
ar
X

iv
:1

90
1.

01
60

5v
2

 [
cs

.I
T

]
 1

5
A

pr
 2

01
9

1

Bounds on the Length

of Functional PIR and Batch codes

Yiwei Zhang, Tuvi Etzion, Fellow, IEEE, Eitan Yaakobi, Senior Member, IEEE

Abstract

A functional k-PIR code of dimension s consists of n servers storing linear combinations of s

linearly independent information symbols. Any linear combination of the s information symbols can be

recovered by k disjoint subsets of servers. The goal is to find the smallest number of servers for given k

and s. We provide lower bounds on the number of servers and constructions which yield upper bounds

on this number. For k ≤ 4, exact bounds on the number of servers are proved. Furthermore, we provide

some asymptotic bounds. The problem coincides with the well known private information retrieval

problem based on a coded database to reduce the storage overhead, when each linear combination

contains exactly one information symbol.

If any multiset of size k of linear combinations from the linearly independent information symbols

can be recovered by k disjoint subset of servers, then the servers form a functional k-batch code.

A functional k-batch code is a functional k-PIR code, where all the k linear combinations in the

multiset are equal. We provide some bounds on the number of servers for functional k-batch codes. In

particular we present a random construction and a construction based on simplex codes, WOM codes,

and RIO codes.

I. INTRODUCTION

A. General Background

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item from a

database, in such a way that the servers storing the data will get no information about which

data item was retrieved. The problem was introduced in [7]. The protocol to achieve this goal

assumes that the servers are curious but honest, so they don’t collude. It is also assumed that

the database is error-free and is synchronized all the time. For a set of k servers, the goal is to

design an efficient k-server PIR protocol, where efficiency is measured by the total number of

bits transmitted by all parties involved. This model is called information-theoretic PIR; there is

also computational PIR, in which the privacy is defined in terms of the inability of a server to

compute which item was retrieved in a reasonable time [19]. We continue to consider only the

information-theoretic PIR.

The classic model of PIR assumes that each server stores a copy of an s-bit database, so the

storage overhead, namely the ratio between the total number of bits stored by all servers and the

size of the database, is k. However, recent work combines PIR protocols with techniques from

distributed storage (where each server stores only a coded fraction of the database) to reduce the

storage overhead. This approach was first considered in [27], and several papers have developed

this direction further, e.g. [2], [9], [10]. Our discussion on PIR will follow the breakthrough

The authors are with the Department of Computer Science, Technion – Israel Institute of Technology, Haifa 3200003, Israel,

(e-mail: {ywzhang,etzion,yaakobi}@cs.technion.ac.il).

The material in this paper will be presented in part at the IEEE International Symposium on Information Theory (ISIT 2019),

Paris, France, July 2019.

Eitan Yaakobi and Yiwei Zhang were supported in part by the ISF grant 1817/18; Tuvi Etzion and Yiwei Zhang were supported

in part by the BSF-NSF grant 2016692; Yiwei Zhang was also supported in part by a Technion Fellowship.

http://arxiv.org/abs/1901.01605v2

2

approach presented in [15], [16], which shows that n servers (for some n > k) may emulate

a k-server PIR protocol with storage overhead significantly lower than k. The scheme used for

this purpose is called a k-PIR and will be discussed in the next paragraph.

The s-bit database S is considered as the information bits of a linear code of length n and

dimension s. This code has an s × n generator matrix G. The linear combinations related to

the codeword SG are stored in the n servers. In other words, the i-th server stores the linear

combination generated when the s-bit information word is multiplied by the i-th column of G.

The generator matrix G represents a k-PIR scheme if there are k pairwise disjoint subsets of

[n] , {1, 2, . . . , n}, R1, R2, . . . , Rk, such that the sum of the columns of G related to each such

subset is the data item (out of the s data items) which the user wants to retrieve. Using these k
subsets any known k-PIR protocol can be emulated with the given n servers. The advantage of

this scheme is a smaller amount of storage used for a k-PIR protocol. The goal in the design

of such a PIR scheme is to find the smallest n, given s and k. This problem was considered in

several papers, e.g. [1], [15], [16], [21], [23], [29], [34].

In all the PIR protocols known in the literature, the user wants to retrieve one out of the

s information bits of the database. As will be described in the sequel, PIR codes and their

generalizations are similar to other concepts in coding theory. For example, there is also the

similar requirement for codes with availability [24], which are important in applications of

distributed storage codes. In some of the related applications, it is quite natural that it will be

required to retrieve a linear combination of the s bits of information symbols. Such a scheme

will be called a k-functional PIR code (this is some abuse of definition since for the private

information retrieval application such a retrieval of linear combinations is not required). Given

s and k we would like to find the smallest n for which a functional k-PIR exists. This is one

of the two targets of the current paper.

The definition of a k-PIR code appears to be a special case of a k-batch code. The concept

of a batch scheme was first proposed by Ishai et al. [18], which was motivated by different

applications for load-balancing in storage and cryptographic protocols. Originally, batch codes

were defined in a very general form, i.e., s information symbols are encoded into n-tuples of

strings where each string is called a bucket. Each bucket contains a few linear combinations of

the information symbols. A single user wants to retrieve a batch of k distinct data items (out of

the s data items) by reading at most t symbols from each bucket. The goal in the design of a

batch scheme is to find the smallest total length of all the buckets, given s, k, t and n.

A stronger variant of batch codes [18] is intended for a multi-user application instead of a

single-user setting, known as the multiset batch codes. In this variant we have k different users

each requesting a data item, where some of the requests are allowed to be the same. Therefore

all the k requests constitute a multiset of data items (each being one out of the s data items,

replications allowed). Moreover, each bucket is allowed to be accessed by at most one user. A

special case of a multiset batch code is when each bucket contains only one symbol. This model

is called a primitive multiset batch code [18] (or a k-batch code in short) and it is a family

of batch codes that was most studied in the literature. In the rest of this paper, we restrict our

definition of batch codes only to primitive multiset batch codes. Similarly as for a PIR code, a

batch code is represented by an s × n generator matrix G. It is a k-batch scheme if there are

k pairwise disjoint subsets of [n], R1, R2, . . . , Rk, such that the k sums from each subset of the

columns in G constitute a multiset of data items which some k users want to retrieve. Hence,

the requests in a k-PIR are a special case of the requests in a k-batch when the multiset contains

only one specific item k times. Therefore a k-batch code can always work as a k-PIR code but

not vice versa. The goal in the design of a batch scheme is to find the smallest n, given s and k.

3

This problem was considered in several papers, e.g. [1], [5], [18], [25], [30].

Similarly as our generalization of PIR into functional PIR, by setting the requests to be a

multiset of linear combinations of the s bits of information symbols, a batch code is generalized

into a functional batch code. Given s and k we would like to find the smallest n for which a

functional k-batch code exists. This is the second target of the current paper.

A special case of batch codes, called switch codes, were recently studied for network applica-

tions [5], [6], [31]–[33]. This family of codes was first proposed by Wang et al. [33] and these

codes were designed to increase the parallelism of data writing and reading processes in network

switches. A network switch is required to write n incoming packets and read k outgoing packets

while using m memory banks, each able to write and read one packet per time unit. Each set

of n packets written to the switch simultaneously is called a generation. The objective is to

store the packets in the banks such that every request of k packets, which can be from previous

generations, can be handled by reading at most one packet from each bank. Even though batch

codes and switch codes were proved to be equivalent [5], switch codes are commonly designed

for the special case of k = n, which balances the output and input switching rates.

A related family of codes to functional batch codes is the family of random I/O (RIO) codes.

This family of codes was recently introduced by Sharon and Alrod [28] and provides a coding

scheme to improve the random input/output performance of flash memories. An (n,M, t) RIO

code stores t pages in n cells with t + 1 levels such that it is enough to sense a single read

threshold in order to read any of the t pages. Sharon and Alrod showed in [28] that the design

of RIO codes is equivalent to the design of write-once memory (WOM) codes [11], [17], [26],

[35]. The latter family of codes attracted substantial attention in recent years in order to improve

the lifetime of flash memories by allowing writing multiple messages to the memory without

the need for an erase operation. However, while in WOM codes, the messages are received one

after the other and thus are not known in advance, in RIO codes the information of all logical

pages can be known in advance when programming the cells. This variant of RIO codes, called

parallel RIO codes, was introduced in [36]. A recent construction of parallel RIO codes [37] used

the coset coding scheme [11] with Hamming codes in order to construct parallel RIO codes. In

fact, this construction is equivalent to the requirements of functional batch codes, and thus every

functional batch code can be used as a parallel RIO code as well. The other direction does not

necessarily hold since parallel RIO codes do not have to be linear, as opposed to functional batch

codes. The codes from [37] gave two constructions of functional batch codes (which are parallel

RIO codes) with the following parameters: (s = 3, k = 4, n = 7) and (s = 4, k = 8, n = 15).

B. General Description of the Problem

Assume there are n servers, each storing a linear combination of s linearly independent items.

Each of these s items will be called an information symbol. Each linear combination which

consists of at least one of these information symbols will be called a coded symbol. There are k
users who want to retrieve k linear combinations of items from these servers. Each such linear

combination which a user wants to retrieve will be called a request. Each user has exactly one

such request and he should approach a set of servers to obtain his request. The set of servers

which are approached by two different users must be disjoint. We would like to know the smallest

number of servers which is required to satisfy any k requests of the k users. This scheme will

be called a functional k-batch code (functional k-batch for short, and similarly done for the

related concepts). If each request contains exactly one information symbol, then the scheme will

be called a k-batch code.

4

If the k requests are the same (linear combination) then the scheme will be called a functional

k-PIR code and furthermore if these k requests contain the same information symbol, then the

scheme will be called a k-PIR code. This definition for k-PIR coincides with the definition for

k-PIR given in [15], [16] for a single user. Let FB(s, k) (B(s, k), FP (s, k), P (s, k), respectively)

be the minimum number of servers required for s items and k requests for functional k-batch (k-

batch, functional k-PIR, k-PIR, respectively). Next, we present the formal definition for functional

k-batch code (k-batch code, functional k-PIR code, k-PIR code, respectively).

A functional k-batch code of length n and dimension s consists of n servers and s information

symbols {x1, x2, . . . , xs}. Each server stores a nontrivial linear combination of the information

symbols (which are the coded symbols), i.e. the j-th server stores a linear combination Yj ,

1 ≤ j ≤ n. For any request of k linear combinations v1,v2, . . . ,vk (not necessarily distinct)

of the information symbols, there are k pairwise disjoint subsets R1, R2, . . . , Rk of [n] such

that the sum of the linear combinations in the related servers of Rj , 1 ≤ j ≤ k, is vj , i.e.
∑

ℓ∈Rj
Yℓ = vj . Each such vi will be called a requested symbol and each such subset Rj will be

called a recovery set. A functional k-batch code can be also represented by an s× n matrix G

in which the j-th column has ones in positions i1, i2, . . . , iℓ if and only if the j-th server stores

the linear combination xi1 + xi2 + · · ·+ xiℓ .

To summarize, a k-batch code is defined similarly to a functional k-batch code, where each

one of the requests v1,v2, . . . ,vk contains exactly one information symbol. A functional k-PIR

code is defined similarly to a functional k-batch code, where all the vi’s equal to one linear

combination v. A k-PIR code is defined similarly to a functional k-PIR code, where the linear

combination v contains exactly one information symbol.

