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Abstract—Polar transforms are central operations in the study
of polar codes. This paper examines polar transforms for non-
stationary memoryless sources on possibly infinite source alpha-
bets. This is the first attempt of source polarization analysis over
infinite alphabets. The source alphabet is defined to be a Polish
group, and we handle the Arıkan-style two-by-two polar trans-
form based on the group. Defining erasure distributions based
on the normal subgroup structure, we give recursive formulas
of the polar transform for our proposed erasure distributions.
As a result, the recursive formulas lead to concrete examples of
multilevel source polarization with countably infinite levels when
the group is locally cyclic. We derive this result via elementary
techniques in lattice theory.

I. Introduction

Polar codes were invented by Arıkan [1] as a provably
capacity-achieving channel coding technique for binary-input
memoryless symmetric channels with low complexity encod-
ing/decoding. The central operation in polar coding is so-
called the polar transform, which creates worse and better
channels than an original channel in a certain sense. It was
shown that this coding technique can also be applied to binary
source coding problems with side information [2]. Şaşoğlu
[3] extended polar source coding from binary to non-binary
alphabets. While Şaşoğlu’s polar transform [3, Definition 4.1]
is non-linear in a certain sence, Mori–Tanaka [4] established
non-binary polar source coding with linear polar transforms
over finite fields. In those studies, the polar transforms asymp-
totically create either deterministic or equiprobable conditional
probability distributions, and these limiting proportions can be
fully characterized by the conditional Shannon entropy of the
original source. Such a two-level polarization phenomenon is
sometimes referred to as strong polarization.1

A. From Two-Level to Multilevel Polarization
On the other hand, there are studies of investigating po-

larization phenomena with three or more polarization levels

This work is supported in part by JSPS KAKENHI Grant Numbers 26420352;
17K06422; 17J11247; and 18K11465, and a Singapore NRF fellowship (R-
263-000-D02-281).

1Note that the terminology “strong polarization” is somewhat ambiguous
in the literature. Mori–Tanaka [4] said that a channel is polarized in a weaker
sense if its polar transforms do not behave as the two-level polarization; Nasser
[5] said that a channel is strongly polarizing if its polar transforms behave
as the two-level polarization; and Błasiok et al. [6, Definition 1.4] defined a
meaning of strong polarization in a different way.

[5], [7]–[16]. Such a phenomenon is referred to as multilevel
polarization. Roughly speaking, multilevel polarization means
that the polar transform asymptotically creates equiprobable
conditional distributions on some cosets of normal subgroups,
provided that the polar transform is based on a finite group
(cf. [10, Theorem 6] and [15, Theorem V.1]). Unlike two-
level polarization, characterizing the limiting proportions of
multilevel polarization still remains an open problem2 in
general. In this paper, such limiting proportions are referred
to as asymptotic distribution of multilevel polarization. In
practice, the asymptotic distribution is an important indicator
of constructing polar codes [17]. As a special case, the authors
of this paper [13], [14] solved the asymptotic distribution for
non-binary-input erasure-like channel models proposed in [12].
Particularly, if the input alphabet size is not a prime power,
then our previous works [13], [14] give a non-trivial method
for calculating the exact asymptotic distribution algorithmically.
Recently, Nasser [5] characterized polarization levels, i.e., the
support of the asymptotic distribution, for his proposed channels
called automorphic-symmetric channels.

B. Binary Operation defining Polar Transform
While the Arıkan-style two-by-two polar transform is always

defined on a group of order two3 in the study of binary polar
codes, note that it can be defined on several binary operations in
the study of non-binary polar codes. Şaşoğlu [3, Definition 4.1]
considered it based on certain finite quasigroups; Mori–Tanaka
[4] on finite fields; Park–Barg [16] on cyclic groups in which
those orders are a power of two; Sahebi–Pradhan [15] on
finite abelian groups; Nasser–Telatar [10] on finite quasigroups;
Nasser–Telatar [11] also on finite abelian groups; Nasser [7],
[8] on more weaker finite algebras than quasigroups; Nasser [5]
also on finite, not necessarily abelian, groups; and the authors
[12]–[14] on finite cyclic groups. It is worth pointing out that
by the structure theorem of finite abelian groups, the polar
transform based on a finite abelian group can be considered as a
polar coding for the multiple-access channel (MAC) [10], [11].
The neccesary and sufficient condition of MACs that the entire
capacity region can be achieved by the MAC polarization has

2In [9, Section 9.2.1], Nasser raised such an open problem aiming to find a
method for calculating the exact or approximated asymptotic distribution of
multilevel polarizaiton.

3Groups of order two are unique up to isomorphism.
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been characterized by Nasser–Telatar [11] via discrete Fourier
analysis over a finite abelian group.

C. Related Problem: Sumset Inequality for Shannon Entropy

Beyond the study of polar codes, bounding some measures
and/or entropy of a random variable (r.v.) generated by a group
action between two independent r.v.’s are central issues [18]–
[25]. This problem is information-theoretically analogous to
additive combinatorics or Ruzsa calculus (cf. [26]). Ruzsa
[18] and Tao [19] established the sumset and inverse sumset
estimates on the Shannon entropy of abelian group-valued r.v.’s
with countable order of the group (see also [20]). Kontoyiannis
and Madiman [21] extended such estimates to the differential
entropy of real-valued r.v.’s, where the group operation is
addition of real numbers. Madiman and Kontoyiannis [24]
further generalized such estimates to the differential entropy of
Polish, locally compact, and abelian group-valued r.v.’s, where
the probability density functions are defined with respect to
a Haar measure. Applications of such sumset inequalities for
the Shannon entropy to polar codes have been discussed in the
literature [22], [23].

D. Contributions of This Study

In this study, we considers the recursive application of
Arıkan-style two-by-two polar transforms based on Polish
groups with possibly infinite order. This is the first attempt of
polarization analysis over infinite alphabets. The main aim of
this study is to explore the asymptotic distribution of multilevel
polarization. In the context of polar coding for a non-stationary
source, we consider a mutually independent, but not necessarily
identically distributed, sequence of group-valued r.v.’s with
side information. This non-stationary setting is similar to the
study of binary polar coding for non-stationary channels [27],
[28]. Moreover, examining the asymptotic behavior of the
conditional Shannon entropy with the recursive group actions
among independent r.v.’s is somewhat related to the study of
sumset inequalities for the Shannon entropy [18]–[25].
We tackle this problem by proposing erasure distributions

based on the normal subgroup structure of a given group, see
Definition 2 of Section III-A. Our group-based erasure distri-
butions are a generalization of Şaşoğlu’s one [3, Section 3.3.1],
which is defined on the binary source alphabet. To simplify our
analysis, we derive the recursive formulas of the polar transform
for the group-based erasure distributions in Theorem 1 of
Section III-B. When the group is locally cyclic, in Theorem 2
of Section IV-B, we give a method of computing the exact
asymptotic distribution of multilevel polarization for group-
based erasure distributions. Theorem 2 is proved via the lattice
structure of the normal subgroups [29], [30]. These results
are more abstractly general than that of the authors’ previous
works [12]–[14], and the first instance of countably infinite
polarization levels. We decsribe a relation to our previous
works [12]–[14] in Section V-A1; we give the simplest case of
countably infinite polarization levels with the Prüfer p-group
in Section V-A2.

