
ar
X

iv
:1

90
1.

00
93

9v
4 

 [
cs

.I
T

] 
 1

 J
ul

 2
02

0
1

The Capacity Region of the Arbitrarily Varying

MAC: With and Without Constraints
Uzi Pereg and Yossef Steinberg

Department of Electrical Engineering, Technion, Haifa 32000, Israel.

Email: uzipereg@campus.technion.ac.il, ysteinbe@ee.technion.ac.il

Abstract

We determine both the random code capacity region and the deterministic code capacity region of the arbitrarily varying
multiple access channel (AVMAC) under input and state constraints. The underlying assumption is that zero-rate transmission can
be arbitrary in the deterministic setting as well, where there is no shared randomness. As opposed to the random code capacity
region, the deterministic code capacity region can be non convex. For the AVMAC without constraints, the characterization due
to Ahlswede and Cai is complete except for two cases, pointed out in the literature as an open problem. The missing piece is
obtained as a special case of our results.

Index Terms

Arbitrarily varying channel, multiple access, minimax, deterministic code, symmerizability, random code, input and state
constraints.

I. INTRODUCTION

The arbitrarily varying multiple access channel (AVMAC) without constraints was first considered by Jahn [33, 34], to

describe a communication network with unknown statistics, that may change over time. It is especially relevant to uplink

communication in the presence of an adversary, or a jammer, attempting to disrupt communication. Another scenario is that

one of multiple users becomes adversarial and attacks the other users [43, 44]. Jahn established the ‘divided-randomness capacity

region’ [33, 34], namely the capacity region achieved when each encoder shares randomness with the decoder independently,

and showed that the AVMAC inherits some of the properties of its single user counterpart. In particular, the divided-randomness

capacity region is not necessarily achievable using deterministic codes [8]. Furthermore, Jahn showed that the deterministic

code capacity region either coincides with the divided-randomness capacity region or else, it has an empty interior [33, 34].

This phenomenon is an analogue of Ahlswede’s dichotomy property [1]. Therefore, in order to calculate the deterministic code

capacity region, it is essential to confirm that the capacity region has a non empty interior, i.e. positive rates are achievable using

deterministic codes. Gubner [24] presented three computable conditions which are necessary for this to hold, and conjectured

that they are also sufficient. Then, Ahlswede and Cai [3] confirmed Gubner’s conjecture [24], implying that Gubner’s conditions

are both necessary and sufficient for a non empty capacity region. As Wiese and Boche recognized, the case where exactly

one of the users has zero capacity has remained an open problem [48, Remark 9], until now.

Furthermore, constraints are known to have a drastic effect on the behavior of the single user AVC [17], while the effect

on the AVMAC has never been established. Csiszár and Narayan [17] considered the single user AVC when input and state

constraints are imposed on the user and the jammer, respectively. Such constraints are often due to power limitations of the

transmitter and the jamming signal. Not only the constrained setting provokes serious technical difficulties analytically, but also,

as shown in [17], there is a significant effect on the behavior of the deterministic code capacity. Specifically, it is shown in [17]

that dichotomy in the notion of [1] no longer holds when state constraints are imposed on the jammer. That is, the deterministic

code capacity can be lower than the random code capacity, and yet non-zero. As for the AVMAC under constraints, Gubner and

Hughes [27] determined the divided-randomness capacity region. Results on the Gaussian AVMAC were recently presented in

a talk [31]. Solved examples can be found in [25, 26] as well.

Other relevant settings include the AVMAC with conferencing encoders [48, 47, 9], list codes [40, 9, 11], fading [45, 10],

and an eavesdropper [29, 5, 13]. Among the models of channel uncertainty are also the compound multiple access channel

[16, 38, 49, 51, 39] and the random parameter multiple access with side information [19, 12, 46, 36, 37]. After the publication

of this work, Sangwan et al. [43] considered a multiple access channel with three users, where one of the users is possibly

adversarial, yet the identity of the jamming user is not known in advance (see also [44]).

In this work, we consider the AVMAC when input and state constraints are imposed on the users and the jammer, respectively.

We give full characterization for both the random code capacity region and the deterministic code capacity region. The

underlying assumption is that zero-rate transmission can be arbitrary in the deterministic setting as well, where there is no

shared randomness. In particular, the encoder can simulate a random transmission, as long as there is no shared randomness
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between the parties. This assumption is generally considered to be natural for real-life communication systems (see e.g. remark

in [16, p. 282]), whereas shared randomness is often impractical [34, 6]. Nonetheless, the analysis without shared randomness

is a lot more challenging. When state constraints are imposed, the operational time sharing argument does not apply to the

AVMAC. Roughly speaking, using a code over a part of the blocklength effectively increases the state constraint and loosens

the restriction on the jammer over this period of time. Thus, it becomes essential to replace the operational time sharing

argument with coded time sharing [28]. Our decoder is then a coded time sharing variant of Ahlswede and Cai’s decoding

rule [3], while the time sharing sequence is deterministic and known to the jammer as well. Yet, a fundamental difference

between our coding scheme and the one in [3] arises from the dichotomy discrepancy, sinceAhlswede and Cai only showed

achievability of positive rates R1 = R2 = ε > 0, proving that the capacity region has a non-empty interior. However, for the

AVMAC under constraints, dichotomy does not apply and achievability of positive rates is insufficient. Hence, in our problem,

proving achievability is more demanding. Hereby, the codebooks construction and the analysis are based on generalization of

the techniques by Csiszár and Narayan [17], along with the insights of Ahlswede and Cai [3]. The converse proof involves

observations by Gubner [24] as well. As a special case, we obtain a full characterization of the capacity region of the AVMAC

without constraints, filling the gap left by Ahlswede and Cai [3].