By these definitions, a (functional) batch code is also a (functional) PIR code (where all

the requests are equal) and a functional batch (PIR, respectively) code is also a batch (PIR,

respectively) code, but not vice versa. Thus, we have the following relationships among these

four families of codes.

functional k-batch code

k-batch code functional k-PIR code

k-PIR code

C. Basic Results

Our goal in this paper is to obtain lower and upper bounds on FB(s, k) and FP (s, k), since

relatively good bounds on B(s, k) and P (s, k) are known from the literature. Some of these

bounds on B(s, k) and P (s, k) were derived in [1], [5], [15], [20], [23], [25], [30], [34] and are

summarized as follows.

Lemma 1:

1) For each s ≥ 1, P (s, 2s−1) = 2s − 1 [16].

2) For each s ≥ 1, B(s, 2s−1) = 2s − 1 [33].

3) When k is a fixed integer, P (s, k) = s+Θ(
√
s) [15], [23], [34].

4) B(s, k) = s+Θ(
√
s) for k = 3, 4, 5 [1], [30].

5) B(s, k) = s+O(
√
s log s) for k ≥ 6 [30].

6) B(s, s1/3) ≤ 2s [25].

5

7) B(s, sε) ≤ s+ s7/8 for 7/32 ≤ ε ≤ 1/4 [25].

8) B(s, sε) ≤ s+ s4ε for 1/5 < ε ≤ 7/32 [25].

9) B(s, s) ≤ 2s1.5 [5].

10) P (s,
√
s) = s+O(s(log 3/2)) [20].

11) P (s, sε) = s+O(s0.5+ε), 0 < ǫ < 1/2 [20].

12) B(s, k = Θ(sε)) = s+ o(s), 0 < ǫ < 1 [1].

13) P (s, k = Θ(sε)) = s+ o(s), 0 < ǫ < 1 [1].

14) B(s, k = o(n1/3/ logn)) = s+O(k3/2
√
n log n) [22].

15) For k < 1
ℓ2
n1/(2ℓ+1), ℓ is a positive integer, B(s, k) = s+O(kn

ℓ+1
2ℓ+1) [22].

For a binary vector v, let supp(v) denote the support of v, i.e., the set of nonzero entries

of v. Some simple bounds on FB(s, k) and on FP (s, k) are derived in the following theorem.

Theorem 2: If s and k are positive integers, then

1) For k > 1, FB(s, k) > FB(s, k − 1).
2) For k > 1, FP (s, k) > FP (s, k − 1).
3) For s ≥ 1, FP (s, 1) = FB(s, 1) = s.

4) For s ≥ 1, FP (s, 2) = s+ 1.

5) For s ≥ 1 and k ≥ 1, FP (s, 2k) = FP (s, 2k − 1) + 1.

6) For s ≥ 1 and k ≥ 1, FP (s, k) ≤ FB(s, k).

Proof:

1) If any server is removed from a k-batch code then the remaining servers form a (k − 1)-
batch code and hence FB(s, k) > FB(s, k − 1) for k > 1.

2) If any server is removed from a k-PIR code then the remaining servers form a (k−1)-PIR

code and hence FP (s, k) > FP (s, k − 1) for k > 1.

3) If FP (s, 1) < s or FB(s, 1) < s then the rank of the information stored by the symbols

is less than s and hence there is a linear combination not in their spanned information

that cannot be recovered, a contradiction. Hence, FP (s, 1) ≥ s and FB(s, 1) ≥ s. An

1-PIR code (1-batch code) of length s is constructed by storing the information symbol xj ,

1 ≤ j ≤ s, in the j-th server. Therefore, FP (s, 1) ≤ s and FB(s, 1) ≤ s and the claim

follows.

4) Since FP (s, k) > FP (s, k− 1) for k > 1, it follows that FP (s, 2) ≥ s+ 1. Consider the

code of length s + 1, where the j-th server stores the information symbol xj , 1 ≤ j ≤ s
and the (s + 1)-th server stores a parity symbol σ =

∑

xj . For any requested symbol v,

let supp(v) be its support set. The requested symbol v can be recovered from the servers

indexed by its support set and simultaneously by the remaining servers, since the sum of

the symbols from all servers is zero, i.e., v =
∑

j∈supp(v) xj =
∑

j /∈supp(v) xj + σ.

5) From the previous parts of the theorem we have FP (s, 2k − 1) ≤ FP (s, 2k) − 1. On

the other hand, suppose we have a functional (2k − 1)-PIR code with FP (s, 2k − 1)
servers. Add a server storing a global parity symbol, i.e., the sum of the symbols in the

other servers. Any requested symbol can be recovered (2k − 1) times in the same way

as in the functional (2k − 1)-PIR code. It can be recovered one additional time by using

all the remaining servers, since the global parity implies that the sum of the symbols

from all servers is zero. This implies that FP (s, 2k) ≤ FP (s, 2k − 1) + 1 and thus,

FP (s, 2k) = FP (s, 2k − 1) + 1.

6) Follows from the observation that a functional k-batch code can serve as a functional

k-PIR code.

6

Another basic result concerning PIR and batch codes with s information symbols and n
servers is related to their presentation via a binary s×n matrix G whose columns represent the

information in the servers. In other words, the entries on the i-th column of G have ones which

relate to the information symbols used in the coded symbol stored in the i-th server. A code

in which each information symbol is stored in a server will be called systematic. An intriguing

question is whether for all PIR codes and/or batch codes there are related systematic codes with

the same parameters? We conjecture that this is indeed the case, but there is no proof for this

property for k-PIR and k-batch and it is left as an open problem. We can solve this question in

the case of functional PIR and functional batch.

Lemma 3: If there exists a functional k-PIR (batch) code C of length n and dimension s, then

there exists a systematic functional k-PIR (batch) code of length n and dimension s.

Proof: Assume first that C is a functional k-PIR code that is represented by an s×n matrix

G. If rank(G) < s, then there exists a nonzero vector v not in the column space of G which

cannot be recovered, a contradiction. Therefore, rank(G) = s. Assume w.l.o.g. that G = [A B],
where A is an s×s matrix, B is an s× (n−s) matrix, and rank(A) = s, i.e., A is an invertible

matrix. We claim that G′ = [A−1A A−1B] is also a matrix representing a functional k-PIR

code C′. For each request v (for the code C′), consider how Av is recovered k times using C.

For any set of columns in G summing up to Av, we use the columns in G′ with the same

indices. These columns sum to A−1Av = v. Therefore, a systematic functional k-PIR code of

length n and dimension s is obtained.

A similar proof works if C is a functional k-batch code.

Some more simple bounds on FP (s, k) are given in the following theorem.

Theorem 4: If s, t, s1, s2, k1, k2 are positive integers, then

(1) FP (s, 2s−1) = 2s − 1.

(2) FP (s, k1 + k2) ≤ FP (s, k1) + FP (s, k2).
(3) FP (s1 + s2, k) ≤ FP (s1, k) + FP (s2, k).
(4) FP (rt, 2r) ≤ 2t(2r − 1).

Proof:

(1) By Lemma 1(1), we have that FP (s, 2s−1) ≥ P (s, 2s−1) = 2s − 1, so we only need to

show that FP (s, 2s−1) ≤ 2s − 1. Indeed, a functional 2s−1-PIR code is obtained from an

s × (2s − 1) matrix whose columns are all the columns of length s. Each request v can

be recovered 2s−1 times, by 2s−1 − 1 pairs (u,u+ v) and by v itself.

(2) This result follows immediately by concatenating the matrices which represent the func-

tional k1-PIR code and the functional k2-PIR code with s information symbols.

(3) Assume A and B are the matrices which represent the functional k-PIR codes which attain

FP (s1, k) and FP (s2, k), respectively. The matrix

[

A 0

0 B

]

represents a functional k-

PIR code with s1 + s2 information symbols.

(4) By (1) and (2) we have that FP (r, 2r) ≤ 2(2r − 1) and applying it t times we obtain

FP (rt, 2r) ≤ 2t(2r − 1).

Our first target in this paper is to improve on Theorem 4(4).

D. Our Contribution and Outline

In the rest of the paper new lower and upper bounds on FB(s, k) and FP (s, k) will be

presented. In Section II a construction of functional k-PIR codes with k being a power of

7

2 is presented. Proper puncturing of the code obtained by the construction yields functional

k-PIR codes for arbitrary k. In Section III we provide several lower bound on FP (s, k). First,

in Section III-A a general asymptotic lower bound using a counting argument is proved. This

argument is applied also on specific values of s and k to get nontrivial lower bounds on FP (s, k).
An improved lower bound for k = 3 and k = 4 is presented in Section III-B. This lower bound

is in fact tight. A table on the asymptotic and specific lower and upper bounds for FP (s, k) is

also given. A random construction of functional batch codes is given in Section IV. Bounds on

the length of functional batch codes are given in this section too. In Section V, we study the

performance of simplex codes when used as functional batch codes. Conclusions and problems

for future research are outlined in Section VI.

II. A CONSTRUCTION OF FUNCTIONAL PIR CODES

In this section an explicit construction of functional k-PIR codes when k is a power of 2, is

presented. The code which has rt information symbols will be represented by two (t+ 1)× 2r

arrays. One array will be defined in the construction and the second array will be defined in

the proof for the correctness of the construction. In the first array, each entry, except for the

entries of the last column, represents the content of different servers. The last column of the

array contains zeroes. In the second array, each column represents a recovery set. The second

array is obtained from the first array by a permutation defined via a translation induced from

the requested symbol. By puncturing p times this code of length 2r, a functional k-PIR codes

for k = 2r − 2p will be obtained.

Construction 1: Let {xi
j : 1 ≤ i ≤ t, 1 ≤ j ≤ r} be the set of s = rt information symbols. Let

T be a (t+1)×2r array whose last column consists of zeroes. The columns of T are indexed by

the elements of the power set 2[r]. The i-th row, 1 ≤ i ≤ t, contains the 2r linear combinations

of the symbols {xi
j : 1 ≤ j ≤ r}. In particular, the entry on the column indexed by A ∈ 2[r]

contains the linear combination xi
A =

∑

j∈A xi
j (note that xi

∅
= 0). Finally, the (t+ 1)-th row is

a parity row, where the entry in the column indexed by A is XA =
∑t

i=1 x
i
A =

∑t
i=1

∑

j∈A xi
j .

This entry will be called the leader of the column. Note that only the entries of the column

indexed by ∅ do not correspond to information stored in a server. The parity of this column

which is zero is stored in the (t + 1)-th row and it is also called a leader. Each other symbol

in the array T is stored in a different server. The array T contains all the n = (2r − 1)(t + 1)
symbols and hence it will be called the stored symbols array.

By Theorem 4, FP (rt, 2r) ≤ 2t(2r − 1). In the next theorem this upper bound is improved.

Theorem 5: The code of Construction 1 is a functional 2r-PIR code. Therefore, FP (rt, 2r) ≤
(2r − 1)(t+ 1).

Proof: Let v be the requested symbol, i.e., v is a linear combination

v = v1 + v2 + · · ·+ vt ,

where each vi is a linear combination of the information symbols {xi
j : 1 ≤ j ≤ r}, 1 ≤ i ≤ t.

We also define vt+1 = 0.