II. Problem Formulation and Basic Lemmas
A. Conditional Distribution and Conditional Shannon Entropy

Let (X,B) be a standard Borel space, X an (X,B)-valued r.v.,
and Y a r.v. Denote by PX |Y a regular conditional distribution4
of X relative to Y , i.e., it is a r.v. forming a probability measure
on (X,B) almost surely (a.s.) and PX |Y (B) is a version of
the conditional probability P(X−1(B) | Y ) for each B ∈ B.
Definition 1 introduces an equivalence relation between two
r.v.’s relative to another r.v.

Definition 1. We say that two r.v.’s Y and Z are equivalent
relative to an (X,B)-valued r.v. X , denoted by Y ≡X Z , if
PX |Y (B) = PX |Z (B) a.s. for every B ∈ B.

Definition 1 can be reduced to the equivalence relation i∼
introduced by Mori–Tanaka [4, p. 2722], provided that X is a
finite alphabet. Now, we say that X is conditionally discrete
relative to Y if there exists a B-valued r.v. D such that D is
countable a.s., and PX |Y (D) = 1 a.s. Then, the conditional
entropy is defined by

H(X | Y ) B E
[ ∑
x∈X

PX |Y (x) log
1

PX |Y (x)

]
, (1)

provided that X is conditionally discrete relative to Y . Here,
log stands for the natural logarithm satisfying 0 log 0 = 0.
The following lemma is trivial from the definitions.

Lemma 1. If Y ≡X Z , and if X is conditionally discrete relative
to Y or Z , then it holds that

H(X | Y ) = H(X | Z). (2)

Namely, the equivalence relation defined in Definition 1
classifies pairs of r.v.’s having the equal conditional Shannon
entropy. Lemma 1 can be straightforwardly extended to a more
general conditional quantity [33, Equation (4)].

B. One-Step Polar Transform with a Polish Group
Let G be a Polish group with group operation •, i.e., it

is a topological group equipped with a complete separable
metrizable topology. Here, the group G is not necessarily
abelian. Denote by BG the Borel σ-algebra induced by the
Polish topology of G. Clearly, the measurable space (G,BG)
is standard Borel. Assume that the mapping (g, h) 7→ g • h
is Borel-measurable; and consider two independent, but not
necessarily identically distributed, (G,BG)-valued r.v.’s X1 and
X2. The one-step polar transform generates two (G,BG)-valued
r.v.’s U1 and U2 by

U1 = X1 • X2, (3)
U2 = X2. (4)

The following lemma will be useful to simplify the sub-
sequent analysis on the polar transform (3)–(4) for erasure
distributions defined later in Definition 2.

4The regular conditional distribution PX |Y always exists, because (X, B)
is standard Borel (see, e.g., [31, Theorem 10.2.2] or [32, Theorem 4.1.17]).



Lemma 2. Given four r.v.’s Y1, Y2, Z1, and Z2, suppose that

Y1 ≡X1 Z1, (5)
Y2 ≡X2 Z2, (6)

(X1,Y1, Z1) y (X2,Y2, Z2). (7)

Then, it holds that

(Y1,Y2) ≡U1 (Z1, Z2), (8)
(U1,Y1,Y2) ≡U2 (U1, Z1, Z2). (9)

Proof of Lemma 2: We first prove (U1,Y1,Y2) ≡U2

(U1, Z1, Z2). For each A1, A2 ∈ BG , it holds that

E[1{U1∈A1 }PU2 |U1,Y1,Y2 (A2) | Y1,Y2]
(a)
= E[1{U1∈A1 }E[1{U2∈A2 } | U1,Y1,Y2] | Y1,Y2]
(b)
= E[E[1{(U1,U2)∈A1×A2 } | U1,Y1,Y2] | Y1,Y2]
(c)
= E[1{(U1,U2)∈A1×A2 } | Y1,Y2]
(d)
= E[1{U2∈A2 }PU1 |U2,Y1,Y2 (A1) | Y1,Y2]
(e)
= E[1{X2∈A2 }E[1{X1•X2∈A1 } | X2,Y1,Y2] | Y1,Y2]
(f)
= E[1{X2∈A2 }PX1 |Y1,Y2 (A1 • X−1

2 ) | Y1,Y2]
(g)
= E[1{X2∈A2 }PX1 |Y1 (A1 • X−1

2 ) | Y1,Y2]
(h)
=

∫
A2

PX1 |Y1 (A1 • x−1
2 ) PX2 |Y1,Y2 (dx2)

(i)
=

∫
A2

PX1 |Y1 (A1 • x−1
2 ) PX2 |Y2 (dx2)

(j)
=

∫
A2

PX1 |Z1 (A1 • x−1
2 ) PX2 |Z2 (dx2)

(k)
= PU1,U2 |Z1,Z2 (A1 × A2)
(l)
= E[1{U1∈A1 }PU2 |U1,Z1,Z2 (A2) | Z1, Z2] (10)

a.s., where (a) follows by the definition of conditional proba-
bilities; (b) follows from the fact that 1{U1∈A1 } is σ(U1,Y1,Y2)-
measurable; (c) follows from the fact that

G ⊂ H =⇒ E[Z | G] = E[E[Z | H] | G] (a.s.) (11)

for a real-valued r.v. Z (cf. [34, Theorem 9.1.5]); (d) follows as
in (a)–(c); (e) follows by (3)–(4); (f) follows from X1 y X2 |
(Y1,Y2) together with [34, Theorem 9.2.2]; (g) follows from [34,
Theorem 9.2.1] and the fact that (X1,Y1) y (X2,Y2) implies
X1 y Y2 | Y1; (h) follows since PX2 |Y1,Y2 (·) forms a probability
measure on (G,BG) a.s.; (i) follows from [34, Theorem 9.2.1]
and the fact that (X1,Y1) y (X2,Y2) implies X2 y Y1 | Y2; (j)
follows by Y1 ≡X1 Z1 and Y2 ≡X2 Z2; (k) follows as in (d)–(f);
and (l) follows as in (a)–(c). Namely, Equation (10) is equivalent
to PU2 |U1,Y1,Y2 (A2) = PU2 |U1,Z1,Z2 (A2) a.s. for A2 ∈ BG; and
thus, we have (U1,Y1,Y2) ≡U2 (U1, Z1, Z2), as desired.
We next prove (Y1,Y2) ≡U1 (Z1, Z2). By setting A2 = G, it

can be verified from (10) that for each A1 ∈ BG ,

PU1 |Y1,Y2 (A1) =
∫
G

PX1 |Y1 (A1 • x−1
2 ) PX2 |Y2 (dx2)
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Fig. 1. Recursive construction of polar transforms up to n ≤ 3 (see (13)–(14)).

