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Abstract—Coded computation is an emerging research area
that leverages concepts from erasure coding to mitigate the
effect of stragglers (slow nodes) in distributed computation clus-
ters, especially for matrix computation problems. In this work,
we present a class of distributed matrix-vector multiplication
schemes that are based on codes in the Rosenbloom-Tsfasman
metric and universally decodable matrices. Our schemes take
into account the inherent computation order within a worker
node. In particular, they allow us to effectively leverage partial
computations performed by stragglers (a feature that many prior
works lack). An additional main contribution of our work is a
companion matrix-based embedding of these codes that allows us
to obtain sparse and numerically stable schemes for the problem
at hand. Experimental results confirm the effectiveness of our
techniques.

I. INTRODUCTION

Distributed computation clusters are routinely used in do-
mains such as machine learning and scientific computing.
In these applications, datasets are often so large that they
cannot be housed in the disk of a single server. Furthermore,
processing the data on a single server is either infeasible
or unacceptably slow. Thus, the data and the processing is
distributed and processed across a large number of nodes.

While large clusters have numerous advantages, they also
present newer operational challenges. These clusters (which
can be heterogeneous in nature) suffer from the problem of
“stragglers” which are defined as slow nodes (node failures are
an extreme form of a straggler). It is evident that the overall
speed of a computation on these clusters is typically dominated
by stragglers in the absence of a sophisticated assignment of
tasks to the worker nodes.

In recent years, approaches based on coding theory (referred
to as “coded computation”) have been effectively used for
straggler mitigation [1]–[9]. Coded computation offers sig-
nificant benefits for specific classes of problems, e.g., matrix
computations. We illustrate this by means of a matrix-vector
multiplication example in Fig. 1, where a matrix A is block-
row decomposed as AT = [AT

0 AT
1 AT

2 ]T . Each worker node
is given the responsibility of computing two submatrix-vector
products so that the computational load on each worker is
2/3-rd of the original. It can be observed that even if one
worker fails, there is enough information for a master node

This work was supported in part by the National Science Foundation (NSF)
under grant CCF-1718470.

to compute the final result. However, this requires the master
node to solve simple systems of equations. This approach can
be generalized (and also adapted for matrix multiplication)
by using Reed-Solomon (RS) code like approaches [1]–[5].
These methods allow the master node to recover Ax if any τ
of the worker nodes complete their computation; τ is called
the recovery threshold.

A significant amount of prior work treats stragglers as
node failures (see [6], [8], [9] for exceptions), or, equivalently
from the point of view of coding theory, as erasures. This
matches the conventional erasure coding problem very well
and allows the adaptation of well-known approaches, e.g,
RS codes to the problem of distributed matrix computations.
However, there are certain features of the distributed matrix-
vector multiplication problem that distinguish it from classical
erasure correction that we now discuss.
• Leveraging partial computation performed by stragglers.

Each worker node operates in a sequential fashion on its
assigned rows, e.g., in Fig. 1, worker W0, first computes
Â00x and only then Â01x. If node 0 is a straggler (but
not a failure), ignoring the partial computation it performs
will be wasteful.

• Numerically stable decoding. The RS-based approach
requires the master node to solve a real Vandermonde
system of linear equations or equivalently perform poly-
nomial interpolation. It is well recognized that real Van-
dermonde matrices have a rather large condition number1

which translates into significant numerical issues in re-
covering Ax. This numerical issue is especially important
in Krylov subspace methods for solving large linear
systems of equations [10] (which repeatedly compute
matrix-vector products) and in machine learning, where
gradient computations are often approximate.

• Dealing with sparse A matrices. The case when the
matrix A is sparse is often an important one in practice.
RS-based approaches typically generate submatrices that
are sent to the worker nodes by combining a large number
of rows of A, thus destroying the inherent sparsity of the
problem. This can significantly increase the computation

1While there is literature on choosing good evaluation points to reduce the
condition number, in the distributed matrix vector multiplication context, we
require decoding from any τ evaluation points. This makes the worst case
condition number quite bad.
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time [7] at the worker nodes. Thus, techniques that only
require sparse combinations of the rows of A are of great
interest.

