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Abstract—The Korkine-Zolotareff (KZ) reduction is a widely
used lattice reduction strategy in communications and cryptogra-
phy. The Hermite constant, which is a vital constant of lattice, has
many applications, such as bounding the length of the shortest
nonzero lattice vector and orthogonality defect of lattices. The
KZ constant can be used in quantifying some useful properties
of KZ reduced matrices. In this paper, we first develop a linear
upper bound on the Hermite constant and then use the bound
to develop an upper bound on the KZ constant. These upper
bounds are sharper than those obtained recently by the first
two authors. Some examples on the applications of the improved
upper bounds are also presented.

Index Terms—KZ reduction, Hermite constant, KZ constant.

I. INTRODUCTION

The lattice generated by a matrix A ∈ R
m×n with full-

column rank is defined by

L(A) = {Ax |x ∈ Z
n}. (1)

The column vectors of A and n represent the basis and

dimension of L(A), respectively.

A matrix Z ∈ Z
n×n satisfying | det(Z)| = 1 is said to

be unimodular. For any unimodular Z ∈ Z
n×n, L(AZ) is

the same lattice as L(A). Lattice reduction is the process of

finding a unimodular Z such that the column vectors of AZ

are short. There are a few types of lattice reduction strategies.

The Lenstra-Lenstra-Lovász (LLL) reduction and the Korkine-

Zolotareff (KZ) reduction are two of the most popular ones,

and they have crucial applications in many domains including

communications [1] and cryptography [2].

For efficiency, the LLL reduction is often used to preprocess

the matrix A when a closest vector problem (CVP), which is

defined as

min
x∈Zn

‖y −Ax‖2,

needs to be solved. In some communications applications, a

number of CVPs with the same matrix A but different y need

to be solved. In this situation, for efficiency, instead of the LLL

reduction, the KZ reduction is applied to preprocess A. The

reason is that although it is more time consuming to perform
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the KZ reduction than the LLL reduction, the reduced matrix

of the KZ reduction has better properties than the one obtained

by the LLL reduction, and hence the total computational time

of solving these CVPs by using the KZ reduction may be

less than that of using the LLL reduction. Furthermore, the

KZ reduction finds applications in successive integer-forcing

linear receiver design [3] and integer-forcing linear receiver

design [4].

It is interesting to quantify the performance of the KZ

reduction in terms of shortening the lengths of the lattice

vectors and reducing the orthogonality defects of the basis

matrices of lattices. The KZ constant, defined by Schnorr in

[5], is a measure of the quality of KZ reduced matrices. It

can be used to bound the lengths of the column vectors of KZ

reduced matrices from above [6], [7]. In addition to this, the

KZ constant has applications in bounding the decoding radius

and the proximity factors of KZ-aided successive interference

cancellation (SIC) decoders from below [7]–[9]. Although the

KZ constant is an important quantity, there is no formula for

it. Fortunately, it has several upper bounds [5], [10], [7]. The

first main aim of this paper is to improve the sharpest existing

upper bound presented in [7].

The Hermite constant can be used to quantify the length

of the shortest nonzero vector of lattices. Since estimating

the length of the shortest vector in a lattice is a NP-hard

problem [11], this application of Hermite constant is of vital

importance. It also has applications in bounding the KZ

constant from above [5]. Furthermore, it can be used to derive

lower bounds on the decoding radius of the LLL-aided SIC

decoders [7], [9], and upper bounds on the orthogonality

defect of KZ reduced matrices [6], [7], [12]. Although the

Hermite constant is important, its exact values are known

for dimension 1 ≤ n ≤ 8 and n = 24 only. Thus, its

upper bound for arbitrary integer n is needed. In the above

applications, the Hermite constant’s linear upper bounds play

crucial roles. Hence, in addition to the nonlinear upper bound

[13], several linear upper bounds on the Hermite constant have

been proposed in [6], [14], [15]. The second main aim of this

paper is to improve the sharpest available linear upper bound

provided in [7].

The reminder of the paper is organized as follows. Sections
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II and III develop a new linear upper bound on the Hermite

constant and a new upper bound on the KZ constant, respec-

tively. Finally, this paper is summarized in Section IV.