Given the (t+ 1)× 2r stored symbols array T , we construct a new (t+ 1)× 2r array Rv as

follows. The rows and the columns of Rv are indexed exactly in the same way as the rows and

columns of T are indexed. To the symbol in T in the entry on the i-th row, 1 ≤ i ≤ t+ 1, and

the column indexed by any subset A of 2[r], we add vi to obtain the corresponding symbol in

Rv in the same entry. The array Rv will be called the recovery array for v since each column

contains the content of the servers which form one of the recovery sets. Note, that the i-th row

of Rv, 1 ≤ i ≤ t + 1, is a permutation of the i-th row of T and hence the symbols contained

8

in Rv are exactly the same symbols contained in T , which implies that the information of each

server is contained in exactly one entry of Rv, but usually not in the same entry as in T . The

exceptions are the (t+ 1)-th row and each row i for which vi = 0. It implies that the array Rv

represents the content of the servers, but in different entries from those of T . We claim now

that in each column of Rv contain the content of a set of servers which form a recovery set.

Hence, to complete the proof it is sufficient to show that the sum of the symbols in each

column of Rv is v. For a subset A of [r] let TA be the column of T indexed by A and let

Rv

A be the column of Rv indexed by A. The sum of the symbols in Rv

A is computed from the

symbols of TA and the request v as follows

t
∑

i=1

(xi
A + vi) +XA =

t
∑

i=1

xi
A +XA +

t
∑

i=1

vi =

t
∑

i=1

vi = v.

Therefore, each column of Rv can serve as a recovery set for the requested symbol v. Thus,

the proof of the theorem is completed.

Example 1: Let r = 4, t = 3, s = rt = 12, and k = 2r = 16. All the information symbols

and the coded symbols are represented in the stored symbols array, where xi
j1j2...jℓ

, xi
j1
+xi

j2
+

· · ·+ xi
jℓ

and similarly Xj1j2...jℓ ,
∑t

i=1 x
i
j1j2...jℓ

=
∑t

i=1(x
i
j1
+ xi

j2
+ · · ·+ xi

jℓ
).

x1
1 x1

2 x1
3 x1

4 x1
12 x1

13 x1
14 x1

23 x1
24 x1

34 x1
123 x1

124 x1
134 x1

234 x1
1234 0

x2
1 x2

2 x2
3 x2

4 x2
12 x2

13 x2
14 x2

23 x2
24 x2

34 x2
123 x2

124 x2
134 x2

234 x2
1234 0

x3
1 x3

2 x3
3 x3

4 x3
12 x3

13 x3
14 x3

23 x3
24 x3

34 x3
123 x3

124 x3
134 x3

234 x3
1234 0

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

Now suppose that the requested symbol is v = x1
1 + x2

1 + x2
2 + x3

2 + x3
3 + x3

4, i.e. v1 = x1
1,

v2 = x2
1 + x2

2, v3 = x3
2 + x3

3 + x3
4. For 1 ≤ i ≤ 3, by adding vi to each entry in the i-th row we

obtain the following recovery array.

0 x1
12 x1

13 x1
14 x1

2 x1
3 x1

4 x1
123 x1

124 x1
134 x1

23 x1
24 x1

34 x1
1234 x1

234 x1
1

x2
2 x2

1 x2
123 x2

124 0 x2
23 x2

24 x2
13 x2

14 x2
1234 x2

3 x2
4 x2

234 x2
134 x2

34 x2
12

x3
1234 x3

34 x3
24 x3

23 x3
134 x3

124 x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

It is straightforward to verify that each column of Rv is a recovery set for the requested

symbol v. For example, in the third column we have (x1
1 + x1

3) + (x2
1 + x2

2 + x2
3) + (x3

2 + x3
4) +

(x1
3 + x2

3 + x3
3) = x1

1 + x2
1 + x2

2 + x3
2 + x3

3 + x3
4 = v.

The next step is to consider how to modify Construction 1 for arbitrary k. Since by Theo-

rem 2(5) FP (s, 2ℓ) = FP (s, 2ℓ − 1) + 1 we can consider only even values of k. The main

idea is simply to delete some entries of the array T , i.e. removing some servers and hence we

can say that the k-PIR code for k = 2r is being punctured. This simple idea is less trivial to

explain and even less trivial to prove that the remaining servers can form the required number

of recovery sets. Hence, we start with the simplest case which is k = 2r − 2 to illustrate the

idea.

Construction 2: Let T be the (t+1)×2r stored symbols array constructed in Construction 1.

Choose three different subsets A, B, and C of [r] such that A = (B \ C) ∪ (C \ B). Delete

9

the symbols in the first t rows of column TA and delete the leader symbols XB and XC in

columns TB and TC , respectively. The deletion is done by marking the deleted symbols by a red

color. Any deleted symbol will be also called a red symbol. Each deleted symbol is related to a

server which is being removed, i.e. these t + 2 red symbols are not associated with any server.

This array obtained from T will be denoted by T̃ and also called the stored symbols array.

The servers store the content of the entries in T̃ which are not zeroes and do not contain red

symbols. Thus, the length of the code is n = (t+ 1)(2r − 1)− (t+ 2) = (2r − 2)t+ 2r − 3.

Theorem 6: The code of Construction 2 is a functional (2r−2)-PIR code. Therefore, FP (rt, 2r−
2) ≤ (2r − 2)t+ 2r − 3.

Proof: Let v be the requested symbol, i.e., v is a linear combination

v = v1 + v2 + · · ·+ vt ,

where each vi is a linear combination of the information symbols {xi
j : 1 ≤ j ≤ r}, 1 ≤ i ≤ t.

We also define vt+1 = 0.

Given the (t + 1) × 2r stored symbols array T̃ , we construct a new (t + 1) × 2r array R̃v

from T̃ exactly as how Rv was constructed from T in the proof of Theorem 5 (adding vi to

all the 2r entries of the i-th row, 1 ≤ i ≤ t+1). The array R̃v will be called the recovery array

for v since each column without a deleted leader will be used to define a recovery set. In R̃v

each symbol in a column of a deleted leader will be called a free symbol since it is free to join

any recovery set. Each symbol which was a red symbol in T̃ will maintain a red symbol in R̃v

(usually in a different entry, unless it is either a leader or in the i-th row and vi = 0).

Each column with a (non-deleted) leader corresponds to a recovery set as follows.

• If the column contains no red symbol then the sum of the entries in the column is v exactly

as was proved in Theorem 5.

• If the column contains a red symbol in the i-th row then we add the symbols of the i-th
row in columns TB and TC to the recovery set. The red symbol in the i-th row is xi

A. The

free symbols in the i-th row of columns TB and TC are xi
B + vi and xi

C + vi, respectively.

xi
A = xi

B + xi
C = xi

B + vi + xi
C + vi and hence the red symbol in the i-th row can be

replaced by the related free symbols in columns TB and TC . The rest of the proof is as in

the proof of Theorem 5.

Therefore, each column of Rv with a (non-deleted) leader can serve as a recovery set for the

requested symbol v, with replaced symbols for possible red symbols in the recovery set. Thus,

the proof of the theorem is completed.

Example 2: Continuing Example 1 above, choose three subsets A = {1234}, B = {12}, and

C = {34}. Delete the symbols in the first t rows of the column TA = T1234 and delete the

leader symbols XB = X12 and XC = X34 in columns TB = T12 and TC = T34, respectively.

The deletion is done by marking the deleted symbols in a red color. The result is the following

stored symbols array.

x1
1 x1

2 x1
3 x1

4 x1
12 x1

13 x1
14 x1

23 x1
24 x1

34 x1
123 x1

124 x1
134 x1

234 x1
1234 0

x2
1 x2

2 x2
3 x2

4 x2
12 x2

13 x2
14 x2

23 x2
24 x2

34 x2
123 x2

124 x2
134 x2

234 x2
1234 0

x3
1 x3

2 x3
3 x3

4 x3
12 x3

13 x3
14 x3

23 x3
24 x3

34 x3
123 x3

124 x3
134 x3

234 x3
1234 0

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

Suppose that the requested symbol is v = x1
1+x2

1+x2
2+x3

2+x3
3+x3

4, i.e., v1 = x1
1, v

2 = x2
1+x2

2,

v3 = x3
2+x3

3+x3
4. By adding vi, 1 ≤ i ≤ 3, to each entry in the i-th row the following recovery

10

array is obtained. Note that in this array the deleted symbols are still marked in red, i.e., the red

color is with the symbol itself rather than the entry. Moreover the entries in columns TB = T12

and TC = T34 are marked with a yellow color. Since XB = X12 and XC = X34 are deleted, we

do not consider using the related columns TB = T12 and TC = T34 as recovery sets. Therefore,

the symbols on these yellow entries are free symbols and can be used when we need to replace

certain deleted symbols.

0 x1
12 x1

13 x1
14 x1

2 x1
3 x1

4 x1
123 x1

124 x1
134 x1

23 x1
24 x1

34 x1
1234 x1

234 x1
1

x2
2 x2

1 x2
123 x2

124 0 x2
23 x2

24 x2
13 x2

14 x2
1234 x2

3 x2
4 x2

234 x2
134 x2

34 x2
12

x3
1234 x3

34 x3
24 x3

23 x3
134 x3

124 x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

As for the deleted (red) symbols located on recovery sets, the free symbols (symbols in

entries marked with yellow) are used to replace the deleted (red) symbols. For x1
1234 and x3

1234,

the two free symbols in the same row can be used to replace the deleted (red) symbol, i.e.,

x1
1234 = x1

2 + x1
134 and x3

1234 = x3
134 + x3

2. On the second row, the deleted (red) symbol x2
1234

lies in an entry marked with yellow and does not have to be replaced since this column is not

used as a recovery set. Hence, the recovery array is adjusted into the following form. It is then

straightforward to verify that the symbols on each column with an undeleted leader sum up to

the requested symbol v. Therefore, a functional 14-PIR code is obtained.

0 x1
12 x1

13 x1
14 x1

3 x1
4 x1

123 x1
124 x1

23 x1
24 x1

34 x1
2, x

1
134 x1

234 x1
1

x2
2 x2

1 x2
123 x2

124 0 x2
23 x2

24 x2
13 x2

14 x2
1234 x2

3 x2
4 x2

234 x2
134 x2

34 x2
12

x3
134, x

3
2 x3

34 x3
24 x3

23 x3
124 x3

123 x3
4 x3

3 x3
14 x3

13 x3
12 0 x3

1 x3
234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

To sum up, the construction of the functional (2r − 2)-PIR code is a ‘1-puncturing’ of the

functional (2r)-PIR code, where the punctured symbols are determined by a choice of the tuple

of subsets {A,B,C}. To generalize this idea to a ‘p-puncturing’, it seems natural to just take

more tuples of subsets {Aj , Bj, Cj} and perform similar puncturing methods. However, this

generalization is non-trivial since one may meet the following scenario.

Say we continue Example 2 and intend to do a ‘2-puncturing’ to obtain a functional 12-PIR

code. Choose another triple of subsets
{

{13}, {4}, {134}
}

. Delete the symbols in the first t rows

of the column T134 and delete the leader symbols X13 and X4 in columns T13 and T4, respectively.

In the recovering array for the same requested symbol v = x1
1+x2

1+x2
2+x3

2+x3
3+x3

4, the deleted

symbols are marked in red. The entries in the columns indexed by {12}, {34}, {13}, {4} are

marked with yellow, indicating that the symbols on these yellow entries are free symbols and

can be used to replace certain deleted symbols. The recovery array is presented in the following

table.