A. Main contributions of our work

We present a class of distributed matrix-vector multipli-
cation schemes that provably leverage partial computations
by stragglers, while possessing a numerically stable decod-
ing algorithm. These schemes are related to codes in the
Rosenbloom-Tsfasman metric [11] and universally decodable
matrices (UDM) [12] that were presented in different contexts.
Roughly speaking, while the RS-based approach corresponds
to polynomial evaluation/interpolation, our approach can be
viewed as working with polynomials with roots of higher
multiplicity. An additional main contribution of our work is the
usage of companion matrices [13] that allow for an embedding
of finite-field matrices into the real field; this significantly
improves the condition numbers of the relevant matrices.

II. PROBLEM FORMULATION

We consider a scenario where the master node has a
matrix A and vector x (both real-valued) and is connected
to N worker nodes. For convenience, for arbitrary positive
integer n, let [n] , {0, . . . , n − 1}. The master node first
partitions A into ∆ block-rows (or submatrices) denoted by
A0, · · · ,A∆−1, each of the same dimension. Following this,
it generates submatrices denoted Âi,j , i ∈ [N ], j ∈ [`] (of
the same dimension as the Ai’s) such that worker Wi is sent
submatrices Âi,j , j ∈ [`], and the vector x. Let γ , `/∆.
Then, each worker is assigned the equivalent of a γ-fraction
of the rows of A. In this paper, we assume A is large
enough so that ∆ can be chosen large enough. Throughout
this paper the submatrices Âi,j will be linear combinations
of A0, . . . ,A∆−1, such that the master node only calculates
scalar multiples and sums of Ai’s.

In what follows, we say that worker Wi has processed a
submatrix Âi,j if it has calculated Âi,jx. A key feature of
the distributed matrix-vector multiplication problem is that
the matrices Âi,j are processed sequentially in the order
Âi,0, Âi,1, . . . , i.e., a worker node Wi processes Âi,j only if it
has finished processing Âi,0, . . . , Âi,j−1. Each time a worker
node computes a product or a block of consecutive products,
it sends the result to the master node. Our system requirement
dictates that the master node should be able to decode Ax as
long as it receives a minimum number of products from the
worker nodes. Fig. 1 demonstrates a system we consider.

It is evident that the properties of a given scheme depend
upon the properties of the matrices Âi,j , i ∈ [N ], j ∈ [`]. To
specify this encoding we discuss constructions of collections
of matrices that have certain desired properties. Some of our
constructions are first designed over a finite field and then
embedded into R using an appropriately defined procedure.
Accordingly, we define certain rank conditions that depend
on an underlying field of operation denoted by K. We will
explicitly specify K when discussing the constructions. Con-
sider N matrices Gk, 0 ≤ k < N over K with dimension

W0 W1 W2

Â00x = A0x

Â01x = (A1 +A2)x

Â10x = A1x

Â11x = (A2 +A0)x

Â20x = A2x

Â21x = (A0 +A1)x

Master node

Â00

Â01
x

Â00x

Â01x

Â10

Â11
x

Â10x

Â11x

Â20

Â21
x

Â20x

Â21x

Fig. 1: Matrix A is partitioned into three submatrices A0,A1 and
A3 by rows. The master node transmits x and the Âij submatrices

to the workers (shown by solid lines). The workers transmit the
submatrix vector products back to the master node (shown by

dotted lines). It can be verified that the master node can decode if
any three submatrices are processed, while respecting the sequential

computation order (from top to bottom).

∆× ` and let Gk(i, j) represent the (i, j)-th entry of Gk. Let
v = (v0, · · · , vN−1). We define the set

Ψ=Qb

N,`,s =

v

∣∣∣∣ vi ∈ [`], i ∈ [N ],
∑
i∈[N ]

⌊vi
s

⌋
= Qb

 .

Definition 1. s-weak full-rank matrices. Let N, `,∆, s be
positive integers such that s divides ` and ∆. Let Qb = ∆/s.
Consider matrices Gk, k ∈ [N ], of dimension ∆ × `. Let
v ∈ Ψ=Qb

N,`,s and let ∆v =
∑
i∈[N ] vi ≥ Qbs. If the ∆ × ∆v

matrix G composed of the first v0 columns of G0, the first
v1 columns of G1, . . . , and the first vN−1 columns of GN−1,
has full rank over K, i.e., rankK(G) = ∆ for all v ∈ Ψ=Qb

N,`,s

we say the collection {Gk}N−1
k=0 satisfies the s-weak full-rank

condition.