=

∫
G

PX1 |Z1 (A1 • x−1
2 ) PX2 |Z2 (dx2)

= PU1 |Z1,Z2 (A1) (12)

a.s. Thus, we have (Y1,Y2) ≡U1 (Z1, Z2), as desired.
Lemma 2 means that the polar transform (3)–(4) preserves

the equivalence relation defined in Definition 1. In the context
of polar channel codes, as an analoguos result to Lemma 2, the
preserving property of a certain channel ordering was firstly
shown by Korada [35, Lemma 4.7] (see also [17, Lemma 5]),
and its generalization from binary to arbitrary input alphabets
was given in [13, Lemma 2] under a quasigroup operation.

C. Recursive Construction of Polar Transforms
This subsection introduces the recursive applications of the

polar transform (3)–(4). For a sequence {Xi}∞i=1 of (G,BG)-
valued r.v.’s, we recursively construct the double sequence
{U(i)n }∞i=1,

∞
n=0 of r.v.’s by5

U(2i−1)
n B U(i)

n−1 •U(i+2n−1)
n−1 , (13)

U(2i)n B U(i+2n−1)
n−1 (14)

for each i ≥ 1 and n ≥ 1, where {U(i)0 }
∞
i=1 B {Xi}∞i=1. Figure 1

illustrates a diagram of (13) and (14). Note that U(i)n is also
(G,BG)-valued for all n ≥ 0 and i ≥ 1.

As a non-stationary source with side information, consider a
sequence {Yi}∞i=1 of r.v.’s playing the role of side information
for {Xi}∞i=1. Suppose that the sequence {(Xi,Yi)}∞i=1 is mutually
independent. Define the double sequence {H(i)n }∞i=1,

∞
n=0 of

conditional Shannon entropies by

H
(i)
n B H(U(i)n | {U(j)n }i−1

j=1, {Yj}∞j=1) (15)

for each n ≥ 0 and i ≥ 1. Roughly speaking,
a source polarization theorem explores how the se-
quence {H(i)n }∞i=1 behaves for sufficiently large n. It can

5The recursive formulas (13)–(14) for binary-input non-starionary channels
can be found in, e.g., [27, Section III] and [28, Equation (7)].



be verified by (13)–(14) that U(i)n is conditionally inde-
pendent of ({U(j)n }m2n

j=1 , {Yj}m2n

j=1 , {Yj}∞j=(m+1)2n+1) relative to
({U(j)n }ij=m2n+1, {Yj}(m+1)2n

j=m2n+1), where m B bi/2nc, and b·c
stands for the floor function. Namely, it holds that

H
(i)
n = H(U(i)n | {U(j)n }i−1

j=m2n+1, {Yj}(m+1)2n

j=m2n+1). (16)

The next section analyzes the conditional Shannon entropies
{H(i)n }∞i=1,

∞
n=0 for erasure distributions.

III. Polar Transforms for Erasure Distributions
A. Erasure Distribution Based on Group Structure

It is well-known that the polar transform for binary erasure
channels (BECs) can be easily analyzed [1, Proposition 6] by a
certain recursive formula. This convenient probabilistic model
was translated from channel to source coding problems by
Şaşoğlu [3, Section 3.3.1] by defining an erasure distribution
as an analogy to the BEC. In this subsection, from the group
theoretic perspective, we introduce a more general erasure
distribution than Şaşoğlu’s one.
Let H C G be a shorthand for a normal subgroup H of G.

The following definition gives an erasure distribution based on
the normal subgroup structure of G.

Definition 2 (group-based erasure distribution). Let X be an
(G,BG)-valued r.v., and Y a Y-valued r.v., where

Y =
⋃

HCG:H is finite

G
H
= {g • H | g ∈ G and finite H C G}.

Then, we say that (X,Y ) follows an erasure distribution if

PX |Y (B) =
|B ∩ Y |
|Y | (a.s.), for B ∈ BG . (17)

The alphabet Y given in Definition 2 is the collection of
finite cosets of G, and note that X ∈ Y a.s. if (X,Y ) follows
an erasure distribution. Intuitively, this means that the side
information Y only tells us that X belongs to a finite coset Y .
It is clear that X is conditionally discrete relative to Y if (X,Y )
follows an erasure distribution, because PX |Y is a uniform
distribution on a finite coset Y a.s. (see (17)).
If the order of G is two, then Definition 2 coincides with

Şaşoğlu’s one [3, Section 3.3.1]. Moreover, Definition 2 can
be reduced to some know erasure-like channels as follows.

Remark 1. Let (X,Y ) a pair of r.v.’s following an erasure
distribution in the sense of Definition 2. Suppose that

P{Y = g • H | Y ∈ G/H} = P{Y = H | Y ∈ G/H} (18)

for every g ∈ G and every finite H C G, provided that
P{Y ∈ G/H} > 0. If G is a finite cyclic group, then the
joint probability measure induced by (X,Y ) is equivalent to
a modular arithmetic erasure channel [13, Definition 2] with
uniform input distribution. As summarized in [13, Examples 1–
4], modular arithmetic erasure channels can be further reduced
to many other erasure-like channels given in [15], [36]. In
addition, if G is a finite elementary abelian group, then the
joint probability measure induced by (X,Y ) is equivalent to a

combination of linear channels [13, Definition 23] with uniform
input distribution, where the linear channels are constructed
on the set of subspaces of a finite-dimensional vector space
over the prime field.

Lemma 3 shows a simple formula for H(X | Y ) for an erasure
distribution; it can be directly proven by (1) and Definition 2.

Lemma 3. If (X,Y ) follows an erasure distribution, then

H(X | Y ) = E[log |Y |]. (19)

It is worth pointing out that Lemma 3 is analogous to [10,
Proposition 3] and [13, Proposition 2].

B. Reduction of Polar Transforms to Erasure Distributions
Suppose that (Xi,Yi) follows an erasure distribution for i ≥ 1.

Let {Y (i)n }∞i=1,
∞
n=0 be a double sequence of r.v.’s defined by6

Y (2i−1)
n B Y (i)

n−1 • Y (i+2n−1)
n−1 , (20)

Y (2i)n B φ(U(2n−1)
n ,Y (i)

n−1,Y
(i+2n−1)
n−1 ) (21)

for each i ≥ 1 and n ≥ 1, where {Y (i)0 }
∞
i=1 B {Yi}

∞
i=1, and the

mapping φ : G × Y × Y → Y ∪ {∅} is defined by

φ : (g, a • H, b • K) 7→ (a−1 • g • H) ∩ (b • K) (22)

for a, b, g ∈ G and finite H,K C G. Theorem 1 shows that like
the BEC [1, Proposition 6], the polar transform for erasure
distributions generates other erasure distributions again.