Notation. Let Rm×n and Z
m×n be the spaces of the m×n

real matrices and integer matrices, respectively. Boldface low-

ercase letters denote column vectors and boldface uppercase

letters denote matrices. For a matrix A, we use aij to denote

its (i, j) entry. Γ(n) denotes the Gamma function.

II. A SHARPER LINEAR BOUND ON THE HERMITE

CONSTANT

This section develops a new linear upper bound on the

Hermite constant. that is sharper than [7, Theorem 1] when

n ≥ 109.

We first introduce the definition of the Hermite constant.

Denote the set of m× n real matrices with full-column rank

by R
m×n
n . The Hermite constant γn is defined as

γn = sup
A∈R

m×n
n

(λ(A))2

(det(ATA))1/n
,

where λ(A) represents the length of a shortest nonzero vector

of L(A), i.e.,

λ(A) = min
x∈Zn\{0}

‖Ax‖2.

Although the Hermite constant is a vital important constant

of lattices, the values of γn are known only for n = 1, . . . , 8
[16] and n = 24 [17] (see also [7, Table 1]). Fortunately, there

are some upper bounds on γn for any n in the literature and

the sharpest one is

γn ≤
2

π
(Γ(2 + n/2))2/n, (2)

given by Blichfeldt [13].

As explained in Section I, linear upper bounds on γn are

very useful. There are several linear upper bounds: γn ≤ 2
3n

(for n ≥ 2) [6]; γn ≤ 1 + n
4 (for n ≥ 1) [14, p.35] and

γn ≤ n+6
7 (for n ≥ 2) [15]. The most recent linear upper

bound on γn is

γn <
n

8
+

6

5
, n ≥ 1, (3)

given in [7, Theorem 1].

The following theorem gives a new linear upper bound on

γn, which is sharper than (3) when n ≥ 109.

Theorem 1. For n ≥ 1,

γn <
n

8.5
+ 2. (4)

Proof. By (2), to show (4), it suffices to show

(

Γ
(

2 +
n

2

))2/n

<
π(n+ 17)

17
,

which is equivalent to

Γ
(

2 +
n

2

)

<

(

π(n+ 17)

17

)n/2

. (5)

Then, to show (4), it is equivalent to show that

φ(t) :=

[

π
8.5 (t+ 8.5)

]t

Γ (2 + t)
> 1

for t = 0.5, 1, 1.5, 2, 2.5, . . ..
By some direct calculations, one can show that

φ(t) > 1, for t = 0.5, 1.5, 2, 2.5, . . . , 310.

Thus, to show (4), we only need to show that φ(t) or φ̄(t) :=
ln(φ(t)) is monotonically increasing when t ≥ 310.

By some direct calculations, we have

φ̄′(t) = ln
[ π

8.5
(t+ 8.5)

]

+
t

t+ 8.5
− ψ(t+ 2),

where ψ(t + 2) is the digamma function, i.e., ψ(t + 2) =
Γ′(t+2)/Γ(t+ 2). Then, to show (4), we only need to show

that φ̄′(t) ≥ 0 when t ≥ 310. To achieve this, we use the

following inequality from [18, eq. (1.7) in Lemma 1.7]:

ψ(t+ 2) ≤ ln(t+ e1−γ), for t ≥ 0, (6)

where γ = limn→∞(− lnn+
∑n

k=1 1/k), which is referred to

as Euler’s constant. Then, from the expression of φ̄′(t) given

before, we have

φ̄′(t) ≥ ρ(t),

where

ρ(t) : = ln

[

π(t + 8.5)

8.5

]

+
t

t+ 8.5
− ln(t+ e1−γ)

= ln(t+ 8.5)−
8.5

t+ 8.5
− ln(t+ e1−γ) + ln

πe

8.5
.

Since

ρ′(t) =
1

t+ 8.5
+

8.5

(t+ 8.5)2
−

1

t+ e1−γ

=
(t+ 8.5)(t+ e1−γ) + 8.5(t+ e1−γ)

(t+ 8.5)2(t+ e1−γ)

−
(t+ 8.5)2

(t+ 8.5)2(t+ e1−γ)

=
e1−γt− (72.25− 17e1−γ)

(t+ 8.5)2(t+ e1−γ)
,

and γ < 0.58 [19], ρ′(t) ≥ 0 when t > 31 as

e1−γt− (72.25− 17e1−γ)

>31× e1−γ − (72.25− 17e1−γ) > 0.