The collection {Gk}N−1
k=0 is used to obtain the ` submatrices

stored in worker Wk when K = R as

Âk,j =
∑
i∈[∆]

Gk(i, j)Ai, for k ∈ [N ], j ∈ [`].

Consider first the case s = 1 and assume that worker Wi has
finished processing vi submatrices and v0 + · · ·+ vN−1 ≥ ∆.
Let G be as specified in the definition above. It is not too hard
to see that the system requirement of decoding from any Qb =
∆ submatrix-vector products is equivalent to the condition that
G is full-rank over R for all possible patterns (v0, · · · , vN−1).
Thus, designing {Gk}N−1

k=0 that satisfy Definition 1 is sufficient
for the problem at hand.

Values of s > 1 correspond to a relaxation of this condition.
Specifically, suppose that each worker node returns the results
in blocks of size s. For instance, worker node Wi computes



Âi,0x, Âi,1x, . . . , Âi,s−1x and then reports the result back
to the master. Following this, it focuses on the next block
Âi,sx, . . . , Âi,2s−1x, and so on. In this case, decoding by the
master node is guaranteed if it receives any Qb blocks of size
s (this explains our choice of subscript b in Qb). If the s-weak
full-rank condition holds for s = 1, we will refer to the system
as satisfying the strong full-rank condition.

Remark 1. When s = 1, then the master node can recover Ax
when any Qb submatrices have been processed across the N
workers, i.e., the worst case computational load on the system,
measured at the granularity of a submatrix is ∆. If s > 1, then
the worst case computational load can be as high as

∆

(
1 +

(N − 1)(s− 1)

∆

)
. (1)

For our constructions, the second term (N−1)(s−1)
∆ can be

made as small as desired by choosing a large enough ∆.

Example 1. Consider the system in Fig. 1 with N = 3, ∆ = 3,
` = 2. Matrix A is partitioned into three submatrices by rows,
A0,A1,A2. Each worker node is assigned two submatrices
and the vector x. The following real-valued matrices satisfy
the conditions in Definition 1 for s = 1 (see Fig. 1 for the
corresponding Âi,j matrices).

G0 =

1 0
0 1
0 1

 , G1 =

0 1
1 0
0 1

 , and G2 =

0 1
0 1
1 0

 .
III. CODED SCHEMES SATISFYING

THE STRONG FULL RANK CONDITION

In this section, we present two schemes that satisfy the
strong full-rank condition. The first scheme is essentially an
embedding of an RS code in the matrix-vector multiplication
framework and has appeared in [4]. The second one is inspired
by the constructions in [11], [12].

Let u(x) =
∑d
k=0 ukx

k be a polynomial of degree d with
real coefficients, i.e., u(x) ∈ R[x] where R[x] denotes the ring
of polynomials with real coefficients. Let u(j)(x) denote the
j-th derivative of u(x). It is evident that

u(j)(x) =

d∑
k=0

uk

(
k

j

)
j! xk−j , (2)

where
(
k
i

)
= 0 if k < i. Furthermore, note that we can

also represent u(x) by considering its Taylor series expansion
around a point β ∈ R, i.e.,

u(x) =

d∑
k=0

u(k)(β)

k!
(x− β)k. (3)

It is well known that u(x) has a zero of multiplicity m at β ∈
R if and only if u(i)(β) = 0 for 0 ≤ i < m and u(m)(β) 6= 0.

A. RS-based scheme

In the first scheme we simply choose the columns of Gk
for k ∈ [N ] to correspond to a polynomial of degree ∆ − 1
being evaluated at distinct points in R, i.e.,

Gk(i, j) = βik,j , for i ∈ [∆], j ∈ [`]. (4)

where βk,j ∈ R are distinct for k ∈ [N ], j ∈ [`].

