)− ζd−1
k (1),

where ζ0k(1) = 1.

APPENDIX E

In order to show the equation (15), we use the next lemma

(cf. e.g. [17]).

Lemma 2 (Dominated convergence theorem): Let

f1, f2, · · · : N → R be a sequence of real-valued functions on

positive integers N such that

fn(k) converges as n → ∞, ∀k ∈ N.

Suppose that there is g : N → R such that

∞
∑

k=1

g(k) < ∞,

|fn(k)| ≤ g(k), ∀n, k ∈ N.



Then, we have

lim
n→∞

∞
∑

k=1

fn(k) =

∞
∑

k=1

lim
n→∞

fn(k).

We note that

Pr{v(d) ∈ Vn, X(v(d)) < n/2}

=

⌈n/2⌉
∑

k=d+1

Pr{Vk = v(d), X(v(d)) < n/2}

(a)
=

⌈n/2⌉
∑

k=1

Pr{Vk = v(d), X(v(d)) < n/2}

(b)
=

∞
∑

k=1

Pr{Vk = v(d), X(v(d)) < n/2},

where (a) follows since Pr{Vk = v(d)} = 0 for any k ≤ d,

and (b) comes from the fact that if v(d) is the kth infected

node (k ≥ ⌈n/2⌉+ 1), it must hold that X(v(d)) ≥ n/2. We

also note that

Pr{v(d) ∈ Vn, X(v(d)) = n/2}

=

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d), X(v(d)) = n/2}

=

⌊n/2⌋+1
∑

k=1

Pr{Vk = v(d), X(v(d)) = n/2}

(a)
=

∞
∑

k=1

Pr{Vk = v(d), X(v(d)) = n/2},

where (a) comes from the fact that if v(d) is the kth infected

node (k ≥ ⌊n/2⌋+2), it must hold that X(v(d)) > n/2. Thus,

we have

Dn(d) =
∑

v(d)∈V(d)

(

Pr{v(d) ∈ Vn, X(v(d)) < n/2}

+1/2Pr{v(d) ∈ Vn, X(v(d)) = n/2}
)

=
∑

v(d)∈V(d)

∞
∑

k=1

(

Pr{Vk = v(d), X(v(d)) < n/2}

+1/2Pr{Vk = v(d), X(v(d)) = n/2}
)

,

By noticing that Pr{Vk = v(d)} does not depend on n (see

(7)), we can set

fn(k) = Pr{Vk = v(d), X(v(d)) < n/2}

+ 1/2Pr{Vk = v(d), X(v(d)) = n/2},

g(k) = Pr{Vk = v(d)}.

Then, we have

|fn(k)| = Pr{Vk = v(d), X(v(d)) < n/2}

+ 1/2Pr{Vk = v(d), X(v(d)) = n/2}

≤ Pr{Vk = v(d)}
(

Pr{X(v(d)) < n/2|Vk = v(d)}

+1/2Pr{X(v(d)) = n/2|Vk = v(d)}
)

≤ Pr{Vk = v(d)}Pr{X(v(d)) ≤ n/2|Vk = v(d)}

≤ g(k).

We also have

∞
∑

k=1

g(k) =

∞
∑

k=1

Pr{Vk = v(d)}

= Pr

{

∞
⋃

k=1

{Vk = v(d)}

}

≤ 1.

On the other hand, according to (13) and (14), we have for

any k ≥ d+ 1 and odd n ≥ 3,

fn(k) =
2

k + 1

(

(n+3)/2
k+1

)

(

n+1
k+1

)

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l),

and for any k ≥ d+ 1 and even n ≥ 2,

fn(k) =
2

k + 1

(

n/2+1
k+1

)

+ n
2(n+2)

(

n/2+1
k

)

(

n+1
k+1

)

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l).

By noticing that

lim
m→∞

(

((2m+1)+3)/2
k+1

)

(

(2m+1)+1
k+1

) = lim
m→∞

(

m+2
k+1

)

(

2m+2
k+1

)

=
1

2k+1

and

lim
m→∞

(

(2m)/2+1
k+1

)

+ (2m)
2((2m)+2)

(

(2m)/2+1
k

)

(

(2m)+1
k+1

)

lim
m→∞

(

m+1
k+1

)

+ m
2(m+1)

(

m+1
k

)

(

2m+1
k+1

)

=
1

2k+1
,

we have for any k ≥ d+ 1,

lim
n→∞

fn(k) =
1

2k
1

k + 1

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l).

We note that for any k ≤ d,

lim
n→∞

fn(k) = 0.



Thus, according to Lemma 2, we have

lim
n→∞

Dn(d)

= lim
n→∞

∑

v(d)∈V(d)

∞
∑

k=1

(

Pr{Vk = v(d), X(v(d)) < n/2}

+1/2Pr{Vk = v(d), X(v(d)) = n/2}
)

= lim
n→∞

∑

v(d)∈V(d)

∞
∑

k=1

fn(k)

=
∑

v(d)∈V(d)

lim
n→∞

∞
∑

k=1

fn(k)

=
∑

v(d)∈V(d)

∞
∑

k=1

lim
n→∞

fn(k)

=
∑

v(d)∈V(d)

∞
∑

k=d+1

lim
n→∞

fn(k)

=
∑

v(d)∈V(d)

∞
∑

k=d+1

1

2k
1

k + 1

(−1)d+k

(k − 1)!

d
∑

l=1

s(k, l). (25)

By noticing that |V(d)| = δ(δ−1)d−1, we have (15) from (25).