0 x1
12 x1

13 x1
14 x1

2 x1
3 x1

4 x1
123 x1

124 x1
134 x1

23 x1
24 x1

34 x1
1234 x1

234 x1
1

x2
2 x2

1 x2
123 x2

124 0 x2
23 x2

24 x2
13 x2

14 x2
1234 x2

3 x2
4 x2

234 x2
134 x2

34 x2
12

x3
1234 x3

34 x3
24 x3

23 x3
134 x3

124 x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

11

Now, on each row there are two deleted (red) symbols that should be replaced by combinations

of free symbols in yellow entries. The problem is that we cannot simply replace x1
1234 with

x1
2 + x1

134 as before in Example 2 since now x1
134 is also a deleted symbol. The solution is to

replace x1
1234 by x1

2 + x1
14 + x1

3 and x1
134 does not need repairing since it lies on a yellow entry.

This scenario demonstrates that generalizing ‘1-puncturing’ into ‘p-puncturing’ is nontrivial in

the sense that we need an explicit algorithm to describe how to use the free symbols to replace

the deleted symbols.

Our generalization of Construction 2 and the proof of its correctness in Theorem 6, i.e.

generalizing the 1-puncturing to p-puncturing, will consist of four steps. In the first step, p
pairwise disjoint triples from 2[r] will be defined (two elements of a triple for deleting two leader

symbols and the third one for deleting the symbols of the column excluding the leader). In the

second step the related recovery array is constructed similarly to the definition in Construction 2.

In the third step a replacing operation (in several rounds) to replace the deleted (red) symbols

by free symbols will be described. In the last step we will prove that these actual replacements

result in the required recovery sets.

Following these ideas, Construction 2 for k-PIR, k = 2r − 2 can be generalized to arbitrary

k = 2r − 2p, where 1 ≤ p < 2r−2. For the first step of the construction (defining the pairwise

disjoint triples) we need the following definition and results on partial spreads.

Definition 7: A partial 2-spread of F
r
2 is a collection of 2-dimensional subspaces V1, . . . , VM

of Fr
2 such that Vi ∩ Vj = {0} for all i 6= j.

It is shown in [14] that a partial 2-spread with M = 2r−2 always exists. In each 2-dimensional

subspace Vi we have three nonzero vectors. Let Ai, Bi and Ci be their supports which are

subsets of [r]. By the definition of a partial 2-spread, Ai = (Bi \Ci) ∪ (Ci \Bi) and the triples

{{Ai, Bi, Ci} : 1 ≤ i ≤ M} are pairwise disjoint.

Construction 3: Let T be the (t+1)×2r stored symbols array constructed in Constructions 1

and 2. Since p < 2r−2 there exists a partial 2-spread F
r
2 which contains p pairwise disjoint triples

{{Ai, Bi, Ci} : 1 ≤ i ≤ p} such that Ai = (Bi \ Ci) ∪ (Ci \ Bi). For each triple {Ai, Bi, Ci},

delete the symbols in the first t rows of column TAi
and the leader symbols XBi

and XCi
in

columns TBi
and TCi

, respectively. The deletion is done by marking the deleted symbols by a

red color. Any deleted symbol will be called a red symbol, These p(t+ 2) red symbols are not

associated with any server. This array obtained from T will be denoted by T̃ . Thus, the length

of the code is n = (t + 1)(2r − 1)− tp− 2p = (2r − p− 1)t+ 2r − 2p− 1.

Theorem 8: The code of Construction 3 is a functional (2r − 2p)-PIR code. Therefore,

FP (rt, 2r − 2p) ≤ (2r − p− 1)t+ 2r − 2p− 1, for 0 ≤ p < 2r−2.

Proof: Let v be the requested symbol, i.e., v is a linear combination

v = v1 + · · ·+ vt ,

where each vi is a linear combination of the information symbols {xi
j : 1 ≤ j ≤ r}. We also

define vt+1 = 0.

Given the (t + 1) × 2r stored symbols array T̃ , we construct a new (t + 1) × 2r array R̃v

exactly as in the proofs of Theorems 5 and 6 (adding vi to all the 2r entries of the i-th row,

1 ≤ i ≤ t + 1). Each symbol which was a red symbol in T̃ will be also a red symbol in R̃v

(usually in a different entry, unless it is either a leader or in the i-th row and vi = 0).

The 2r−2p recovery sets relate to the 2r−2p columns in which the leaders were not deleted.

By the proof of Theorem 5, the sum of the symbols (including the red ones) in each such column

is v. Our goal is that each column whose leader was not deleted will be a recovery set. Hence,

we have to apply a procedure to replace the red symbols in these columns. For each row i,

12

1 ≤ i ≤ t, we apply the following procedure. In each step of the procedure the number of red

symbols in the row will be the same as the number of pairs of columns with deleted leaders

which have some symbols (red or free). Before the first step the number of red symbols in the

row is p and the number of such pairs is also p.

Let {Bj , Cj} be a pair from the disjoint triples for which the two related columns do not

contain a red symbol. If there is no such pair then all the red symbols are in the columns with

deleted leaders and the procedure for the row is completed. The sum of the symbols in column

Bj (of the i-th row) is xi
Bj

+vi and in column Cj is xi
Bj

+vi. xi
Bj

+vi+xi
Bj

+vi = xi
Aj

and xi
Aj

is a red symbol in some column D (neither Bj nor Cj (since the related two entries do not have

a red symbol). We replace the red symbol xi
Aj

of column D with the two symbols xi
Bj

+vi and

xi
Cj

+ vi (which are not marked in red). Entries Bj and Cj in the i-th row will become empty.

The number of red symbols in the i-th row was reduced by one and also the number of pairs

of columns with deleted leader which have some symbols was reduced by one. Hence, these

number remain equal and this property is satisfied at the end of the step for this row. Note, that

the red symbol xi
Aj

was replaced by two free (non-red) symbols whose sum equal to xi
Aj

.

After this procedure was applied on all the first t rows, all the recovery sets will not contain

any red symbols. The sum of symbols of any recovery set is not changed during the procedure.

The non-red symbols in new constructed array R̂v are the same as the non-red symbols in R̃v.

Therefore, each column of R̂v can serve as a recovery set for the requested symbol v. Thus,

the proof of the theorem is completed.

Example 3: Continuing Example 2, choose three disjoint triples of subsets {{12}, {34}, {1234}},

{{13}, {4}, {134}} and {{2}, {3}, {23}}. Delete the symbols in the first t rows of the columns

T1234, T134 and T23. Delete the leader symbols X12, X34, X13, X4, X2 and X3. The deletion is

done by marking the deleted symbols in a red color. The result is the following stored symbols

array.

x1
1 x1

2 x1
3 x1

4 x1
12 x1

13 x1
14 x1

23 x1
24 x1

34 x1
123 x1

124 x1
134 x1

234 x1
1234 0

x2
1 x2

2 x2
3 x2

4 x2
12 x2

13 x2
14 x2

23 x2
24 x2

34 x2
123 x2

124 x2
134 x2

234 x2
1234 0

x3
1 x3

2 x3
3 x3

4 x3
12 x3

13 x3
14 x3

23 x3
24 x3

34 x3
123 x3

124 x3
134 x3

234 x3
1234 0

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

Suppose that the requested symbol is v = x1
1 + x2

1 + x2
2 + x3

2 + x3
3 + x3

4, i.e., v1 = x1
1,

v2 = x2
1 + x2

2, v
3 = x3

2 + x3
3 + x3

4. By adding vi, 1 ≤ i ≤ 3, to each entry in the i-th row the

following recovery array is obtained. Note that in this array the deleted symbols are still marked

in red. Moreover the entries in columns T12, T34, T13, T4, T2 and T3 are marked with a yellow

color. Since X12, X34, X13, X4, X2 and X3 are deleted, we do not consider using the related

columns as recovery sets. Therefore, the symbols on yellow entries are free symbols and can be

used when we need to replace certain deleted symbols.

0 x1
12 x1

13 x1
14 x1

2 x1
3 x1

4 x1
123 x1

124 x1
134 x1

23 x1
24 x1

34 x1
1234 x1

234 x1
1

x2
2 x2

1 x2
123 x2

124 0 x2
23 x2

24 x2
13 x2

14 x2
1234 x2

3 x2
4 x2

234 x2
134 x2

34 x2
12

x3
1234 x3

34 x3
24 x3

23 x3
134 x3

124 x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

Independently, on each row red symbols are replaced step by step, e.g., the third row is

transformed step by step as follows:

13

x3
1234 x3

34 x3
24 x3

23 x3
134 x3

124 x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

⇓ ⇓ ⇓

x3
1234 x3

34, x
3
24 x3

134 x3
124 x3

123 x3
4 x3

3 x3
2 x3

14 x3
13 x3

12 0 x3
1 x3

234

⇓ ⇓ ⇓

x3
1234

x3
34, x

3
24

x3
124

x3
123 x3

4 x3
3 x3

2 x3
14 x3

13 x3
12 0 x3

1 x3
234

⇓ ⇓ ⇓

x3
34, x

3
24

x3
124, x

3
2

x3
123 x3

4 x3
3 x3

14 x3
13 x3

12 0 x3
1 x3

234

After the appropriate red symbols were replaced in all the rows, the recovery array is as

follows.

0 x1

4
x1

123
x1

124
x1

12
, x1

13
x1

24
x1

34

x1

2
, x1

14

x1
3

x1

234
x1

1

x2

2
0 x2

24
x2

13
x2

14
x2

1234
x2

3
x2

4
x2

234

x2
124, x

2
1

x2

123

x2

34
x2

12

x3

34
, x3

24

x3
124, x

3
2

x3
123 x3

4 x3
3 x3

14 x3
13 x3

12 0 x3
1 x3

234

X1 X2 X3 X4 X12 X13 X14 X23 X24 X34 X123 X124 X134 X234 X1234 0

It is straightforward to verify that the symbols on each column with undeleted leader sum up

to the requested symbol v.

As mentioned in Theorem 2, by deleting any symbol in a functional (2r − 2p)-PIR code we

obtain a functional (2r − 2p− 1)-PIR code, therefore we have

Corollary 9: FP (rt, 2r − 2p− 1) ≤ (2r − 1− p)t+ 2r − 2p− 2, for 0 ≤ p < 2r−2.

Remark 1: Note, that all the constructions above for functional k-PIR codes with k ∈ [2r−1 + 1, 2r]
are described for rt information symbols. When the number of information symbols is not a

multiple of r, say rt+ r′, 0 < r′ < r, we may add r− r′ virtual information symbols and apply

the constructions above. All the virtual information symbols are set to zero. Also some coded

symbols, which are linear combinations of only virtual information symbols are set to zero.

For example, assume we want to construct a functional 2r-PIR code of dimension rt + r′.
We add r − r′ virtual information symbols and hence we construct a functional 2r-PIR code

of dimension r(t + 1) of length (2r − 1)(t + 2) using Construction 1. The virtual information

symbols are now set to zero and thus some c symbols (linear combinations of virtual information

symbols) are set to zero. The number c is 2r−r′ − 1 when t ≥ 1 or 2r−r′+1 − 2 when t = 0
(since some ‘leader’ symbols are also set to zero when t = 0). Therefore for any 0 < r′ < r,

FP (r′, 2r) ≤ 2(2r − 2r−r′) and FP (rt+ r′, 2r) ≤ (2r − 1)(t+ 1) + 2r − 2r−r′ when t ≥ 1.

Similar idea holds when 2r−1 < k < 2r, but this should be done carefully, since the c symbols

set to zero are dependent on the way that the puncturing from the functional 2r-PIR code to

the functional k-PIR code is done. Following this way, some results with small parameters are

summarized in Table I.