B. UDM-based scheme

Our second construction works by choosing the columns of
Gk corresponding to the evaluations of a polynomial and its
derivatives of order 1, . . . , ` − 1. We first choose N distinct
real numbers β0, . . . , βN−1. For worker node k, we choose the
j-th column in correspondence with the evaluation of the j-th
derivative of a degree-(∆− 1) polynomial at value βk scaled
by j! (cf. Eq. (2)). Thus, for k ∈ [N ], i ∈ [∆] and j ∈ [`],

Gk(i, j) =

{(
i
j

)
βi−jk if i ≥ j,

0 otherwise.
(5)

We note here that there is another choice of matrix, denoted
G∗ that can be used instead of the above choices for one of
the workers. For i ∈ [∆] and j ∈ [`], we let

G∗(i, j) =

{
1, if i = N − 1− j,
0 otherwise.

(6)

C. Properties of the Coded Schemes

Claim 1. The N matrices defined in Section III-A and Section
III-B satisfy the strong full-rank condition in Definition 1.

Proof. Consider any vector pattern v = (v0, . . . , vN−1) such
that v0 + · · · + vN−1 = ∆. Let G be composed of the first
vk columns of Gk, k = 0, . . . , N − 1. For the RS-based
construction in (4), it is evident that G is a Vandermonde
matrix. As the βk,j’s are distinct, G has full rank. For the
UDM-based scheme, if all workers are chosen based on
(5), the result follows from the determinant of a generalized
Vandermonde determinant [14]. On the other hand, assume
without loss of generality that the (N − 1)-th worker is
assigned the G∗ matrix (cf. Eq. (6)). In this case, G can be
written as

G =

[
B1 0
B2 B3

]
,

where B3 is a vN−1 × vN−1 matrix with ones on the anti-
diagonal and B = [BT

1 BT
2 ]T are composed of the first vk

columns of Gk, k = 0, · · · , N−2. Once again, the generalized
Vandermonde determinant formula [14] shows that B1 is full
rank. This coupled with the fact that B3 is also full rank, gives
us the required result. �

It is evident that the above constructions satisfy the strong
full-rank condition. However, experimental results (see also
[15]) show that these constructions result in badly conditioned
G matrices in the worst case. In addition, both (4) and (5)
result in dense linear combinations of A, rendering them
unsuitable in the scenario when A is sparse. Nevertheless,



the UDM-based construction (5), provides a systematic way
to take into account the sequential processing order of the
worker nodes.

Remark 2. The RS-based scheme is in one-to-one corre-
spondence with polynomial interpolation from any ∆ (out of
N`) distinct evaluation points. The UDM-based scheme uses
much fewer evaluation points (only N ) but is equivalent to
interpolating a polynomial with roots of higher multiplicity.

IV. CODED SCHEMES SATISFYING
THE WEAK FULL RANK CONDITION

Our second class of constructions produces schemes that
satisfy the s-weak full-rank condition. However, they have
excellent numerical stability and are much sparser than those
discussed in Section III. These schemes are obtained by first
constructing a collection of matrices over a finite field Fpn
(where p is prime) and then embedding the finite field matrices
into real field by companion matrix. Towards this end, let
ũ(x) =

∑d
k=0 ũkx

k be a polynomial with coefficients from
Fpn , i.e., ũ(x) ∈ Fpn [x]. The i-th Hasse derivative2 of ũ(x)
is defined as

ũ[i](x) =

d∑
k=0

(
k

i

)
ũkx

k−i, (7)

where we emphasize that the quantity
(
k
i

)
is interpreted as

a element of Fp. In this scenario, it can be shown that ũ(x)
has a zero of multiplicity m at a point β ∈ Fpn (or in an
appropriate extension field) if ũ[i](β) = 0 for 0 ≤ i < m and
ũ[m](β) 6= 0.

The work of [11], [12] shows that the following matrices
Gk, k ∈ [N ], satisfy the strong full-rank condition over K =
Fpn , assuming pn ≥ N + 1.

Gk(i, j) =

{(
i
j

)
βi−jk (if i ≥ j)

0 otherwise.
(8)

where βk, k ∈ [N ] are distinct non-zero elements in Fpn . We
remark here that while the expression above is the same as
the one in (5), the elements of (8) lie in Fpn .