Theorem 1. The pair (U(i)n ,Y (i)n ) also follows an erasure
distribution for each i ≥ 1 and n ≥ 0. In addition, for each
n ≥ 0 and i ≥ 1, and with m B bi/2nc, it holds that

Y (i)n ≡U (i)n
({U(j)n }i−1

j=m2n+1, {Yj}(m+1)2n

j=m2n+1). (23)

Corollary 1. If (Xi,Yi) follows an erasure distribution, then

H
(i)
n = E[log |Y (i)n |] for n ≥ 0, i ≥ 1. (24)

Proof of Theorem 1: By Lemma 2 and the recursivity of
(13)–(14), it suffices to consider the one-step polar transform
(3)–(4). Next, we prove Theorem 1 in two parts:

1) Proof for Minus Transform (U1, (Y1,Y2)): Since X1 and
X2 are conditionally discrete relative to Y1 and Y2, respectively,
it follows by the first equality of (12) that

PU1 |Y1,Y2 (A1) =
∑
u2∈G

PX1 |Y1 (A1 • u−1
2 ) PX2 |Y2 (u2)

=
∑

u1∈A1

∑
u2∈G

PX1 |Y1 (u1 • u−1
2 ) PX2 |Y2 (u2) (25)

a.s. for every A1 ∈ BG . Thus, we see that U1 is conditionally
discrete relative to (Y1,Y2) as well. It follows from (17) that

PX1 |Y1 (u1 • u−1
2 ) PX2 |Y2 (u2) =

1{u1•u−1
2 ∈Y1 }∩{u2∈Y2 }

|Y1 | |Y2 |
(26)

a.s. for every (u1, u2) ∈ G2. Now, we readily see that for some
u1, u2, g1, g2 ∈ G and H,K C G, both u1 • u−1

2 ∈ g1 • H and

6Assume w.l.o.g. that Y (2i)n B {e} if φ(U (2n−1)
n ,Y

(i)
n−1,Y

(i+2n−1)
n−1 ) = ∅.



u2 ∈ g2 • K hold if and only if the following system of two
congruences holds:{

u2 ≡ g−1
1 • u1 (mod H),

u2 ≡ g2 (mod K). (27)

By the Chinese Remainder Theorem in group theory, the system
(27) has a unique solution u2 ∈ G modulo H ∩ K if and only
if u1 ≡ g1 • g2 (mod H • K). Therefore, we have

{u2 ∈ G | (u1 • u−1
2 , u2) ∈ Y1 × Y2} ∈

G
H ∩ K

(28)

if and only if Y1 ∈ G/H, Y2 ∈ G/K , and u1 ∈ Y1 • Y2. Hence,
it follows from (25), (26), and (28) that for each A1 ∈ BG ,

PU1 |Y1,Y2 (A1) =
∑

u1∈A1∩(Y1•Y2)

∑
u2∈φ(U1,Y1,Y2)

1
|Y1 | |Y2 |

=
∑

u1∈A1∩(Y1•Y2)

|φ(U1,Y1,Y2)|
|Y1 | |Y2 |

=
|A1 ∩ (Y1 • Y2)|
|Y1 • Y2 |

(29)

a.s., where the last equality follows by the identity7

|H • K | |H ∩ K | = |H | |K | (30)

for finite H,K C G. Equation (29) implies that (U1, (Y1,Y2))
follows an erasure distribution (see (17)). Furthermore, since
Y1•Y2 is a function of (Y1,Y2), we see that σ(Y1•Y2) ⊂ σ(Y1,Y2).
Hence, it can be verified by (11) and (29) that

Y1 • Y2 ≡U1 (Y1,Y2), (31)

completing the proof for minus transform.
2) Proof for Plus Transform (U2, (U1,Y1,Y2)): Since X1 and

X2 are conditionally discrete relative to Y1 and Y2, respectively,
it follows as in Steps (a)–(i) of (10) that for each A1, A2 ∈ BG ,

E[1{U1∈A1 }PU2 |U1,Y1,Y2 (A2) | Y1,Y2]
=

∑
u1∈A1

∑
u2∈A2

PX1 |Y1 (u1 • u−1
2 ) PX2 |Y1 (u2)

(a)
=

∑
u1∈A1∩(Y1•Y2)

∑
u2∈A2∩φ(U1,Y1,Y2)

1
|Y1 | |Y2 |

=
∑

u1∈A1∩(Y1•Y2)

|A2 ∩ φ(U1,Y1,Y2)|
|Y1 | |Y2 |

(b)
=

∑
u1∈A1∩(Y1•Y2)

PU1 |Y1,Y2 (u1)
PU1 |Y1,Y2 (u1)

|A2 ∩ φ(U1,Y1,Y2)|
|Y1 | |Y2 |

(c)
=

∑
u1∈A1∩(Y1•Y2)

PU1 |Y1,Y2 (u1)
|A2 ∩ φ(U1,Y1,Y2)|
|φ(U1,Y1,Y2)|

(d)
= E

[
1{U1∈A1 }

|A2 ∩ φ(U1,Y1,Y2)|
|φ(U1,Y1,Y2)|

���� Y1,Y2

]
(32)

a.s., where (a) follows from (26) and (28); (b) follows from
the fact that PU1 |Y1,Y2 (u1) > 0 if and only if u1 ∈ Y1 • Y2 (see
(29)); (c) follows from (29)–(30); and (d) follows from the

7Consider the second isomorphism theorem without the topological structure.

fact that PU1 |Y1,Y2 (·) forms a uniform distribution on Y1 •Y2 a.s.
Therefore, it holds that for each A2 ∈ BG ,

PU2 |U1,Y1,Y2 (A2) =
|A2 ∩ φ(U1,Y1,Y2)|
|φ(U1,Y1,Y2)|

(33)

a.s. Equation (33) implies that (U2, (U1,Y1,Y2)) follows an era-
sure distribution. Furthermore, since φ(U1,Y1,Y2) is a function
of (U1,Y1,Y2), it holds that σ(φ(U1,Y1,Y2)) ⊂ σ(U1,Y1,Y2).
Hence, it can be verified by (11) and (33) that

φ(U1,Y1,Y2) ≡U2 (U1,Y1,Y2), (34)

completing the proof for plus transform.
Proof of Corollary 1: Corollary 1 is now obvious from

Lemmas 1–3 and Theorem 1.
If the order of G is two, then Theorem 1 can be reduced to the

discussion in [3, Section 3.3.1], which is alanogous to the ease
of analysing the polar transform for BECs [1, Proposition 6].
As shown in the following remark, Theorem 1 is indeed a
generalization of the known formulas in easy case studies of
Arıkan-style two-by-two polar transforms.

Remark 2. For a source {(Xi,Yi)}∞i=1, suppose the same
hypothesis as Remark 1. If G is a finite cyclic group, then
Theorem 1 is a counterpart of the recursive formula for modular
arithmetic erasure channels [13, Theorem 1]. In addition, if
G is a finite elementary abelian group, then Theorem 1 is a
counterpart of the recursive formula for combinations of linear
channels [10, Proposition 4] in a stationary setting.

By Corollary 1, the probability measures induced by
{|Y (i)n |}∞i=1 are important to analyze the asymptotic distribution
of multilevel polarization for sufficiently large n. The next
section explores the asymptotic distribution in a special case.