14

TABLE I

UPPER BOUNDS ON FP (s, k) ARISING FROM OUR CONSTRUCTION IN SECTION II.

k = 6 k = 8

s = 1 6 8

s = 2 9 12

s = 3t (t ≥ 1) 6t+ 5 7t+ 7

s = 3t+ 1 (t ≥ 1) 6t+ 8 7t + 11

s = 3t+ 2 (t ≥ 1) 6t+ 10 7t + 13

k = 10 k = 12 k = 14 k = 16

s = 1 10 12 14 16

s = 2 15 18 21 24

s = 3 19 22 25 28

s = 4t (t ≥ 1) 12t+ 9 13t+ 11 14t+ 13 15t + 15

s = 4t+ 1 (t ≥ 1) 12t+ 14 13t+ 17 14t+ 20 15t + 23

s = 4t+ 2 (t ≥ 1) 12t+ 18 13t+ 21 14t+ 24 15t + 27

s = 4t+ 3 (t ≥ 1) 12t+ 20 13t+ 23 14t+ 26 15t + 29

III. LOWER BOUNDS ON THE LENGTH OF FUNCTIONAL PIR CODES

This section is devoted to lower bounds on the length of functional PIR codes. When the

number of requests k is a fixed constant1, P (s, k) = s + o(s) (see Lemma 1) and hence the

research objective is to analyze the redundancy part o(s). However, for functional PIR codes

this is not the case. By using a counting argument it will be proved in this section that FP (s, k)
grows linearly in s, i.e., lims→∞ FP (s, k)/s ≥ c for some constant c to be determined. Using

another approach in this section, a better lower bound on FP (s, 3) and FP (s, 4) is derived.

Codes for k = 4 in Construction 1 attain this bound and hence the bound is exact.

A. A general lower bound by counting

In our exposition which follows we will need some properties of the binomial coefficients.

These properties are proved in the following lemmas.

Lemma 10: If n > 3r + 2 then
(

n
r+1

)

> 2
(

n
r

)

.

Proof: Follows immediately by comparing
(

n
r+1

)

with 2
(

n
r

)

.

Lemma 11: If n > 3r + 2 then
(

n
r+1

)

>
∑r

i=1

(

n
i

)

.

Proof: By induction on r, where the basis is
(

n
2

)

>
(

n
1

)

and in the induction step Lemma 10

is used.

Lemma 12: If n > 3r + 2 then
(

n
r+1

)

>
∑r−1

i=1 (r − i)
(

n
i

)

.

Proof: Again, by induction on r, where the basis for r = 2, where
(

n
3

)

>
(

n
1

)

. For the

induction hypothesis assume that the claim is true for r − 1, i.e.

(

n

r

)

>
r−2
∑

i=1

(r − 1− i)

(

n

i

)

.

By Lemma 11 we have
(

n

r + 1

)

>
r

∑

i=1

(

n

i

)

,

and combining this with the induction hypothesis we have

(

n

r + 1

)

>

r
∑

i=1

(

n

i

)

>

r−2
∑

i=1

(r−1−i)

(

n

i

)

+

r−1
∑

i=1

(

n

i

)

=

r−2
∑

i=1

(r−i)

(

n

i

)

+

(

n

r − 1

)

=

r−1
∑

i=1

(r−i)

(

n

i

)

,

1more precisely k = o(s).

15

which proves the induction step.

For the next theorem we remind the reader that by Theorem 2(5) we have FP (s, 2ℓ) =
FP (s, 2ℓ − 1) + 1 and hence can consider only even values of k. The even values will be

considered since they imply better bounds than the related odd values.

Theorem 13: For a fixed even integer k ≥ 4,

lim
s→∞

FP (s, k)

s
≥ 1

H(1/k)
,

where H(·) is the binary entropy function defined by H(p) = −p log p− (1− p) log (1− p).
Proof: Suppose there exists a functional k-PIR code of dimension s and length n. For each

request v, we have k disjoint recovery sets of [n]. The sum of the sizes of all these k(2s − 1)
recovery sets is at most n(2s−1). Hence, the average size of a recovery set should be at most n

k
.

Consider all the subsets of [n] of size at most ⌈n
k
⌉+1. If each such subset is used as a recovery

set for some request, then the average size of a recovery set is at least

∑⌈n
k
⌉+1

i=1 i
(

n
i

)

∑⌈n
k
⌉+1

i=1

(

n
i

)

(1)

By applying Lemma 12 on
(

n
⌈n
k
⌉+1

)

we have

(

n

⌈n
k
⌉ + 1

)

>

⌈n
k
⌉−1

∑

i=1

(
⌈n

k

⌉

− i)

(

n

i

)

(2)

By developing the numerator in (1) and plugging (2) in the process we obtain

⌈n
k
⌉+1

∑

i=1

i

(

n

i

)

=

⌈n
k
⌉

∑

i=1

i

(

n

i

)

+
⌈n

k

⌉

(

n

⌈n
k
⌉ + 1

)

+

(

n

⌈n
k
⌉ + 1

)

>

⌈n
k
⌉

∑

i=1

i

(

n

i

)

+
⌈n

k

⌉

(

n

⌈n
k
⌉+ 1

)

+

⌈n
k
⌉−1

∑

i=1

(
⌈n

k

⌉

− i)

(

n

i

)

=
⌈n

k

⌉

⌈n
k
⌉+1

∑

i=1

(

n

i

)

.

Now, we can evaluate the average in (1) as

∑⌈n
k
⌉+1

i=1 i
(

n
i

)

∑⌈n
k
⌉+1

i=1

(

n
i

)

>

⌈

n
k

⌉
∑⌈n

k
⌉+1

i=1

(

n
i

)

∑⌈n
k
⌉+1

i=1

(

n
i

)

=
⌈n

k

⌉

≥ n

k
,

which contradicts our proof that the average size of a recovery set is at most n
k

.

Therefore, not all the subsets of [n] of size at most ⌈n
k
⌉+ 1 are used as recovery sets, which

implies that
∑⌈n

k
⌉+1

i=1

(

n
i

)

> k(2s − 1). The left hand side tends to 2nH(1/k) as n tends to infinity.

Hence, if n = cs, then

2csH(1/k) > k(2s − 1) ,

which implies that cH(1/k) > 1 and the claim of the theorem follows.

Note, that the counting argument used in the proof of Theorem 13 implies that the recovery

sets used for all the possible requests are of the smallest possible size. In practice, it is difficult

to assume that this would be the case. Improving the lower bound by taking larger recovery sets

into account is a future task.

16

TABLE II

LOWER AND UPPER BOUNDS ON lims→∞

FP (s,k)
s

k 2 4 6 8 10 12 14 16

lower bound 1 1.2326 1.5384 1.8397 2.1322 2.4165 2.6937 2.9648

upper bound 1 1.5 2 2.3333 3 3.25 3.5 3.75

k 18 20 22 24 26 28 30 32

lower bound 3.2306 3.4917 3.7486 4.0019 4.2518 4.4987 4.7429 4.9845

upper bound 4.8 5 5.2 5.4 5.6 5.8 6 6.2

The first several lower bounds on lims→∞
FP (s,k)

s
derived from Theorem 13, together with the

related upper bounds implied by Construction 3, are summarized in Table II. The lower bound

for k = 4 will be further improved in Section III-B.

The technique used in the proof of Theorem 13 can be applied slightly differently to obtain

lower bounds on FP (s, k) for specific parameters s and k.

Suppose we have a functional k-PIR code with dimension s and length n. For each request v,

we have k disjoint subsets of [n], R1, . . . , Rk, where each one of them is a recovery set for v.

For each such request v we choose arbitrarily such k recovery sets. Therefore, k(2s−1) distinct

recovery sets are chosen. Let Λ(s) be the sum of the size of all these recovery sets. Since the

k recovery sets R1, . . . , Rk for any request v are pairwise disjoint, it follows that

k
∑

i=1

|Ri| ≤ n ,

which implies that

Λ(s) ≤ n(2s − 1) . (3)

On the other hand, a lower bound of Λ(s) can be obtained by choosing the recovery sets with

smallest size as possible, since the size of the recovery sets by such a choice will be a lower

bound on the actual size. There are k(2s − 1) distinct recovery sets. Let d be the largest integer

such that
d

∑

i=1

(

n

i

)

≤ k(2s − 1) . (4)

The smallest lower bound Λ(s) will be obtained if all the
∑d

i=1

(

n
i

)

subsets of size d or less

will be included as recovery sets. It implies that in the chosen k(2s − 1) recovery sets, at least

k(2s−1)−
∑d

i=1

(

n
i

)

subsets of size d+1 or greater than d+1, are included to obtain the lower

bound. Therefore,

d
∑

i=1

i

(

n

i

)

+ (d+ 1)

(

k(2s − 1)−
d

∑

i=1

(

n

i

))

≤ Λ(s). (5)

The lower bound on FP (s, k) is obtained by comparing (3) and (5), i.e., finding the minimum n
for which

d
∑

i=1

i

(

n

i

)

+ (d+ 1)

(

k(2s − 1)−
d

∑

i=1

(

n

i

))

≤ n(2s − 1).

17

Example 4: Assume that FP (6, 8) = 20, and apply (4) for s = 6, k = 8 and n = 20, i.e.,
(

20

1

)

+

(

20

2

)

= 210 < 8 · (26 − 1) = 504

and
(

20

1

)

+

(

20

2

)

+

(

20

3

)

= 1350 > 8 · (26 − 1) = 504 .

Since in this code of length 20, a total of 8 · (26−1) = 504 recovery sets are required, it follows

that there are at least 504− 210 = 294 recovery sets of size at least three. Therefore by (5),
(

20

1

)

+ 2

(

20

2

)

+ 3 · 294 = 1282 ≤ Λ(6) ,

which is a contradiction to Λ(6) ≤ 20 · (26 − 1) = 1260 by (3). Thus, FP (6, 8) > 20 and since

by Theorem 5, FP (6, 8) ≤ 21, it follows that FP (6, 8) = 21.

Example 5: When k is even we have FP (2, k) ≤ 3k
2

(encode the two information symbols x1

and x2 into x1, x2, and x1 + x2; each one of these three encoded symbol will appear k
2

times in

the code.)

Assume now that n = FP (2, k) ≤ 3k
2
− 1 and apply (5) for s = 2, k and n = 3k

2
− 1. For

each request, three recovery sets are required for a total of 3k recovery sets. There are at most

n = 3k
2
− 1 recovery sets of size 1. Therefore, there are at least 3k

2
+1 recovery sets whose size

at least two. Hence, by (5),

(
3k

2
− 1) + 2 · (3k

2
+ 1) = 3 · 3k

2
+ 1 ≤ Λ(2) .

By (3), Λ(2) ≤ n · (22 − 1) = 3 · 3k
2
− 3, a contradiction.

Therefore, FP (2, k) > 3k
2
− 1 and thus FP (2, k) = 3k

2
when k is even.

Table III contains some specific bounds on FP (s, k) for s ≤ 32 and 6 ≤ k ≤ 16, where k is

even.

B. A tight bound of FP (s, 3) and FP (s, 4)

This subsection is devoted to analyzing FP (s, 3) and FP (s, 4). Recall that by Lemma 3, a

functional PIR code can be always assumed to be systematic.

Let
{

t
b

}

be the Stirling number of the second kind, which calculates the number of partitions

of [t] into b nonempty subsets. It is well known that

{

t

b

}

=
1

b!

b
∑

i=0

(−1)b−i

(

b

i

)

it.

Now, we derive the following lower bound on FP (s, 3).