One reason for considering the matrices in (8) is as follows.
Suppose that we operate over F2n , i.e., p = 2. Note that
the calculation in (8) is equivalent to computing

(
i
j

)
over the

integers and reducing it modulo 2. In particular, this implies
that whenever

(
i
j

)
is even, the corresponding matrix entry

will be zero. Thus, over finite fields, the {Gk}N−1
k=0 matrices

obtained using (8) are likely much sparser than those obtained
from (5).

2To avoid confusion with the case of real-valued polynomials, we super-
script the finite field polynomials with ˜ and represent the Hasse derivatives
with square brackets.

Example 2. Let p = 2, n = 3, ` = 3,∆ = 4, N = 6. Consider
the polynomial ũ(x) = ũ0 + ũ1x+ ũ2x

2 + ũ3x
3 over F8. Its

i-th Hasse derivatives, i = 0, 1, 2 are

ũ[0](x) = ũ0 + ũ1x+ ũ2x
2 + ũ3x

3,

ũ[1](x) = ũ1 + ũ3x
2, and

ũ[2](x) = ũ2 + ũ3x.

Note here that ũ[1](x) has only two non-zero coefficients,
whereas when considering derivatives over the reals, it will
have three non-zero coefficients. Then,

Gi =


1 0 0
βi 1 0
β2
i 0 1
β3
i β2

i βi

 , (9)

where βi ∈ F8 and βi values are distinct for i ∈ [N ].

A natural question arises if it is possible to somehow
“embed” the matrices defined in (8) into corresponding real
matrices such that the conditions of Definition 1 hold (for
real matrices). This does not appear to be a straightforward
problem. For example, simply requiring distinct βk’s is not
sufficient. For instance, if we choose β0 = 1 and β1 = −1
then the matrix

G =


1 0 1 0
1 1 −1 1
1 0 1 0
1 1 −1 1


obtained by choosing the first two columns of G0 and the first
two columns of G1 is singular.

Remark 3. If the βi, i ∈ [N ] are chosen randomly from a large
enough subset of R, then we can assert that the collection will
satisfy the strong full-rank property with high probability. To
see this, let βi ∈ Fpn , i ∈ [N ] be indeterminates for now and
consider G for any pattern (v0, · · · , vN−1). The determinant
of G is a multivariate polynomial Λ̃(β0, . . . , βN−1) with coef-
ficients from Fp. The results of [11], [12] certainly imply that
Λ̃(β0, . . . , βN−1) is not identically zero. Now, consider the
determinant (polynomial) of G denoted Λ(β0, . . . , βN−1) ob-
tained by considering βi ∈ R, i ∈ [N ], i.e., Λ(β0, . . . , βN−1)
has integer coefficients. Clearly, Λ̃(β0, . . . , βN−1) can be
obtained by reducing each coefficient of Λ(β0, . . . , βN−1)
modulo p. Therefore, Λ(β0, . . . , βN−1) is also not identically
zero. It follows that the product of all the real multivariate
polynomials corresponding to the relevant G’s is not identi-
cally zero. The result then follows, by choosing a large enough
subset of the reals and applying the Schwartz-Zippel lemma.

Next, we utilize a representation of Fpn by n× n matrices
over Fp [13]. Let Fp[x] denote the ring of polynomials in x
with coefficients from Fp. Let α be a primitive element in Fpn
and let πα(x) = xn+

∑n−1
i=0 πix

i ∈ Fp[x] denote the primitive



polynomial associated with α. The n × n companion matrix
(over Fp) associated with πα(x) is

C =


0 0 · · · 0 −π0

1 0 · · · 0 −π1

0 1 · · · 0 −π2

...
...

. . .
...

...