IV. Multilevel Source Polarization Analysis
A group G is said to be locally cyclic if every finitely

generated subgroup of G is cyclic. In this section, we investigate
the multilevel polarization theorem for a non-stationary source
{(Xi,Yi)}∞i=1, where (Xi,Yi) follows an erasure distribution with
a locally cyclic group G for each i ≥ 1.

A. Theorem 1 with a Locally Cyclic Group
It is known that every locally cyclic group is isomorphic

to a subgroup of the additive rationals Q or of the additive
quotient group Q/Z. Namely, the order of every locally cyclic
group must be countable; and thus, it is worth mentioning that
any subset of a locally cyclic Polish group G is Borel.

Fix an index i ≥ 1. Since every finite subgroup of a locally
cyclic group is cyclic, and since every cyclic group of order
k is isomorphic to Z/kZ under addition, we observe that (i)
every locally cyclic group G has at most a countable number
of finite normal subgroups N C G; and (ii) |Yi | = k if and
only if Yi ∈ G/N with N � Z/kZ. Hence, it follows that
P{|Yi | = k} = P{Yi ∈ G/N for some N isomorphic to Z/kZ},
and Lemma 3 can be rewritten by

H(X | Y ) =
∑

NCG:N is finite
(log |N |)P{Yi ∈ G/N}. (35)



Namely, the probability P{Yi ∈ G/N} is important in the subse-
quent analysis. Actually, if we define ε(i)n (N) B P{Y (i)n ∈ G/N}
for each i ≥ 1, n ≥ 0, and finite N C G, then it follows from
Theorem 1 that for every i ≥ 1, n ≥ 1 and finite N C G,

ε
(2i−1)
n (N) =

∑
H,KCG:H•K=N

ε
(i)
n−1(H) ε

(i+2n−1)
n−1 (K), (36)

ε
(2i)
n (N) =

∑
H,KCG:H∩K=N

ε
(i)
n−1(H) ε

(i+2n−1)
n−1 (K). (37)

Based on the recursive formulas (36)–(37), we observe from
Corollary 1 and (35) that for each i ≥ 1 and n ≥ 0,

H
(i)
n =

∑
NCG:N is finite

(log |N |) ε(i)n (N). (38)

B. Asymptotic Distribution of Multilevel Polarization
In the previous subsection, the calculations of {H(i)n }∞i=1,

∞
n=0

have been simplified to (38) via (36)–(37). Based on this,
we now give a multilevel polarization theorem for erasure
distributions with a locally cyclic group G. To formalize it, we
now introduce some notations and definitions as follows:
For each finite N C G, denote by S(N) the collection of

overgroups H B N satisfying the following two conditions:
(i) there exists a K C G satisfying the proper subgroup chain
N C K C H and (ii) there are no distinct K1,K2 C G satisfying
the proper subgroup chain N CK1CK2CH. Moreover, for each
finite N CG and H ∈ S(N), denote byM(N,H) the collection
of finite subgroups K CG satisfying the proper subgroup chain
N C K C H. These notations will be used in Algorithm 1 later.
For each finite N C G, define

Q(N) B lim
m→∞

1
m

m∑
i=1
P{Yi ∈ G/N}, (39)

provided that the limit exists. Henceforth, assume that the limit
Q(N) always exists for each finite N C G, and Q(N) B 0 if N
is infinite. This existence of limits is a similar assumption to
[27, Remark 1] in the study of polar codes for non-stationary
channels, which can be considered as the existence of entropy
rate for a sequence of independent r.v.’s (see also [28]). The
following example shows some simple cases of (39).

Example 1. If {(Xi,Yi)}∞i=1 is a stationary source with generic
distribution PX,Y , i.e., if PXi,Yi = PX,Y for all i ≥ 1, then it is
clear that Q(H) = P{Y ∈ G/H}. Similarly, if Yi converges in
distribution to Y as i → ∞, then it follows from the Cesáro
mean that Q(H) = P{Y ∈ G/H}.

It is clear that Q(·) forms a discrete probability distribution
on the set of normal subgroups of G. As wil bel seen in
Theorem 2 and Algorithm 1, the distribution Q(·) plays a
significant role to characterize the asymptotic distribution of
multilevel source polarization. For each H,K, N CG, we define

χ(N,K,H) B
∑

JCG:J•N=J•K,J∩H=J∩K
Q(J), (40)

β(N,H) B
∑

JCG:J∩H=J∩N
Q(J). (41)

Algorithm 1: Solving µ(N) used in (43) of Theorem 2
Data: A locally cyclic group G; a finite normal subgroup N CG;

and a distribution Q(·) defined in (39)
Result: Probability masses {µ(H)}HCN

1 α←− 0; K ←− {e}; and µ(H) ←− 0 for all H C N
2 while K C N do
3 if S(K) is nonempty then
4 (H1,H2) ←− arg max

(K1,K2):K1∈S(K),K2∈M(K,K1)
χ(K,K2,K1)

5 µ(K) ←− β(K,H1) − α
6 if there exists H3 ∈ M(K,H1) s.t. H3 , H2 then
7 µ(K) ←− µ(K) + χ(K,H3,H1)
8 K ←− H2
9 else if there exists an overgroup H B K then

10 µ(K) ←− β(K,H) − α
11 K ←− H
12 else
13 µ(K) ←− 1 − α
14 α←− α + µ(K)

The definitions (40)–(41) will be also used in Algorithm 1.
Finally, according to (15), we define

H
(i)
n [N] B H(U(i)n • N | {U(j)n }i−1

j=1, {Yj}∞j=1) (42)

for each i ≥ 1, n ≥ 0, and NCG. Since U(i)n •N is a function of
U(i)n , it is clear that H(i)n [N] ≤ H(i)n for each N CG. In addition,
we readily see that H(i)n [G] = 0 and H(i)n [{e}] = H(i)n , where
e ∈ G stands for the identity element of G.
The following theorem characterizes the asymptotic distri-

bution of multilevel polarization for a non-stationary source
following erasure distributions.

Theorem 2. For any δ > 0 and finite N C G, it holds that

lim
n→∞

lim
m→∞

1
m 2n

���{1 ≤ i ≤ m 2n : H(i)n [N] < δ,��H(i)n − log |N |
�� < δ

}��� = µ(N), (43)

where µ(N) can be exactly calculated by Algorithm 1.

In (43), the limit with respect to m is taken due to the
non-stationarity of the source and the dependence of r.v.’s
induced by the polar transforms (13)–(14), see Section III-B.
Here, note that the number m plays a similar role to that of
Section III-B; however, it is not given as m B bi/2nc but given
as independent of n in Theorem 2.
We shall prove Theorem 2 by employing elementary tech-

niques in lattice theory [30]. Basic notions and definitions in
lattice theory can be found in Appendix A.