Thus, for t ≥ 310, we have

φ̄′(t) ≥ ρ(t) ≥ ρ(310) > 0.0000796 > 0,

where the third inequality follows form the fact that γ > 0.57
[19].

By some simple calculations, one can easily see that the

upper bound (4) is sharper than the upper bound (3) when n ≥
109. When n ≤ 108, (3) is sharper than (4), but their difference

is small. By the Stirling’s approximation for Gamma function,

the right-hand side of (2) is asymptotically n
πe ≈ n

8.54 . Thus,



the linear bound given by (4) is very close to the nonlinear

upper bound given by (2). To clearly show the improvement

of (4) over (3) and how close (4) is to (2), in Figure 1 we

plot the ratios of the two bounds to Blichfeldt’s bound given

by (2):

Ratio 1 =
n
8 + 6

5
2
π (Γ(2 + n/2))2/n

, Ratio 2 =
n
8.5 + 2

2
π (Γ(2 + n/2))2/n

.
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Fig. 1. The ratio of the bounds given by (4) and (3) to Blichfeldt’s bound in
(2) versus n

From Figure 1, one can see that the upper bound given by

(4) is very close to the nonlinear upper bound given by (2),

and (4) improves (3) for n ≥ 109.

In the following, we give some remarks.

Remark 1. The approach used by the proof for (4) is different

from that for (3) used in [7]. To show (3), it suffices to show

(cf. (5))

Γ
(

2 +
n

2

)

<

(

π(n+ 9.6)

16

)n/2

. (7)

The proof for (7) first gives an upper bound on Γ
(

2 + n
2

)

and then shows the right-hand side of (7) is larger than this

upper bound, while the proof for (5) here shows φ(t) is a

monotonically increasing function by using an upper bound

on the digamma function (see (6)).

Remark 2. The improved linear upper bound (4) on γn can

be used to improve the lower bound on the decoding radius

of the LLL-aided SIC decoder that was given in [7], which is

an improvement of the one given in [9, Lemma 1]. Since the

derivation for the new lower bound on the decoding radius is

straightforward by following the proof of [9, Lemma 1] and

using (4), we do not provide details.

Remark 3. The improved linear upper bound (4) on γn can be

used to improve the upper bound on the orthogonality defect

of KZ reduced matrices that was presented in [7, Theorem

4]. Note that the orthogonality defect of a matrix is a good

measure of the orthogonality of the matrix and hence it is often

used in characterizing the quality of a LLL or KZ reduced

matrix.

III. A SHARPER BOUND ON THE KZ CONSTANT

In this section, we develop an upper bound on the KZ

constant that is sharper than that given by [7, Theorem 2].

We first briefly introduce the definition of the KZ reduction.

Suppose that A in (1) has the following thin QR factorization

(see, e.g., [20, Chap. 5]):

A = QR, (8)

where Q ∈ R
m×n has orthonormal columns and R ∈ R

n×n is

nonsingular upper triangular, and they are respectively referred

to as A’s Q-factor and R-factor. If R in (8) satisfies:

|rij | ≤
1

2
|rii|, 1 ≤ i ≤ j − 1 ≤ n− 1, (9)

|rii| = min
x∈Zn−i+1\{0}

‖Ri:n,i:nx‖2, 1 ≤ i ≤ n, (10)

then A and R are said to be KZ reduced. Given A ∈ R
m×n
n ,

the KZ reduction is the process of finding a unimodular matrix

Z ∈ Z
n×n such that AZ is KZ reduced.

Let BKZ denote the set of all m× n KZ reduced matrices

with full-column rank. The KZ constant is defined as [5]

αn = sup
A∈BKZ

(λ(A))2

r2nn
, (11)

where λ(A) denotes the length of the shortest nonzero vector

of L(A), and rnn is the last diagonal entry of the R-factor R

of A (see (8)).