0 0
... 1 −πn−1

 . (10)

Define C(p, n) = {0, I, C,C2, · · · , Cpn−2} with matrix
addition and multiplication over Fp, where 0 denotes n × n
zero matrix and I denotes n × n identity matrix. Then it is
well-known [13] that the C(p, n) forms a finite field of size pn

and is therefore isomorphic to Fpn . In particular, the mapping
ζ(αl) = Cl, ζ(0) = 0, maps the elements in Fpn to their
corresponding matrix representation. In this work, we need
another isomorphism. The elements of Fpn are represented
by polynomials in α of degree smaller than n with regular
polynomial addition and multiplication being reduced to lower
powers by using πα(α) = 0. Let Γ : Fpn → Fnp represent the
mapping of a polynomial a(α) to its vector representation.
The addition of a1(α) and a2(α) is mapped to Γ(a1)+Γ(a2).
The product of a1(α) and a2(α) is mapped to a1(C)Γ(a2).

To see that this is a valid isomorphism, we have the
following argument that establishes the equivalence of mul-
tiplication with α in Fpn and left multiplication by C. Let
b0 + b1α+ · · ·+ bn−1α

n−1 be an element of Fpn . Then

α(b0 + b1α+ · · ·+ bn−1α
n−1)

=b0α+ b1α
2 + · · ·+ bn−2α

n−1 − bn−1(

n−1∑
i=0

πiα
i)

=− π0bn−1 + (b0 − π1bn−1)α+ (b1 − π2bn−1)α2

+ · · ·+ (bn−2 − πn−1bn−1)αn−1.

It can be seen that C[b0 b1 · · · bm−1]T gives the same result.
The isomorphism of Fpn and C(p, n) shows that each element
of Fpn can be represented as a power of C. The result is then
obtained by inductively applying the equivalence presented
above.

Lemma 1. Let B be a n×n matrix with entries from Fpm . Let
B̃ denote the mn×mn matrix obtained by applying the map ζ
to each entry of B. Note that det(B) ∈ Fpm and det(B̃) ∈ Fp.
We claim that

det(B) 6= 0⇐⇒ det(B̃) 6= 0. (11)

Furthermore, let B̂ denote the mn × mn matrix over the
integers Z obtained by mapping each element of B̃ to the
corresponding integer in {0, . . . , p − 1}. If det(B) 6= 0 we
have det(B̂) 6= 0 over the reals.

Proof. Suppose that det(B) 6= 0 but det(B̃) = 0. Note
that this implies that there exists a non-zero vector ỹ =
[ỹT1 ỹT2 . . . ỹTn ]T ∈ Fmnp where ỹi ∈ Fmp such that

B̃ỹ = 0. (12)

Now we use the isomorphism presented above. Let y =
[y1 y2 . . . yn]T ∈ Fnpm be obtained by applying Γ−1 to ỹ.
Therefore, relation (12), equivalently implies that

By = 0, (13)

where the above equation is understood to be over Fpm .
However, this is a contradiction since y 6= 0 and det(B) 6= 0.
The reverse conclusion can be obtained in a similar manner.
Note that det(B̃) ∈ Fp. It can also be equivalently computed
by finding det(B̂) over reals and reducing the result modulo
p. Thus, we have that det(B̂) 6= 0 over reals. �

We now present the construction of systems that satisfy the
s-weak full-rank property.

Lemma 2. Let Gk, 0 ≤ k < N , be a collection of N matrices
with size ∆ × ` over Fpn that satisfy the strong full-rank
property. Consider the N matrices G′k of dimension n∆× n`
over Fp, where G′k is obtained by applying the mapping ζ to
each entry of Gk. Then, the collection {G′k}

N−1
k=0 satisfies the

n-weak full rank condition over R.

Proof. This is an immediate consequence of Lemma 1. �

Example 3. Consider collection of N = 6 matrices presented
in Example 2 over F8. Let the primitive polynomial over F8

be πα(x) = x3 +x+1. Suppose that βk = αk, k ∈ [N ]. Then,

Gk =


1 0 0
αk 1 0
α2k 0 1
α3k α2k αk

 , G′k =


I 0 0
Ck I 0
C2k 0 I
C3k C2k Ck

 .
By Lemma 2, the collection {G′k}5k=0 satisfies the 3-weak full
rank condition over R.

We note here that Lemma 2 can also be applied to an RS
code defined over a finite field.