Proof of Theorem 2: Since the lattice of normal subgroups
of a group is distributive if and only if the group is locally
cyclic (cf. [29, Theorem 4 of Chapter 3]), it suffices to consider
a distributive lattice (L,∨,∧, ≤). Define the double sequence
{ε(i)n }∞i=1,

∞
n=0 of probability vectors ε(i)n B {ε(i)n ( j)}j∈L by

ε
(2i−1)
n ( j) B

∑
k,l∈L:k∨l=j

ε
(i)
n−1(k) ε

(i+2n−1)
n−1 (l), (44)



ε
(2i)
n ( j) B

∑
k,l∈L:k∧l=j

ε
(i)
n−1(k) ε

(i+2n−1)
n−1 (l) (45)

for each i ≥ 1 and n ≥ 1, where {ε(i)0 }
∞
i=1 B {εi}

∞
i=1 is a given

initial probability vector. Note that (44) and (45) correspond to
(36) and (37), respectively. To analyze the probability vectors
ε(i)n , we further define partial sums of elements in ε(i)n by

θ
(i)
n (a, b) B

∑
j∈L:j∨a=j∨b

ε
(i)
n ( j), (46)

χ
(i)
n (a, c, b) B

∑
j∈L:j∨a=j∨c, j∧b=j∧c

ε
(i)
n ( j), (47)

β
(i)
n (a, b) B

∑
j∈L:j∧a=j∧b

ε
(i)
n ( j) (48)

for each a, b, c ∈ L. When elements a, b ∈ L are clear from
the context, we simply write (46)–(48) as θ(i)n , χ(i)n (c), and β(i)n .
By defining

M(a, b) B {c ∈ L | a < c < b} (49)

for each a, b ∈ L, we can show the following lemma.

Lemma 4. Let a, b ∈ L be chosen so that a < b and there is
no pair x, y ∈ L satisfying a < x < y < b. If (L, ≤) is modular,
then it holds that

θ
(i)
n + β

(i)
n +

∑
c∈M(a,b)

χ
(i)
n (c) = 1 (50)

for every a, b ∈ L, i ≥ 1, and n ≥ 0.

Proof of Lemma 4: See Appendix B.
Note that every distributive lattice is modular. Lemma 4

means that the probability masses of ε(i)n are well-partitioned
by (46)–(48). Let a and b be chosen so that a < b and there
is no pair x, y ∈ L satisfying a < x < y < b. If (L, ≤) is
modular, then |M(a, b)| can be an arbitrary nonnegative integer.
Particularly, if (L, ≤) is distributive, then it can be verified that
0 ≤ |M(a, b)| ≤ 2. Noting this fact, we can observe:

Lemma 5. Let (L, ≤) be a distributive lattice, and let a, b ∈ L
be chosen so that a < b. Suppose that there is no pair x, y ∈ L
satisfying a < x < y < b. Then, it holds that

θ
(2i−1)
n = θ

(i)
n−1 + θ

(i+2n−1)
n−1 − θ(i)

n−1 θ
(i+2n−1)
n−1 + C(i)n , (51)

β
(2i−1)
n = β

(i)
n−1 β

(i+2n−1)
n−1 , (52)

θ
(2i)
n = θ

(i)
n−1 θ

(i+2n−1)
n−1 , (53)

β
(2i)
n = β

(i)
n−1 + β

(i+2n−1)
n−1 − β(i)

n−1 β
(i+2n−1)
n−1 + C(i)n (54)

for every n ≥ 1 and i ≥ 1, where

C(i)n B
∑

c1,c2∈M(a,b):c1,c2

χ
(i)
n−1(c1) χ(i+2n−1)

n−1 (c2). (55)

Moreover, if there exists an x ∈ L satisfying a ≺ x ≺ b, then
it holds that

χ
(2i−1)
n (c) = χ

(i)
n−1(c) χ

(i+2n−1)
n−1 (c)

+ χ
(i)
n−1(c) β

(i+2n−1)
n−1 + β

(i)
n−1 χ

(i+2n−1)
n−1 (c), (56)

χ
(2i)
n (c) = χ

(i)
n−1(c) χ

(i+2n−1)
n−1 (c)

+ χ
(i)
n−1(c) θ

(i+2n−1)
n−1 + θ

(i)
n−1 χ

(i+2n−1)
n−1 (c) (57)

for every n ≥ 1, every i ≥ 1 and every c ∈ M(a, b).

Proof of Lemma 5: See Appendix C.
Since the positive divisors of a positive integer form a

distributive lattice, Lemma 5 is a generalization of [13,
Lemma 6] from a lattice of positive divisors with the stationary
source setting to general distributive lattices with the non-
stationary source setting. Therefore, as in [13, Lemma 7], we
can obtain the following lemma.

Lemma 6. Let (L, ≤) be a distributive lattice, and let a, b ∈ L
be chosen so that a < b. Suppose that there is no pair x, y ∈ L
satisfying a < x < y < b. Then, it holds that

θ
(2i−1)
n + θ

(2i)
n = θ

(i)
n−1 + θ

(i+2n−1)
n−1 + C(i)n , (58)

β
(2i−1)
n + β

(2i)
n = β

(i)
n−1 + β

(i+2n−1)
n−1 + C(i)n (59)

for every n ≥ 1 and i ≥ 1. Moreover, if there exists an x ∈ L
satisfying a ≺ x ≺ b, then it holds that

χ
(2i−1)
n (c) + χ(2i)n (c) = χ

(i)
n−1

(
1 − χ(i+2n−1)

n−1

)
+ χ

(i+2n−1)
n−1

(
1 − χ(i)

n−1

)
(60)

Proof of Lemma 6: Lemma 6 is a direct consequence
from Lemmas 4 and 5.
Based on this observation, we can prove Theorem 2 in a

similar fashion to [13, Section IV].

V. Concluding Remarks

We have explored the asymptotic distribution of multilevel
source polarization over possibly infinite source alphabets by
defining a convenient probabilistic model called an erasure
distribution, which is defined in Definition 2. The analysis of
Arıkan-style two-by-two polar transforms (13)–(14) based on a
Polish group was simplified by Theorem 1 establishing recursive
formulas of the polar transforms for erasure distributions. When
the group is locally cyclic, Theorem 2 and Algorithm 1 give
a method for calculating the exact asymptotic distribution of
multilevel source polarization for erasure distributions. This
is the first instance of multilevel source polarization with
countably infinite levels, which is characterized by the structure
of distributive lattices.

A. Simple Instances of Theorem 2

In the following, we mention two examples of Theorem 2.
1) Modular Arithmetic Erasure Channels: As explained in

Remarks 1 and 2, the erasure distribution defined in Definition 2
can be reduced to the modular arithmetic erasure channel [13,
Definition 2], provided that G is a finite cyclic group. Since
every cyclic group is locally cyclic, Theorem 2 can also be
reduced to the authors’ previous results [13], [14], which is
described in a stationary setting.



2) Prüfer p-group: Let p ≥ 2 be a prime number. The Prüfer
p-group G can be defined by the Sylow p-subgroup of Q/Z
up to isomorphism, i.e., G ' {m/pn +Z | m ∈ Z and n ∈ Z≥0}.
It is known that H C K or K C H for any H,K C G, provided
that G is the Prüfer p-group. Thus, Corollary 2 can simplify
Theorem 2 without Algorithm 1.