As explained in Section I, the KZ constant is an important

quantity for characterizing some properties of KZ reduced

matrices. However, its exact value is unknown. Hence, it

is useful to find a good upper bound on it. Schnorr in [5,

Corollary 2.5] proved that

αn ≤ n1+lnn, for n ≥ 1;

Hanrot and Stehlé in [10, Theorem 4] showed that

αn ≤ n

n
∏

k=2

k1/(k−1) ≤ n
lnn

2
+O(1), for n ≥ 2;

Based on the exact value of γn for 1 ≤ n ≤ 8 and the upper

bound on γn in (3) for n ≥ 9, Wen and Chang in [7, Theorem

2] showed that

αn ≤ 7

(

1

8
n+

6

5

)(

n− 1

8

)
1
2
ln((n−1)/8)

, for n ≥ 9. (12)

In the following theorem we provide a new upper bound

on αn for n ≥ 109, which is sharper than that in (12) for

n ≥ 111. The new bound on αn is based on the new upper

bound on the Hermite constant γn (4), which is sharper than

that in (3) for n ≥ 109.



Theorem 2. The KZ constant αn satisfies

αn ≤ 8.1
( n

8.5
+ 2
)

(

2n− 1

17

)
1
2
ln((2n−1)/17)

, for n ≥ 109.

(13)

To prove Theorem 2, we need to introduce two lemmas.

The first one is from [7, Lemma 2].

Lemma 1. For a > b > 0 and c > 0
∫ b

a

ln(1 + c/t)

t
dt ≤

9

8
ln
b(3a+ 2c)

a(3b+ 2c)
+
c(b− a)

4ab
. (14)

The second lemma which is needed for proving Theorem 2

is as follows:

Lemma 2. Suppose that f(t) satisfies f ′′(t) ≥ 0 for t ∈ [a, b].
Then

(b − a)f

(

a+ b

2

)

≤

∫ b

a

f(s)ds. (15)

Proof. The left hand side of (15) is referred to as the midpoint

rule for approximating the integral on the right hand side in

numerical analysis. It is well known that
∫ b

a

f(s)ds− (b− a)f

(

a+ b

2

)

=
1

24
(b − a)3f ′′(z) (16)

for some z ∈ (a, b). This formula can be easily proved as

follows. By Taylor’s theorem,

f(s) =f

(

a+ b

2

)

+ f ′

(

a+ b

2

)

(

s−
a+ b

2

)

+
1

2
f ′′(ζ(s))

(

s−
a+ b

2

)2

,

where ζ(s) depends on s ∈ (a, b). Integrating both sides

of the above equality over [a, b] and using the Mean-Value-

Theorem for Integrals immediately lead to (16). Then using

the condition that f ′′(t) ≥ 0 for t ∈ [a, b], we obtain (15).

In the following, we give a proof for Theorem 2 by

following the proof of [7, Theorem 2].

Proof. According to the proof of [5, Cor. 2.5],

αn ≤ γn

n
∏

k=2

γ
1/(k−1)
k . (17)

By [7, (53)], we have

8
∏

k=2

γ
1/(k−1)
k = 2

827
420 3−

8
15 . (18)

By (3), we obtain

108
∏

k=9

γ
1/(k−1)
k ≤

108
∏

k=9

(

k

8
+

6

5

)1/(k−1)

< 79.06. (19)

In the following, we use Theorem 1 to bound
∏n

k=109 γ
1/(k−1)
k from above. By Theorem 1, we obtain

n
∏

k=109

γ
1/(k−1)
k ≤

n
∏

k=109

(

k

8.5
+ 2

)1/(k−1)

=

n−1
∏

k=108

(

k + 18

8.5

)1/k

=exp

[

n−1
∑

k=108

1

k
ln

(

k + 18

8.5

)

]

(a)

≤ exp

(

n−1
∑

k=108

∫ k+0.5

k−0.5

1

t
ln

(

t+ 18

8.5

)

dt

)

=exp

(
∫ n−0.5

107.5

1

t
ln

(

t+ 18

t

t

8.5

)

dt

)

=exp

(
∫ n−0.5

107.5

1

t
ln

(

1 +
18

t

)

dt

)

× exp

(
∫ n−0.5

107.5

ln(t/8.5)

t
dt

)