Theorem 14: For any given s ≥ 3 we have that FP (s, 3) ≥
{

3
2
s+ 2 if s is even

3
2
(s+ 1) if s is odd

.

Proof: Clearly, FP (s, 3) = s + t, where t ≥ 0. The s× (s+ t) matrix G representing the

functional 3-PIR code is of the form G = [Is U], where Is is the s × s identity matrix. The

columns of U are denoted by {u1, . . . ,ut}.

A nonzero requested (column) vector v can be recovered as v =
∑

i∈I1 ei +
∑

j∈U1
uj =

∑

i∈I2 ei +
∑

j∈U2
uj =

∑

i∈I3 ei +
∑

j∈U3
uj , where I1, I2, I3 are three pairwise disjoint subsets

18

TABLE III

NUMERICAL RESULTS ON FP (s, k)

s

k
6 8 10 12 14 16

1 6 8 10 12 14 16

2 9 12 15 18 21 24

3 11 14 18-19 21-22 25 28

4 12-14 15-18 19-21 23-24 27 30

5 15-16 18-20 22-26 25-30 28-34 31-38

6 16-17 21 25-30 29-34 33-38 37-42

7 17-20 22-25 27-32 32-36 37-40 41-44

8 19-22 23-27 29-33 34-37 39-41 44-45

9 21-23 26-28 31-38 35-43 41-48 46-53

10 22-26 28-32 34-42 39-47 43-52 47-57

11 24-28 30-34 36-44 42-49 47-54 52-59

12 26-29 31-35 38-45 45-50 51-55 57-60

13 28-32 34-39 39-50 46-56 53-62 60-68

14 29-34 36-41 42-54 47-60 55-66 62-72

15 30-35 38-42 45-56 51-62 57-68 63-74

16 32-38 39-46 47-57 55-63 61-69 67-75

17 34-40 41-48 49-62 57-69 65-76 72-83

18 35-41 44-49 50-66 59-73 67-80 75-87

19 37-44 46-53 54-68 60-75 69-82 78-89

20 39-46 47-55 56-69 64-76 71-83 79-90

21 40-47 49-56 58-74 67-82 75-90 82-98

22 41-50 51-60 59-78 69-86 79-94 87-102

23 43-52 53-62 62-80 71-88 81-96 91-104

24 45-53 55-63 65-81 73-89 83-97 93-105

25 46-56 56-67 67-86 77-95 84-104 95-113

26 47-58 59-69 69-90 80-99 89-108 97-117

27 49-59 61-70 70-92 82-101 92-110 102-119

28 51-62 62-74 73-93 83-102 95-111 106-120

29 52-64 63-76 76-98 85-108 97-118 108-128

30 54-65 66-77 78-102 89-112 98-122 110-132

31 56-68 68-81 79-104 92-114 103-124 111-134

32 57-70 70-83 81-105 94-115 106-125 116-135

The exact values for s = 1 are trivial and the exact values for s = 2 are given in Example 5. For s ≥ 3, the lower bounds are

derived by the counting method while the upper bounds are by the main construction in Theorem 8 and Remark 1.

of [s] and U1, U2, U3 are three pairwise disjoint subsets of [t]. The unordered triple {U1, U2, U3}
will be called a feasible triple corresponding to the requested vector v. W.l.o.g. if we have

U1 = U2 = ∅ then I1 and I2 have the same indices for unit vectors which sum to v, contradicting

the disjointness of I1 and I2. Therefore, in a feasible triple at most one of U1, U2, U3 is empty.

Next, it is claimed that no two requested vectors share a common feasible triple.

To prove the claim let {U1, U2, U3} be a feasible triple and let wj be the sum of the columns

related to Uj , 1 ≤ j ≤ 3. The requested vector v is recovered based on w1, w2 and w3 and

19

some unit vectors. Note that each ei can be used only once to recover v. Therefore, w1, w2 and

w3 determine a unique request vector v. This can be observed as follows by considering each

coordinate of v and the related coordinate in w1, w2, and w3. Consider now the i-th coordinate,

1 ≤ i ≤ s.

Assume the triple obtained from the value of the triple (w1,w2,w3) in the i-th coordinate is

(0, 0, 1). If the i-th coordinate of v is one then we must have ei in both I1 and I2, contradicting

the fact that ei can be used only once. Therefore, the value of the i-th coordinate of v is zero.

Similarly, the value of the i-th coordinate of v is zero if the value of the triple (w1,w2,w3)

in the i-th coordinate is (0, 1, 0), (1, 0, 0), or (0, 0, 0). The value of the i-th coordinate of v is

one if the value of the triple (w1,w2,w3) in the i-th coordinate is (0, 1, 1), (1, 0, 1), (1, 1, 0), or

(1, 1, 1).
Therefore, the requested vector v is uniquely determined by U1, U2, and U3. Thus, no two

requested vectors share a common feasible triple which completes the proof of the claim.

Let U4 , [t] \ (U1

⋃

U2

⋃

U3) and distinguish between the following four cases in counting

the number of feasible triples {U1, U2, U3}:

1) If each one of U1, U2, U3, and U4 is nonempty, then the number of feasible triples is the

same as the number of partitions of [t] into four nonempty subsets, where one of them is

chosen to be U4. The number of such partitions, i.e. feasible triples, is 4
{

t
4

}

.

2) If each of U1, U2, and U3 is nonempty and U4 is empty, then the number of feasible triples

is the same as the number of partitions of [t] into three nonempty subsets. Hence, number

of such feasible triples is
{

t
3

}

.

3) If exactly one of U1, U2, and U3 is empty and U4 is nonempty, then the number of feasible

triples is the same as the number of partitions of [t] into three nonempty subsets, where

one of them is chosen to be U4. Hence, the number of such feasible triple is 3
{

t
3

}

.

4) If exactly one of U1, U2, and U3 is empty and U4 is empty, then the number of feasible

triples is the same as the number of partitions of [t] into two nonempty subsets. Therefore,

number of such feasible triples is
{

t
2

}

.

Thus, the number of feasible triples is at most

4

{

t

4

}

+ 4

{

t

3

}

+

{

t

2

}

=
4t

6
− 2t−1 +

1

3
.

On the other hand, we proved that no two requested vectors share a common feasible triple.

Hence, there are at least 2s − 1 feasible triples and this implies that

2s − 1 ≤ 4t

6
− 2t−1 +

1

3
.

Thus, t > s+log 6
2

.

The lower bound of Theorem 14 can be combined with the bounds of Theorem 2 to obtain

lower bounds on FP (s, k) for k > 3. In particular we have.

Corollary 15: For any s ≥ 3 we have FP (s, 4) ≥
{

3
2
s+ 3 if s is even

3
2
(s+ 1) + 1 if s is odd

.

Considering Theorem 14, Theorem 5, Theorem 2, Corollary 15 and Remark 1, we have that

Corollary 16: For any t ≥ 2, FP (2t, 3) = 3t+2, FP (2t, 4) = 3t+3, 3t+3 ≤ FP (2t+1, 3) ≤
3t+ 4 and 3t+ 4 ≤ FP (2t+ 1, 4) ≤ 3t+ 5.

20

IV. BOUNDS ON THE LENGTH OF FUNCTIONAL BATCH CODES

In this section a random construction of functional batch codes is presented. The random

construction relies on a well-known result of random constructions for linear codes which attain

the sphere-covering bound [3], [4].

Definition 17: For a binary code C of length n, the covering radius is the smallest integer R
such that for any v ∈ F

n
2 , there exists u ∈ C such that d(v,u) ≤ R. The code C is a code with

covering radius R.

Proposition 18: [12] If C is a binary linear code of length n, and dimension k, with a parity

check matrix H, then C has covering radius R if and only if every column vector F
n−k
2 is the

sum of at most R columns of H.

Let V (n,R) be the size of the Hamming ball of radius R. A code with covering radius R
has at least 2n

V (n,R)
codewords and thus a linear code with covering radius R has dimension

k ≥ n − log V (n,R). This is the sphere covering bound for linear codes. Blinovskii [3], [4]

proved that almost all linear codes attain the sphere covering bound (see also [8, Ch. 12, p. 325]

and the references therein).

Theorem 19: Let 0 ≤ ρ < 1/2, Ck,n be the ensemble of 2kn linear codes generated by all

possible binary k × n matrices, and Rn = ⌊ρn⌋. There exists a sequence kn for which

kn/n ≤ 1−H(ρ) +O(n−1 log n) ,

such that the fraction of codes Cn ∈ Ckn,n which have covering radius Rn tends to 1, when n
tends to infinity.

In other words, Theorem 19 implies that if a binary random matrix H of size s×n is considered

as a parity check matrix of a linear code, then the covering radius R = ρn of the code satisfies

H(ρ) ∼ s
n

with probability tending to 1, when n tends to infinity, i.e., any column vector of

length s is the sum of at most R columns of H.

Cooper [13] proved the following result on the invertibility of random binary matrices.

Theorem 20: Let G be a random binary matrix of size s×s, where each entry is independently

and identically distributed with Pr[Gi,j = 1] = p(s). If min{p(s), 1 − p(s)} ≥ (log s + d(s))/s
for any d(s) → ∞, then Pr[G is invertible] tends to a constant c ≈ 0.28879, when s tends to

infinity.

We are now in a position to present the random construction of functional batch codes. The

idea is illustrated first with an example on functional 2-batch codes. For sufficiently large s,

randomly choose a binary matrix of size s×n to represent the functional 2-batch code. Let u,v
be two arbitrary requests. By Theorem 19, with probability tending to 1, when s and n tend to

infinity, the request u can be recovered as a sum of ρn columns, where H(ρ) ∼ s
n

. The remaining

matrix is a random matrix of size s× (1− ρ)n. If (1− ρ)n > s, then by Theorem 20, it has an

s×s invertible sub-matrix with probability c ≈ 0.28879 . Using the columns from this invertible

sub-matrix, the request v can be recovered. Therefore, under the constraints (1 − ρ)n > s,

H(ρ) ∼ s
n

, there exists a binary matrix of size s × n representing a functional 2-batch code

when s and n are sufficiently large. To find the asymptotic relation between n and s, note that

the constraints require s/n ∼ H(ρ) < 1 − ρ. The root of 1 − ρ = H(ρ) is ρ = 0.227 and thus

we can set n ∼ 1.2937s. The next theorem generalizes this idea to arbitrary functional k-batch

codes.

Theorem 21: If c1 =
1
2

and ck+1 is the root of the polynomial H(z) = H(ck)− zH(ck), then

lim
s→∞

FB(s, k)

s
≤ 1

H(ck)
.

21

Proof: For a sufficiently large s, randomly choose an s× n1 binary matrix G1 to represent

the functional k-batch code. With probability tending to 1 the first request can be recovered as

a sum of ρ1n1 columns of G1, where H(ρ1) ∼ s
n1

. Let G2 be the matrix obtained by removing

these ρ1n1 columns from G1. G2 is an s×n2 random matrix, where n2 = (1−ρ1)n1. The second

request can be recovered, with probability which tends to 1, as a sum of ρ2n2 columns on G2,

where H(ρ2) ∼ s
n2

. This procedure continues and for the j-th request, 1 ≤ j ≤ k − 1, we have

a matrix Gj . The j-th request can be recovered, with probability tending to 1, as a sum of ρjnj

columns, where H(ρj) ∼ s
nj

and nj =
∏j−1

i=1 (1− ρi)n1. Finally, for the k-th request, we have to

show that the remaining matrix Gk contains an s× s invertible sub-matrix. This is guaranteed

by Theorem 20 with positive probability c ≈ 0.28879 as long as s < nk =
∏k−1

i=1 (1 − ρi)n1 for

sufficiently large s. Therefore, we have a binary matrix of size s× n1 representing a functional

k-batch code if s < nk =
∏k−1

i=1 (1− ρi)n1.