APPENDIX F

We consider the Pólya’s urn model with 2 colors balls:

Initially, bj balls of color Cj (j = 1, 2) are in the urn. At each

step, a single ball is uniformly drawn form the urn. Then, the

drawn ball is returned with additional m balls of the same

color. Repeat this drawing process n times. Let Ỹj denote the

number of balls of the color Cj in the urn at the end of time

n. Let Yj denote the number of times that the balls of color

Cj are drawn after n draws.

According to [7, Theorem 4.1], we have the next theorem.

Theorem 4:

Ỹ1

b1 + b2 + n ·m
a.s.
−−→ Y (n → ∞),

where b1 + b2 + n ·m is the total number of balls in the urn

at the end of time n, and Y is a Beta random variable with

parameters b1/m and b2/m. That is for x ∈ [0, 1],

Pr{Y ≤ x} = Ix

(

b1
m
,
b2
m

)

.

We immediately have the next corollary.

Corollary 2:

Y1

n

a.s.
−−→ Y,

where Y is the same Beta random variable as that of Theorem

4.

Proof: Y1 can be written as

Y1 =
Ỹ1 − b1

m
.

Thus, we have

Y1

n
=

Ỹ1 − b1
m · n

=
Ỹ1

m · n
−

b1
m · n

=
Ỹ1

b1 + b2 + n ·m

b1 + b2 + n ·m

m · n
−

b1
m · n

.

Since b1+b2+n·m
m·n → 1 and b1

m·n → 0 as n → ∞, we have

Y1

n
=

Ỹ1

b1 + b2 + n ·m

b1 + b2 + n ·m

m · n
−

b1
m · n

a.s.
−−→ Y,

where almost sure convergence comes from Theorem 4. This

completes the proof.

After v(d) is infected kth, X1(v
(d)) can be regarded as the

Pólya’s urn model with the following settings: Y1 = X1(v
(d)),

Y2 =
∑δ

j=2 Xj(v
(d))−k+1, b1 = 1, b2 = (k−1)(δ−2)+δ−1,

and m = δ − 2. Here, we assume that the total number of

drawing balls is n − k. Then, according to Corollary 2, we

have

X1(v
(d))

n
=

Y1

n
=

Y1

n− k

n− k

n

a.s.
−−→ Y,

where Y is a Beta random variable with parameters 1/(δ− 2)
and k − 1 + (δ − 1)/(δ − 2). Thus, we have

lim
n→∞

Pr{E1(v
(d))|Vk = v(d)}

= lim
n→∞

Pr{X1(v
(d)) < n/2|Vk = v(d)}

= lim
n→∞

Pr{X1(v
(d))/n < 1/2|Vk = v(d)}

= Pr{Y < 1/2}

= I1/2

(

1

δ − 2
, k − 1 +

δ − 1

δ − 2

)

= 1− I1/2

(

k − 1 +
δ − 1

δ − 2
,

1

δ − 2

)

. (26)

Similarly, we have

lim
n→∞

Pr{F1(v
(d))|Vk = v(d)}

= lim
n→∞

Pr{X1(v
(d)) ≤ n/2|Vk = v(d)}

= Pr{Y ≤ 1/2}

= 1− I1/2

(

k − 1 +
δ − 1

δ − 2
,

1

δ − 2

)

. (27)

Due to (26) and (27), we have (18).

On the other hand, after v(d) is infected kth, Xδ(v
(d)) can be

regarded as the Pólya’s urn model with the following settings:

Y1 = Xδ(v
(d))−k+1, Y2 =

∑δ−1
j=1 Xj(v

(d)), b1 = (k−1)(δ−
2) + 1, b2 = δ − 1, and m = δ − 2. Here, we assume that

the total number of drawing balls is n − k. Then, according

to Corollary 2, we have

Xδ(v
(d))

n
=

Y1 + k − 1

n
=

Y1 + k − 1

n− k

n− k

n

a.s.
−−→ Y,



where Y is a Beta random variable with parameters k − 1 +
1/(δ − 2) and (δ − 1)/(δ − 2). Thus, we have

lim
n→∞

Pr{Eδ(v
(d))|Vk = v(d)}

= lim
n→∞

Pr{Xδ(v
(d)) < n/2|Vk = v(d)}

= lim
n→∞

Pr{Xδ(v
(d))/n < 1/2|Vk = v(d)}

= Pr{Y < 1/2}

= I1/2

(

k − 1 +
1

δ − 2
,
δ − 1

δ − 2

)

. (28)

Similarly, we have

lim
n→∞

Pr{Fδ(v
(d))|Vk = v(d)}

= lim
n→∞

Pr{Xδ(v
(d)) ≤ n/2|Vk = v(d)}

= Pr{Y ≤ 1/2}

= I1/2

(

k − 1 +
1

δ − 2
,
δ − 1

δ − 2

)

. (29)

Due to (28) and (29), we have (19).