Remark 4. Our proposed scheme requires us to operate over
an extension field large enough so that pn ≥ N + 1 for
the UDM based approach and pn ≥ N` + 1 for the RS-
based approach. Thus, the second term in the worst case
computational load (cf. Eq. (1)) can be made as small as
desired by choosing ∆ large enough. Increasing ∆ does come
at the cost of high condition numbers (cf. Section V).

V. COMPARISONS OF THE DIFFERENT SCHEMES

In this section, we compare the performance of the dif-
ferent schemes that have been proposed in this work. For
each scheme, we construct all possible matrices G based on
{Gk}N−1

k=0 and Ψ=Qb

N,`,s and calculate their condition number. We
report the maximum and average condition number of all such
possible G’s. Furthermore, we also report the average number
of non-zero elements in the Gk matrices for each collection.

In Table I we report results for a system with N = 6 workers
and storage capacity for each worker γ = 3/4. For the “RS-
based scheme”, we set βi,j , i = 0, . . . , 5, j = 0, 1, 2, in (4) to
18 equally spaced reals within the interval [−1, 1]. For the
“UDM-based scheme”, we set βk in (5), k = 0, . . . , 5 to



TABLE I: Performance comparison for system with N = 6, γ = 3/4 and Qb = 4.

Scheme ∆ ` s Max. Cond. Num. Avg. Cond. Num. Density of Gk

RS based scheme 4 3 5.1 × 103 334 100%
RS + Companion Matrix of GF(25) 20 15 5 3.4 × 104 814 51%

RS + Embedding from GF(19) 4 3 7.3 × 103 312 100%
RS + Companion Matrix of GF(33) 12 9 3 1.5 × 103 98 71%

UDM-based scheme 4 3 6.1 × 103 265 75%
UDM + Embedding from GF(7) 4 3 1.5 × 103 98 75%

UDM + Companion Matrix of GF(23) 12 9 3 583 99 32%
UDM + Companion Matrix of GF(32) 8 6 2 182 23 36%

TABLE II: Performance comparison of different extension fields for a system with N = 15, γ = 1/2 and Qb = 4.

Scheme ∆ ` s Max. Cond. Num. Avg. Cond. Num. Density of Gk

RS + Companion Matrix GF(25) 20 10 5 2.8 × 105 751 53%
RS + Companion Matrix GF(53) 12 6 3 1.1 × 105 183 83%
RS + Companion Matrix GF(34) 16 8 4 3.5 × 104 202 67%

UDM + Companion Matrix GF(24) 16 8 4 3.7 × 104 286 33%
UDM + Companion Matrix GF(52) 8 4 2 1.1 × 104 86 62%
UDM + Companion Matrix GF(33) 12 6 3 624 96 41%

6 equally spaced reals within the interval [−1, 1]. For “RS
+ Embedding from GF(19)”, we construct (4) over GF(19).
Note that the field size is the least prime number that is greater
or equal to the number of evaluation points. Then we embed
(4) into R by using the natural mapping of GF(19) into the
integers. We construct “UDM + Embedding from GF(7)” in
a similar manner. It can be seen that the condition number
of “UDM scheme + Embedding from GF (7)” is the lowest
when compared the other three schemes discussed thus far.

The other rows of Table I correspond to the companion
matrix approach. In each of these cases we first design the
RS-based or the UDM-based scheme over the correspond-
ing extension field and then use the companion matrix idea
introduced in Section IV. One can observe that the RS +
Companion matrix schemes typically have high condition
number. This is because the size of the companion matrix
needs to be large enough to accommodate N` evaluation
points. The UDM + Companion matrix schemes can work with
extension fields larger than N , so their companion matrices
tend to be smaller. Another advantage of the companion matrix
approach is that the schemes are much sparser. Indeed, the
“UDM + Companion matrix GF(32)” in Table I not only has a
very low worst case condition number but also a sparsity level
of 36% which is the second lowest among all the schemes.

To better understand the performance corresponding to dif-
ferent choices of extension field, we consider a larger system
with N = 15, γ = 1/2 in Table II. It can be observed
that the RS-based scheme is worse than the UDM-based
scheme. Another observation is that the “UDM + Companion
matrix GF(33)” has the lowest condition number and the
Gk matrices become sparser when the size of the companion
matrix increases.
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