To complete the proof we have to derive the asymptotic relation between n1 and s. Note first

that

s

n1
∼ H(ρ1) ∼ H(ρ2)(1− ρ1) ∼ · · · ∼ H(ρk−1)

k−2
∏

i=1

(1− ρi) <
k−1
∏

i=1

(1− ρi).

Hence, to maximize s
n1

, we should have H(ρk−1) = 1− ρk−1, H(ρk−2) = H(ρk−1)(1− ρk−2),
. . . , H(ρj) = H(ρj+1)(1−ρj), . . . , H(ρ1) = H(ρ2)(1−ρ1). Therefore, we set ρk−1 = c2, ρk−2 =
c3, . . . , ρ1 = ck and thus asymptotically we have n1 ∼ s

H(ck)
.

A lower bound of FB(s, k) can be derived as follows.

Theorem 22:

lim
s→∞

FB(s, k)

s
≥ k

log(k + 1)
.

Proof: Assume there is a functional k-batch code of length n and dimension s, represented

by an s×n matrix G. For any recovery process of a request v = (v1, . . . ,vk) with k vectors of

length s, assign a label to each column of G. The label is either 0 or some i, 1 ≤ i ≤ k. A label

0 indicates that the column is not used in the recovery process of v. A label i, indicates that the

column is used in the recovery set for vi. Then the labeling of G for the request v is an element

in {0, 1, . . . , k}n. For any two different ordered k-tuples of request vectors (v1, . . . ,vk) and

(u1, . . . ,uk), where v1, . . . ,vk are k distinct vectors and u1, . . . ,uk are also k distinct vectors,

the labeling of G must be different. Therefore, (k + 1)n ≥
(

2s−1
k

)

k!.
Thus,

lim
s→∞

n

s
≥ k

log(k + 1)
,

which completes the proof.

Table IV summarizes the lower and upper bounds of lims→∞
FB(s,k)

s
.

V. USING SIMPLEX CODES AS FUNCTIONAL BATCH CODES

In [16] it was shown that P (r, 2r−1) = 2r−1 and in [32] it was proved that B(r, 2r−1) = 2r−1.

Furthermore, in Theorem 4, we also confirmed that FP (r, 2r−1) = 2r−1. Hence, in this section

we analyze whether the same property is valid also for functional batch codes, that is, whether

the property FB(r, 2r−1) = 2r − 1 holds. These three results were proved using simplex codes,

which are defined as follows.

22

TABLE IV

LOWER AND UPPER BOUNDS OF lims→∞

FB(s,k)
s

(BY THEOREMS 21 AND 22)

k 2 3 4 5 6

lims→∞

FB(s,k)
s

1.2619-1.2937 1.5000-1.5489 1.7227-1.7828 1.9343-2.0028 2.1372-2.2124

k 7 8 9 10 11

lims→∞

FB(s,k)
s

2.3333-2.4137 2.5237-2.6089 2.7093-2.7984 2.8906-2.9834 3.0684-3.1641

k 12 13 14 15 16

lims→∞

FB(s,k)
s

3.2429-3.3414 3.4144-3.5156 3.5834-3.6869 3.7500-3.8557 3.9144-4.0222

k 17 18 19 20 21

lims→∞

FB(s,k)
s

4.0768-4.1865 4.2374-4.3489 4.3962-4.5094 4.5534-4.6683 4.7091-4.8256

k 22 23 24 25 26

lims→∞

FB(s,k)
s

4.8634-4.9814 5.0164-5.1358 5.1681-5.2889 5.3187-5.4407 5.4681-5.5914

k 27 28 29 30 31

lims→∞

FB(s,k)
s

5.6164-5.7410 5.7637-5.8895 5.9101-6.0369 6.0555-6.1835 6.2000-6.3291

Definition 23: A [2r−1, r] simplex code is a linear code of length n = 2r−1 and dimension r
whose r × n generator matrix G contains each nonzero column vector z of length r exactly

once as a column.

Simplex codes have been used for several more applications, among them are write-once

memory (WOM) codes and random I/O (RIO) codes. An [n, k, t] WOM code is a coding scheme

comprising of n binary cells such that it is possible to write a k-bit message t times while on

each write the cell values can only change from zero to one. An (n, k, t) RIO code assumes

that t k-bit messages are stored in n cells each with t + 1 levels such that every page can be

read by sensing a single read threshold. In [36], it was proved that these two families of codes

are equivalent and a new variation of RIO codes, called parallel RIO codes, has been proposed,

where all messages can be written together and thereby can allow the design of codes with

parameters that do not exist for WOM codes.

While there are several constructions of WOM codes, we focus here on the one called linear

WOM codes [11] in which a binary matrix is used to encode messages by the syndromes of parity

check matrices of error-correcting codes. The authors of [11] studied this linear construction

using Golay codes as well as simplex codes. In particular, the latter family of codes provided

WOM codes with the parameters [2r − 1, r, 2r−2 + 2]. Later, this result has been improved by

Godlewski [17], who showed the existence of [2r − 1, r, 2r−2 + 2r−4 + 1] WOM codes.

The family of parallel RIO codes is very similar to the one of functional batch codes. In

fact, if parallel RIO codes are constructed using linear codes and their parity check matrices,

such as in [11], [17], then these codes are in essence functional batch codes as well. This

approach to construct parallel RIO codes has been initiated recently by Yamawaki, Kamabe, and

Lu in [37], where they studied the parameters of parallel RIO codes using simplex codes and

showed the construction of (7, 3, 4) and (15, 4, 8) parallel RIO codes. These codes assure also

that FB(3, 4) = 7 and FB(4, 8) = 15. We also verified that a (31, 5, 16) parallel RIO code

exists which implies that FB(5, 16) = 31, while similarly to the conjecture raised in [37] we

also have the following conjecture.

Conjecture 24: The [2r − 1, r] simplex code is a functional 2r−1-batch code and therefore

FB(r, 2r−1) = 2r − 1.

Remember that for WOM codes the message requests are received in a sequential order and

each recovery set should be determined without knowing the upcoming requests. The main idea

23

of the construction of [2r − 1, r, 2r−2 +2r−4 +1] WOM codes by Godlewski [17] with simplex

codes works as follows.

1) The first request v is simply satisfied by using v itself.

2) As long as there are at least 2r−1 nonzero available vectors, each request v can always be

satisfied by finding a pair {u,u+v}. This process can satisfy at least 2r−2 more requests

and only stops when the number of unused vectors is less than 2r−1.

3) The key part of Godlewski’s construction is that it is still possible to find recovery sets of

size four unless the number of unused vectors is less than 2r−2. Thus in this process 2r−4

additional write requests can be satisfied.

To summarize, simplex codes can be used to satisfy roughly any 5
16
2r write requests, when

considered as WOM codes. Since in the functional batch setting (or in parallel RIO codes) we

know all the requests in advance, it is possible to make use of this knowledge and improve upon

the 2r−2 + 2r−4 + 1 result. This improvement comes either from the choice of many recovery

sets of size one, or from a predetermined usage of the 2r−2 remaining vectors in Godlewski’s

method. Namely, we prove the following theorem.

Theorem 25: The [2r − 1, r] simplex code can be used as a functional (2r−2 +2r−4 + ⌊2r/2√
24
⌋)-

batch code.

Proof: Consider γ = 2r−2 + 2r−4 + ⌊2r/2√
24
⌋ requests which consist of ∆ distinct vectors

{v1, . . . ,v∆}. To prove that the simplex code is a γ-functional batch code, we distinguish

between the following two cases depending on the value of ∆:

Case 1: If ∆ ≥ 2r/2√
6

, we use the ∆ subsets of size one of the set {v1, . . . ,v∆} as recovery sets

of size one. For the remaining γ −∆ requests, we follow Godlewski’s method. The number of

unused vectors is 2r−1−∆. Recovery sets of size two can be found until the number of unused

vectors is less than 2r−1. Hence, the number of recovery sets of size two is
2r−1−∆−(2r−1−1)

2
(if

∆ is even) or
2r−1−∆−(2r−1−2)

2
(if ∆ is odd), i.e., 2r−2−⌊∆

2
⌋. Similarly, recovery sets of size four

can be found until the number of unused vectors is less than 2r−2, yielding 2r−4 recovery sets.

Therefore, when ∆ ≥ 2r/2√
6

, the simplex code satisfies any 2r−2 + 2r−4 +∆− ⌊∆
2
⌋ ≥ γ requests.

Case 2: If ∆ < 2r/2√
6

, let v1 be the vector which is requested the largest number of times. Clearly,

v1 is requested at least ⌈ γ
∆
⌉ times and the number of requests other than v1 is at most γ − ⌈ γ

∆
⌉

times.

Partition all the 2r vectors (including the zero vector) into 2r−1 pairs of the form {u,u+v1}.

The two vectors in the same pair are called conjugates of each other. A pair containing no

requested vectors is called a good pair and the vectors lying in good pairs are called good

vectors. The number of good vectors is then at least 2r − 2∆.

For any vj 6= v1 which is requested an odd number of times, vj is considered as a recovery

set of size one. Hence, now each such vj is requested an even number of times. For these

requests we find recovery sets using only good vectors similarly to Godlewski’s method. Let

{x,y} be a recovery set of size two for vj , i.e., vj = x+ y, where x and y are good vectors.

x and y are not conjugate since vj 6= v1). Hence, their conjugates form another recovery set

for vj , i.e. vj = (x + v1) + (y + v1). Similarly, whenever a recovery set of size four for vj is

found among the good vectors, then there are only two possibilities. On one hand if we have

vj = x + y + z + w where no two of the four vectors {x,y, z,w} are conjugate, then their

conjugates form another recovery set vj = (x + v1) + (y + v1) + (z + v1) + (w + v1). On

the other hand if we have vj = x + y + z + (z + v1), then we construct another recovery set

vj = (x+v1)+(y+v1)+w+(w+v1), where the good pair {w,w+v1} is chosen arbitrarily

from the unused good pairs. After performing this strategy for requests other than v1 using the

24

modified Godlewski’s method, the remaining good vectors will appear in pairs where each pair

sums up to v1. These remaining good pairs will be used for recovering v1.

To complete the proof we have to show that there exist enough recovery sets. We distinguish

between three subcases depending on the number of times λ that v1 is requested:

Case 2.1: If λ ≤ 2r−3 times, then there are at least
2r−2∆−(2r−1−2)

2
= 2r−2−∆+1 recovery sets

of size two and 2r−4 recovery sets of size four for the queries which are different from v1. This

satisfies the requirements since the number of queries other than v1 is upper bounded by

γ − ⌈ γ
∆
⌉ ≤ 2r−2 + 2r−4 + ⌊ 2

r/2

√
24

⌋ − 2r−2 + 2r−4

2r/2/
√
6

≤ 2r−2 + 2r−4 + ⌊ 2
r/2

√
24

⌋ − 2r/2 · 5
√
6

16

≤ 2r−2 + 2r−4 − 2r/2√
6

≤ 2r−2 + 2r−4 −∆.

Meanwhile, when this modified Godlewski’s method concludes, there are still 2r−2 good vectors

constituting 2r−3 pairs for recovering v1.