, (20)

where (a) follows from Lemma 2 with a = k−0.5, b = k+0.5
and the fact that for t ≥ 107.5, ω(t) := 1

t ln
(

t+18
8.5

)

satisfies

ω′′(t)=
1

t3(t+ 18)2

(

2(t+ 18)2 ln

(

t+ 18

8.5

)

− (3t2 + 36t)

)

≥
1

t3(t+ 18)2

(

2(t+ 18)2 · ln
125.5

8.5
− (3t2 + 36t)

)

≥
1

t3(t+ 18)2
(

2(t+ 18)2 · 2− (3t2 + 36t)
)

≥ 0.

Now we bound the two factors on the right-hand side of

(20) from above. By Lemma 1, we obtain

exp

(
∫ n−0.5

107.5

1

t
ln

(

1 +
18

t

)

dt

)

≤ exp

(

9

8
ln

358.5(n− 0.5)

107.5(3(n− 0.5) + 36)
+

18(n− 108)

430(n− 0.5)

)

≤ exp

(

9

8
ln

358.5(n− 0.5)

107.5× 3(n− 0.5)
+

18(n− 108)

430(n− 108)

)

=

(

119.5

107.5

)9/8

exp

(

9

215

)

. (21)

By a direct calculation, we have

exp

(
∫ n−0.5

107.5

ln(t/8.5)

t
dt

)

= exp

(

ln2((n− 0.5)/8.5)

2
−

ln2(107.5/8.5)

2

)

=

(

n− 0.5

8.5

)
1
2
ln((n−0.5)/8.5)(

8.5

107.5

)
1
2
ln(107.5/8.5)

(22)

Then combining (17)-(22) and (4), we obtain that for n ≥
109

αn ≤ 79.06× 2
827
420 3−

8
15

(

119.5

107.5

)9/8

exp

(

9

215

)

×

(

8.5

107.5

)
1
2
ln 107.5

8.5 ( n

8.5
+ 2
)

(

n− 0.5

8.5

)
1
2
ln(n−0.5

8.5
)

< (8.0911 · · · )
( n

8.5
+ 2
)

(

n− 0.5

8.5

)
1
2
ln(n−0.5

8.5
)



< 8.1
( n

8.5
+ 2
)

(

2n− 1

17

)
1
2
ln((2n−1)/17)

.

Remark 4. Note that although the proof of Theorem 2 is

similar to the proof of [7, Theorem 2], there is some difference

between them. The main difference between them is (a) in (20).

Here, we use Lemma 2 to build (a), while the proof of [7,

Theorem 2] uses the decreasing property of the integrand to

get the inequality.

To clearly see the improvement of (13) over (12), we draw

the ratio of the right-hand side of (13) to that of (12) for

n = 111 : 1 : 1000 in Figure 2. The figure shows that (13)

significantly outperforms (12), and the improvement becomes

more significant as n gets larger.
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Fig. 2. The ratio of the bound given by (13) to the bound given by (12)
versus n

In the following we give remarks about some applications

of Theorem 2.

Remark 5. As in [7, Remark 2], we can use the improved

upper bound (13) on αn to derive upper bounds on the

proximity factors of the KZ-aided SIC decoder and these new

bounds are sharper than those given in [7, Remark 2]. Since

the derivations are straightforward, we omit its details.

Remark 6. We can use (13) and follow the proof of [9, Lemma

1] to derive a lower bound on the decoding radius of the KZ-

aided SIC decoder, which is tighter than that given in [7,

Remark 3] when n ≥ 111.

Remark 7. By following the proof of [7, Theorem 3] and using

(13), we can also develop new upper bounds on the lengths of

the KZ reduced matrices, which are tighter than those given

in [7, Theorem 3] when n ≥ 111.

IV. SUMMARY

The KZ reduction is one of the most popular lattice re-

duction methods and has many important applications. The

Hermite constant is a basic constant of lattice. In this paper,

we first developed a new linear upper bound on the Hermite

constant and then utilized the bound to develop a new upper

bound on the KZ constant. These bounds are sharper than

those developed in [7]. Some applications of the new sharper

bounds on the Hermite and KZ constants were also discussed.
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