APPENDIX G

According to (16) and (17), it holds that

Dn(d)

=
∑

v(d)∈V(d)

Pr{v(d) ∈ Vn, V̂n = v(d)}

≥
∑

v(d)∈V(d)

⌈n/2⌉
∑

k=d+1

Pr{Vk = v(d)}
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

,

and

Dn(d)

=
∑

v(d)∈V(d)

Pr{v(d) ∈ Vn, V̂n = v(d)}

≤
∑

v(d)∈V(d)

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

.

For k ≤ ⌈n/2⌉, we set

fn(k) = Pr{Vk = v(d)}
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

.

For k ≥ ⌈n/2⌉+ 1, we set fn(k) = 0. According to (18) and

(19), we have for any k ≥ d+ 1,

lim
n→∞

fn(k) = p1(δ, d, k)(I
(2)(δ, k)− (δ − 1)I(1)(δ, k)),

and for any k ≤ d,

lim
n→∞

fn(k) = 0.

On the other hand, we set

g(k) = δ Pr{Vk = v(d)}.

Obviously, for k ≥ ⌈n/2⌉+1, it holds that |fn(k)| ≤ g(k).
For k ≤ ⌈n/2⌉, we have

|fn(k)| = Pr{Vk = v(d)}
∣

∣

∣Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

∣

∣

∣

≤ Pr{Vk = v(d)}
(∣

∣

∣Pr{Eδ(v
(d))|Vk = v(d)}

∣

∣

∣

+
∣

∣

∣
(δ − 1)(1− Pr{E1(v

(d))|Vk = v(d)})
∣

∣

∣

)

≤ δ Pr{Vk = v(d)}

= g(k).

We also have

∞
∑

k=1

g(k) = δ
∞
∑

k=1

Pr{Vk = v(d)}

= δ Pr

{

∞
⋃

k=1

{Vk = v(d)}

}

≤ δ.

Thus, according to Lemma 2, we have

lim inf
n→∞

Dn(d)

≥ lim inf
n→∞

∑

v(d)∈V(d)

⌈n/2⌉
∑

k=d+1

Pr{Vk = v(d)}

×
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

= lim inf
n→∞

∑

v(d)∈V(d)

⌈n/2⌉
∑

k=1

Pr{Vk = v(d)}

×
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

≥
∑

v(d)∈V(d)

lim inf
n→∞

⌈n/2⌉
∑

k=1

Pr{Vk = v(d)}

×
(

Pr{Eδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{E1(v
(d))|Vk = v(d)})

)

=
∑

v(d)∈V(d)

lim inf
n→∞

⌈n/2⌉
∑

k=1

fn(k)

=
∑

v(d)∈V(d)

lim inf
n→∞

∞
∑

k=1

fn(k)

=
∑

v(d)∈V(d)

∞
∑

k=1

lim
n→∞

fn(k)



=
∑

v(d)∈V(d)

∞
∑

k=d+1

lim
n→∞

fn(k)

=
∑

v(d)∈V(d)

∞
∑

k=d+1

p1(δ, d, k)(I
(2)(δ, k)− (δ − 1)I(1)(δ, k)).

(30)

For k ≤ ⌊n/2⌋+ 1, we set

hn(k) = Pr{Vk = v(d)}
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

.

For k ≥ ⌊n/2⌋+2, we set hn(k) = 0. According to (18) and

(19), we have for any k ≥ d+ 1,

lim
n→∞

hn(k) = p1(δ, d, k)(I
(2)(δ, k)− (δ − 1)I(1)(δ, k)),

and for any k ≤ d,

lim
n→∞

hn(k) = 0.

We also have |hn(k)| ≤ g(k).
Thus, according to Lemma 2, we have

lim sup
n→∞

Dn(d)

≤ lim sup
n→∞

∑

v(d)∈V(d)

⌊n/2⌋+1
∑

k=d+1

Pr{Vk = v(d)}

×
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

≤
∑

v(d)∈V(d)

lim sup
n→∞

⌊n/2⌋+1
∑

k=1

Pr{Vk = v(d)}

×
(

Pr{Fδ(v
(d))|Vk = v(d)}

−(δ − 1)(1− Pr{F1(v
(d))|Vk = v(d)})

)

=
∑

v(d)∈V(d)

lim sup
n→∞

⌊n/2⌋+1
∑

k=1

hn(k)

=
∑

v(d)∈V(d)

lim sup
n→∞

∞
∑

k=1

hn(k)

=
∑

v(d)∈V(d)

∞
∑

k=1

lim
n→∞

hn(k)

=
∑

v(d)∈V(d)

∞
∑

k=d+1

lim
n→∞

hn(k)

=
∑

v(d)∈V(d)

∞
∑

k=d+1

p1(δ, d, k)(I
(2)(δ, k)− (δ − 1)I(1)(δ, k)).

(31)

By noticing that |V(d)| = δ(δ − 1)d−1, we have (20) from

(30) and (31).
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