Case 2.2: If λ ≥ γ + ∆ − 2r−2, then the total number of requests different than v1 is γ − λ.

Hence, the modified Godlewski’s method concludes after we choose γ −λ recovery sets of size

two. Initially, there are at least 2r−1 − ∆ good pairs, among which γ − λ pairs are involved

in recovery sets of size two (since in the modified Godlewski’s method every two conjugate

recovery sets of size two together occupy two good pairs). Therefore, the number of remaining

good pairs is

2r−1 −∆− (γ − λ) ≥ 2r−1 − 2r/2√
6
− (2r−2 + 2r−4 + ⌊ 2

r/2

√
24

⌋) + λ

≥ 2r−2 − 2r−4 − 2r/2 · 3

2
√
6
+ λ ≥ λ,

where the last inequality holds for r ≥ 6. Thus, there are enough pairs to be used as recovery

sets for v1.

Case 2.3: If 2r−3 < λ < γ +∆− 2r−2, then the modified Godlewski’s method concludes after

we choose 2r−2 −∆ recovery sets of size two and γ − λ− 2r−2 +∆ recovery sets of size four.

Initially, there are 2r−1 −∆ good pairs, among which 2r−2 −∆ pairs are involved in recovery

sets of size two and 2(γ − λ − 2r−2 + ∆) recovery sets are involved in recovery sets of size

four (since in the modified Godlewski’s method every two conjugate recovery sets of size two

together occupy two good pairs and every two conjugate recovery sets of size four together

occupy four good pairs). Thus, the number of remaining good pairs is

2r−1 −∆− (2r−2 −∆)− 2(γ − λ− 2r−2 +∆) = 2r−1 + 2r−2 − 2γ − 2∆ + 2λ

≥ 2r−2 − 2r/2 · 3√
6
+ λ (6)

≥ λ,

where (6) is derived by plugging the values of γ = 2r−2+2r−4+⌊2r/2√
24
⌋, ∆ < 2r/2√

6
, and λ > 2r−3.

Finally, the last inequality holds for r ≥ 5. Therefore, there are enough pairs for recovering v1.

Thus, the [2r − 1, r] simplex code can satisfy any 2r−2 + 2r−4 + ⌊2r/2√
24
⌋ requests.

25

VI. CONCLUSIONS AND PROBLEMS FOR FUTURE RESEARCH

We have considered the shortest length of functional PIR and functional batch codes. Several

upper bounds, based on explicit constructions and random ones, are given. Several methods

which yield lower bounds are also presented. In particular connections to WOM codes and RIO

codes are derived and the parameters of the simplex code when used as a functional batch code

are discussed.

There are plenty of problems which remain for future research, some of them are briefly

outlined.

1) Prove or disprove that for any given PIR (batch) code, there exists a systematic PIR (batch)

code with the same parameters.

2) We would like to see an upper bound on the length of functional batch codes, which is

derived from an explicit construction.

3) We would like to see more tight bounds, general, asymptotic, and for specific parameters.

4) We would like to see a proof (or a counter-example) for Conjecture 24, i.e., the [2r − 1, r]
simplex code is a functional 2r−1-batch code and therefore FB(r, 2r−1) = 2r − 1.

REFERENCES

[1] H. ASI AND E. YAAKOBI, Nearly optimal constructions of PIR and batch codes, IEEE Trans. Inform. Theory, IEEE Trans.

Inform. Theory, vol. 65, no. 2, pp. 947–964, Feb. 2019.

[2] D. AUGOT, F. LEVY-DIT-VEHEL, AND A. SHIKFA, A storage-efficient and robust private information retrieval scheme

allowing few servers, arxiv.org/abs/1412.5012, Dec. 2014.

[3] V. M. BLINOVSKII, Lower asymptotic bound on the number of linear code words in a sphere of given radius in Fn
q , Problemy

Peredachi Informatsii, vol. 23, no. 2, pp. 50–53, 1987. Translated in: Problems of Inform. Transm., vol. 23, no. 2, pp. 130–

132.

[4] V. M. BLINOVSKII, Asymptotically exact uniform bounds for spectra of cosets of linear codes, Problemy Peredachi

Informatsii, vol. 26, No. 1, pp. 99–103, 1990. Translated in: Problems of Inform. Transm., vol. 26, no. 1, pp. 83–86.

[5] S. BUZAGLO, Y. CASSUTO, P. H. SIEGEL, AND E. YAAKOBI, Consecutive switch codes, IEEE Trans. Inform. Theory,

vol.64, no.4, pp. 2485–2498, Apr. 2016.

[6] Y. M. CHEE, F. GAO, S. T. H. TEO, AND H. ZHANG, Combinatorial systematic switch codes, Proc. IEEE Int. Symp. Inf.

Theory, pp. 241–245, Hong Kong, Jun. 2015.

[7] B. CHOR, O. GOLDREICH, E. KUSHILEVITZ, AND M. SUDAN, Private information retrieval, J. ACM, vol. 45, no. 6,

pp. 965–981, 1998.

[8] G. COHEN, I. HONKALA, S. LITSYN AND A. LOBSTEIN, Covering codes, Elsevier, 1997.

[9] T. H. CHAN, S. HO, AND H. YAMAMOTO, Private information retrieval for coded storage, arxiv.org/abs/1410.5489, Oct.

2014.

[10] T. H. CHAN, S. HO, AND H. YAMAMOTO, Private information retrieval for coded storage, Proc. IEEE Int. Symp. Inf.

Theory, pp. 2842–2846, Hong Kong, Jun. 2015.

[11] G.D. COHEN, P. GODLEWSKI, AND F. MERKX, Linear binary code for write-once memories, IEEE Trans. Inform. Theory,

vol. 32, no. 5, pp. 697–700, Oct. 1986.

[12] G. COHEN, M. KARPOVSKY, H. MATTSON, JR. AND J. SCHATZ, Covering radius: Survey and recent results, IEEE Trans.

on Inform. Theory, vol. 31, no. 3, pp. 328–343, May 1985.

[13] C. COOPER, On the rank of random matrices, Random Structures Algorithms, vol. 16, pp. 209–232, 2000.

[14] T. ETZION AND A. VARDY, Error-correcting codes in projective space, IEEE Trans. on Inform. Theory, vol. 57, no.2,

pp. 1165–1173, Feb. 2011.

[15] A. FAZELI, A. VARDY, AND E. YAAKOBI, Coded for distributed PIR with low storage overhead, IEEE Int. Symp. on Inf.

Theory (ISIT), pp. 2852–2856, Hong Kong, Jun. 2015

[16] A. FAZELI, A. VARDY, AND E. YAAKOBI, Private information retrieval without storage overhead: coding instead of

replication, arxiv.org/abs/1505.0624, May 2015.

[17] P. GODLEWSKI, WOM-codes construits à partir des codes de Hamming, Discrete Math., vol. 65, no. 3, pp. 237–243, Jul.

1987.

[18] Y. ISHAI, E. KUSHILEVITZ, R. OSTROVSKY, AND A. SAHAI, Batch codes and their applications, Proc. of the 36-sixth

Annual ACM Symposium on Theory of Computing, pp. 262-271, Chicago, ACM Press, 2004.

[19] E. KUSHILEVITZ AND R. OSTROVSKY, Replication is not needed: Single database, computationally-private information

retrieval, Proc. 38-th IEEE Symp. Foundations Computer Science (FOCS), pp. 364–373, 1997.

[20] S. LIN AND D. J. COSTELLO, Error control coding, Prentice Hall, 2004.

26

[21] H. LIN AND E. ROSNES, Lengthening and extending binary private information retrieval codes, arxiv.org/abs/1707.03495,

Jul. 2017.

[22] N. POLYANSKII AND I. VOROBYEV, Construction of batch codes via finite geometry, arxiv.org/abs/1901.06741v1, Jan.

2019.

[23] S. RAO AND A. VARDY, Lower bound on the redundancy of PIR codes, arxiv.org/abs/1605.01869v1, May 2016.

[24] A. S. RAWAT, D. S. PAPAILIOPOULOS, A. G. DIMAKIS, AND S. VISHWANATH, Locality and availability in distributed

storage, IEEE Trans. Inform. Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[25] A. S. RAWAT, Z. SONG, A. G. DIMAKIS, AND A. GÁL, Batch codes through dense graphs without short cycles, IEEE

Trans. Inform. Theory, vol. 62, no. 4, pp. 1592–1604, Apr. 2016.

[26] R.L. RIVEST AND A. SHAMIR, How to reuse a write-once memory, Inform. and Contr., vol. 55, no. 1–3, pp. 1–19, Dec.

1982.

[27] N. SHAH, K. RASHMI, AND K. RAMCHANDRAN, One extra bit of download ensures perfectly private information retrieval,

IEEE Int. Symp. Inf. Theory (ISIT), pp. 856–860, Honolulu, HI, Jun. 2014.

[28] E. SHARON AND I. ALROD, Coding scheme for optimizing random I/O performance, Non-Volatile Memories Workshop,

San Diego, Apr. 2013.

[29] M. VAJHA, V. RAMKUMAR, AND P. VIJAY KUMAR, Binary, shortened projective Reed Muller codes for coded private

information retrieval, arxiv.org/abs/1702.05074, Feb. 2017.

[30] A. VARDY AND E. YAAKOBI, Constructions of batch codes with near optimal redundancy, IEEE Int. Symp. Inf. Theory

(ISIT), pp. 1197–1201, Barcelona, Spain, Jul. 2016.

[31] Z. WANG, H. M. KIAH AND Y. CASSUTO, Optimal binary switch codes with small query size, IEEE Int. Symp. Inf. Theory

(ISIT), pp. 636–640, Hong Kong, Jun. 2015.

[32] Z. WANG, H. M. KIAH, Y. CASSUTO AND J. BRUCK, Switch codes: codes for fully parallel reconstruction, IEEE Trans.

Inform. Theory, vol. 63, no. 4, pp. 2061–2075, Feb. 2017.

[33] Z. WANG, O. SHAKED, Y. CASSUTO, AND J. BRUCK, Codes for network switches, Proc. IEEE Int. Symp. Inf. Theory,

pp. 1057–1061, Istanbul, Turkey, Jul. 2013.

[34] M. WOOTERS, Linear codes with disjoint repair groups, unpublished manuscript, Feb. 2016.

[35] E. YAAKOBI, S. KAYSER, P. H. SIEGEL, A. VARDY, AND J.K. WOLF, Codes for write-once memories, IEEE Trans. on

Inform. Theory, vol. 58, no. 9, pp. 5985–5999, Sep. 2012.

[36] E. YAAKOBI AND R. MOTWANI, Construction of random input-output codes with moderate block lengths, IEEE Trans. on

Comm., vol. 64, no. 5, pp. 1819–1828, May 2016.

[37] A. YAMAWAKI, H. KAMABE, AND S. LU, Construction of parallel RIO codes using coset coding with Hamming code, IEEE

Inf. Theory Workshop (ITW), pp. 239–243, Kaohsiung, Taiwan, Nov. 2017.

	I Introduction
	I-A General Background
	I-B General Description of the Problem
	I-C Basic Results
	I-D Our Contribution and Outline

	II A Construction of Functional PIR Codes
	III Lower Bounds on the Length of Functional PIR Codes
	III-A A general lower bound by counting
	III-B A tight bound of FP(s,3) and FP(s,4)

	IV Bounds on the Length of Functional Batch Codes
	V Using Simplex Codes as Functional Batch Codes
	VI Conclusions and Problems for Future Research
	References