Corollary 2. Suppose that G is the Prüfer p-group. For any
δ > 0 and finite N C G, and Q(·) as in (39), it holds that

lim
n→∞

lim
m→∞

1
m 2n

���{1 ≤ i ≤ m 2n : H(i)n [N] < δ,��H(i)n − log |N |
�� < δ

}��� = Q(N). (61)

Therefore, the source polarization for erasure distributions
can be simply characterized by the initial condition (39) without
any other compulation method like Algorithm 1, provided that
G is the Prüfer p-group. This gives a simple and concrete
instance of countably infinite polarization levels.

B. Future Works
We have shown a possibility of multilevel polarization

phenomena over infinite alphabets. Multilevel polarization
analysis for more general source distributions than erasure
distributions is an open problem; and inventing practical
encoding/decoding schemes with the infinite polarization levels
is also of interest in the study of source coding over an infinite
source alphabet.
While Theorem 2 can be reduced to the authors’ previous

results [13], [14] as discussed in Section V-A1, it cannot
be reduced to Nasser–Telatar’s case study [10, Section VIII],
because an elementary abelian group is not locally cyclic in
general (cf. Remarks 1 and 2). Generalizing Theorem 2 from
locally cyclic to abelian, or not necessarily abelian, groups is
highly of interest in terms of the MAC polarization [10], [11].
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Appendix A
Brief Introduction to Lattice Theory

Definition 3 (partially ordered sets; posets). For a binary
relation ≤ on a nonempty set L, the system (L, ≤) is called a
poset if it satisfies the following three properties: (i) a ≤ a;
(ii) a ≤ b and b ≤ a imply that a = b; and (iii) a ≤ b and
b ≤ c imply that a ≤ c, for all a, b, c ∈ L.

Let (L, ≤) be a poset. As a strict relation, the binary relation
a < b is a shorthand for a ≤ b and a , b.

Definition 4 (predecessors and followers). For two elements
a, b ∈ L of a poset (L, ≤), we say that b covers a, or a is
covered by b, if a < b and there is no x ∈ L such that
a < x < b. This relation is denoted by a ≺ b.

For each a, b ∈ L, an upper bound of a and b is an element
u ∈ L satisfying a ≤ u and b ≤ u; and a least upper bound
s of a and b is an upper bound of a and b satisfying s ≤ u
for every upper bound u of a and b. If a least upper bound
s of a and b exists, then it is unique; and thus, it can be
denoted by a ∨ b B s, provided that it exists. Analogously, for
each a, b ∈ L, a lower bound of a and b is an element l ∈ L
satisfying l ≤ a and l ≤ b; and a greatest lower bound i of a
and b is an upper bound of a and b satisfying l ≤ i for every
lower bound i of a and b. If a greatest lower bound i of a
and b exists, then it is unique; and thus, it can be denoted by
a ∧ b B i, provided that it exists.

Definition 5 (lattices). A poset (L, ≤) is called a lattice if every
two elements a, b ∈ L have the least upper bound a ∨ b and
the greatest lower bound a ∧ b.

Given a lattice (L, ≤), the binary operations ∨ and ∧ are
called a join and a meet, respectively, and the lattice is
sometimes denoted by (L,∨,∧, ≤). These binary operations
∨ and ∧ satisfy the following identities:

Lemma 7 ([30, Lemma 1 in page 8]). Let (L, ≤) be a lattice.
For every a, b, c ∈ L, it holds that
(i) a ∨ b = b ∨ a and a ∧ b = b ∧ a;
(ii) a∨ (b∨ c) = (a∨ b) ∨ c and a∧ (b∧ c) = (a∧ b) ∧ c; and
(iii) a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

We now give the notion of modularity as follows:

Definition 6 (modular lattices; [30, Section 7 of Chapter I]).
A lattice (L, ≤) is said to be modular if a ≤ c implies that
a ∨ (b ∧ c) = (a ∨ b) ∧ c for every a, b, c ∈ L.

We readily see that Definition 6 is equivalent to the following
two identities:

[(x ∧ y) ∨ z] ∧ y = (x ∧ y) ∨ (z ∧ y), (62)
[(x ∨ y) ∧ z] ∨ y = (x ∨ y) ∧ (z ∨ y). (63)

We next give the notion of distributivity as follows:

Definition 7 (distributive lattices; [30, Section 6 of Chapter I]).
A lattice (L, ≤) is said to be distributive if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), (64)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (65)

for every a, b, c ∈ L.

Note that every distributive lattice is modular, but there is a
modular lattice which is not distributive. Finally, we give the
following lemma under the distributivity.

Lemma 8. Let (L, ≤) be a distributive lattice, and let a, b ∈ L
be chosen so that a ≤ b. Then, it holds that

j ∧ a = j ∧ b and k ∧ a = k ∧ b (66)

if and only if

( j ∨ k) ∧ a = ( j ∨ k) ∧ b, (67)



for every j, k ∈ L.

Proof of Lemma 8:
1) If part ⇐: We readily see that

j ∧ a = [( j ∨ k) ∧ j] ∧ a

= [( j ∨ k) ∧ a] ∧ j

= [( j ∨ k) ∧ b] ∧ j

= [( j ∨ k) ∧ j] ∧ b

= j ∧ b. (68)

The identity k ∧ a = k ∧ b can be shown similarly; and these
imply the sufficiency, as desired.

2) Only if part ⇒: We readily see that

( j ∨ k) ∧ a = ( j ∧ a) ∨ (k ∧ a)
= ( j ∧ b) ∨ (k ∧ b)
= ( j ∨ k) ∧ b, (69)

which implies the necessity, as desired.
While Lemma 8 is elementary, this lemma is important in

proving Theorem 2. Note that Lemma 8 does not hold, provided
that a lattice (L, ≤) is modular but not distributive.

Appendix B
Proof of Lemma 4

Let a, b ∈ L be chosen so that a < b, and let i ∈ L be
an arbitrary element. Since a ∧ b = a < b = a ∨ b, note that
i ∨ a ≤ i ∨ b and i ∧ a ≤ i ∧ b. If i ∨ a = i ∨ b, then

a = (i ∧ a) ∨ a

≤ (i ∧ b) ∨ a
(a)
= (i ∨ a) ∧ b

= (i ∨ b) ∧ b

= b, (70)

where (a) follows by the modularity (see Definition 6). As
a < b, this implies that i ∧ a , i ∧ b; and therefore, since
i ∧ a ≤ i ∧ b, it follows that i ∧ a < i ∧ b if i ∨ a = i ∨ b.
Similarly, it can be dually verified that i∨a < i∨b if i∧a = i∧b.
Therefore, we have

{ j ∈ L | j ∨ a = j ∨ b} ∩ {k ∈ L | k ∧ a = k ∧ b} = ∅. (71)

On the other hand, if i ∨ a < i ∨ b and i ∧ a < i ∧ b, then it
holds that a < (i ∧ b) ∨ a < b, which implies the existence of
x ∈ L satisfying a < x < b.
We first consider the case where there is no x ∈ L satisfying

a < x < b, i.e., suppose that a ≺ b. Then, the set M(a, b)
defined in (49) is empty, and we observe that

{{ j ∈ L | j ∨ a = j ∨ b}, {k ∈ L | k ∧ a = k ∧ b}} (72)

forms a partition of L. Therefore, since ε(i)n is a probability
vector for each n ≥ 0 and i ≥ 1, it follows from (46)–(48) that
Lemma 4 holds, provided that a ≺ b.
We next consider the case where there is at least one x ∈

L such that a ≺ x ≺ b. Then, the set M(a, b) defined in

(49) is nonempty. Moreover, it follows by the modularity of
Definition 6 that a ≺ y ≺ b for every y ∈ M(a, b). Hence,
we observe that neither c1 ≤ c2 nor c2 ≤ c1 for every distinct
c1, c2 ∈ M(a, b). If i∨a = i∨b, then it is clear that i∨c = i∨b
for every c ∈ M(a, b); and it follows that

a = (i ∧ a) ∨ a

≤ (i ∧ c) ∨ a

= (i ∨ a) ∧ c

= (i ∨ c) ∧ c

= c (73)

for every c ∈ M(a, b), which implies that i ∧ a < i ∧ c for
every c ∈ M(a, b). Similarly, if i ∧ a = i ∧ b, then it can be
dually verified that i ∨ c < i ∨ b and i ∧ c = i ∧ a for every
c ∈ M(a, b). Now, suppose that i ∨ a < i ∨ b and i ∧ a < i ∧ b.
As shown in the two paragraphs back, there exists c ∈ M(a, b)
such that

a < c = (i ∧ b) ∨ a < b. (74)

For such an element c = (i ∧ b) ∨ a = (i ∨ a) ∧ b, it holds that

i ∧ c = i ∧ [(i ∧ b) ∨ a]
(a)
= (i ∧ b) ∨ (i ∧ a)
= i ∧ b (75)

and

i ∨ c = i ∨ [(i ∨ a) ∧ b]
(b)
= (i ∨ a) ∧ (i ∨ b)
= i ∨ a, (76)

where (a) and (b) follow from (62) and (63), respectively. For
each c ∈ M(a, b), define

S(c) B {x ∈ L | x ∨ a = x ∨ c and x ∧ b = x ∧ c}. (77)

We now prove by contradiction that S(c1) ∩ S(c2) = ∅ for every
distinct c1, c2 ∈ M(a, b). That is, suppose that there exists an
element d ∈ L satisfying d ∈ S(c1) ∩ S(c2). Then, we observe
that

c1
(a)
= c1 ∧ b
(b)
≤ (d ∨ c1) ∧ b
(c)
= (d ∨ c2) ∧ b
(d)
= (d ∧ b) ∨ c2
(e)
= (d ∧ c2) ∨ c2
(f)
= c2, (78)

where (a) follows from c1 ≺ b; (b) follows from c1 ≤ d∨c1; (c)
follows from d ∈ S(c1)∩ S(c2), i.e., d∨ c1 = d∨a = d∨ c2; (d)
follows from c2 ≤ b and the modular equality (6); (e) follows
from d ∈ S(c1) ∩ S(c2), i.e., d ∧ c1 = d ∧ b = d ∧ c2; and (f)
follows from the absorption law: (x∧ y)∨ y = y. This, however,



contradicts to c1 6≤ c2. Therefore, we have S(c1) ∩ S(c2) = ∅.
Concluding discussions of this paragraph, we observe that

∅ = { j ∈ L | j ∨ a = j ∨ b} ∩ {k ∈ L | k ∧ a = k ∧ b} (79)
= { j ∈ L | j ∨ a = j ∨ b} ∩ S(c) (80)
= {k ∈ L | k ∧ a = k ∧ b} ∩ S(c) (81)
= S(c1) ∩ S(c2) (82)

for every c ∈ M(a, b) and every distinct c1, c2 ∈ M(a, b); and⋃
c∈M(a,b)

S(c)

=
(
{ j ∈ L | j ∨ a = j ∨ b} ∪ {k ∈ L | k ∧ a = k ∧ b}

){
,

(83)

where A{ stands for the complement of a set A. Thus, we
have that

{{ j ∈ L | j ∨ a = j ∨ b}, {k ∈ L | k ∧ a = k ∧ b}}
∪ {S(c) | c ∈ M(a, b)} (84)

forms a partition of L. Therefore, since ε(i)n is a probability
vector for each n ≥ 0 and i ≥ 1, it follows from (46)–(48) that
Lemma 4 holds, provided that there exists an x ∈ L satisfying
a ≺ x ≺ b. This completes the proof of Lemma 4.

Appendix C
Proof of Lemma 5

By the duality between the join ∨ and the meet ∧, it suffices
to prove the identities of Lemma 5 only for the minus transforms
(44). Let a, b ∈ L be chosen so that a < b. A direct calculation
shows

β
(2i−1)
n

(a)
=

∑
j∈L:

j∧a=j∧b

ε
(2i−1)
n ( j)

(b)
=

∑
j∈L:

j∧a=j∧b

∑
k,l∈L:
k∨l=j

ε
(i)
n−1(k) ε

(i+2n−1)
n−1 (l)

=
∑
k,l∈L:
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ε
(i)
n−1(k) ε

(i+2n−1)
n−1 (l)

(c)
=

∑
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ε
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n−1(k)

∑
l∈L:

l∧a=l∧b

ε
(i+2n−1)
n−1 (l)

= β
(i)
n−1 β

(i+2n−1)
n−1 (85)

for every n ≥ 1 and i ≥ 1, where (a) follows from (48); (b)
follows from (44); and (c) follows from Lemma 8.

Suppose that there is at least one x ∈ L such that a ≺ x ≺ b,
i.e., b covers x and x covers a. For each c ∈ M(a, b), we have

χ
(2i−1)
n (c) (a)=

∑
j∈L:

j∨a=j∨c,
j∧b=j∧c

ε
(2i−1)
n ( j)
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+
∑
k,l∈L:

k∧c=k∧b,
l∧c=l∧b,
k∨c=k∨a,
l∨c=l∨a

ε
(i)
n−1(k) ε
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for every n ≥ 1 and i ≥ 1, where (a) follows from (47); (b)
follows from (44); (c) follows from the fact that j ∨ a = j ∨ b
implies j ∨ c = j ∨ a, as shown in the proof of Lemma 4; (d)
follows from Lemma 8; and (e) follows from the fact that (i)
k ∧ c = k ∧ b implies k ∨ a < k ∨ b and (ii) j ∧ c = j ∧ b and
j ∨ a < j ∨ b imply j ∨ c = j ∨ a, as shown in the proof of
Lemma 4.

Finally, we observe that
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where (a) follows from Lemma 4; (b) follows from (85); (c)
follows from (86); (d) follows from (55); and (e) follows from
Lemma 4. This completes the proof of Lemma 5.
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