II. DEFINITIONS AND PREVIOUS RESULTS

We use the following notation conventions throughout. Calligraphic letters X ,S,Y, ... are used for finite sets. Lowercase

letters x, s, y, . . . stand for constants and values of random variables, and uppercase letters X,S, Y, . . . stand for random

variables. The distribution of a random variable X is specified by a probability mass function (pmf) PX(x) = p(x) over a

finite set X . The set of all pmfs over X is denoted by P(X ). We use xj = (x1, x2, . . . , xj) to denote a sequence of letters

from X . A random sequence Xn and its distribution PXn(xn) are defined accordingly. The type P̂xn of a given sequence

xn is defined as the empirical distribution P̂xn(a) = N(a|xn)/n for a ∈ X , where N(a|xn) is the number of occurrences of

the symbol a in the sequence xn. A type class is denoted by T n(P̂ ) = {xn : P̂xn = P̂}. For a pair of integers i and j,
1 ≤ i ≤ j, we define the discrete interval [i : j] = {i, i+1, . . . , j}. In the continuous case, we use the cumulative distribution

function FZ(z) = Pr (Z ≤ z) for z ∈ R, or alternatively, the probability density function (pdf) fZ(z), when it exists.

A. Channel Description

A state-dependent discrete memoryless multiple access channel (MAC) (X1×X2×S,WY |X1,X2,S ,Y) consists of finite input

alphabets X1 and X2, state alphabet S, output alphabet Y , and a conditional pmf WY |X1,X2,S over Y . The channel is memoryless

without feedback, and therefore WY n|Xn
1 ,Xn

2 ,Sn(yn|xn1 , xn2 , sn) =
∏n

i=1WY |X1,X2,S(yi|x1,i, x2,i, si). The AVMAC is a MAC

with a state sequence of unknown distribution, not necessarily independent nor stationary. That is, Sn ∼ q(sn) with an

unknown joint pmf q(sn) over Sn. In particular, q(sn) could give mass 1 to some state sequence sn. The AVMAC is denoted

by A = {WY |X1,X2,S}.
The compound MAC is used as a tool in the analysis. Different models of compound MACs are described in the literature

[16, 38]. Here, the compound MAC is a channel with a discrete memoryless state, where the state distribution q(s) is not known

in exact, but rather belongs to a family of distributions Q, with Q ⊆ P(S). That is, the state sequence Sn is independent and

identically distributed (i.i.d.) according to q(s), for some pmf q ∈ Q. We note that this differs from the classical definition of

the compound channel, as in [16], where the state is fixed throughout the transmission. The compound MAC is denoted by

A Q.

B. Coding

We introduce some preliminary definitions, starting with the definitions of a deterministic code and a random code for the

AVMAC A under input and state constraints.

Definition 1 (Code). A (2nR1 , 2nR2 , n) code for the AVMAC A consists of the following; two message sets [1 : 2nR1 ]
and [1 : 2nR2 ], where 2nR1 and 2nR2 are assumed to be integers, two encoding functions f1 : [1 : 2nR1 ] → Xn

1 and

f2 : [1 : 2nR2 ]→ Xn
2 , and a decoding function g : Yn → [1 : 2nR1 ]× [1 : 2nR2 ].

Given a pair of messages m1 ∈ [1 : 2nR1 ] and m2 ∈ [1 : 2nR2 ], Encoder k transmits the codeword xnk = fk(mk), for

k = 1, 2. The decoder receives the channel output yn, and finds an estimate of the message pair (m̂1, m̂2) = g(yn). We denote

the code by C = (f1(·), f2(·), g(·)).
We proceed now to coding schemes when using stochastic-encoders stochastic-decoder pairs with common randomness. We

distinguish between two classes; random codes [48] and divided-randomness codes [34].

Definition 2 (Random code). A (2nR1 , 2nR2 , n) random code for the AVMAC A consists of a collection of (2nR1 , 2nR2 , n)
codes {Cγ = (f1,γ , f2,γ , gγ)}γ∈Γ, along with a probability distribution µ(γ) over the code collection Γ. We denote such a

code by C
Γ = (µ,Γ, {Cγ}γ∈Γ).

Definition 3 (Divided-randomness code). A (2nR1 , 2nR2 , n) divided-randomness code for the AVMAC A is a random code,

where the random element consists of two components, i.e. γ = (γ1, γ2), one at each encoder. The components are drawn
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according to a product distribution µ(γ1, γ2) = µ1(γ2)µ2(γ2) over Γ1×Γ2. Then, User 1 sends xn1 = f1,γ1(m1), User 2 sends

xn2 = f2,γ2(m2), and upon receiving the channel output yn, the receiver applies a decoding mapping gγ1,γ2 . We denote such

a code by C Γ1×Γ2 .

The general random code in Definition 2 can thus be thought of as a divided-randomness code where statistical dependence

between γ1 and γ2 is viable.

Remark 1. Our underlying assumption is that zero-rate transmission can be arbitrary in the deterministic setting as well, as

long as there is no shared randomness. In particular, if User 1 has zero capacity while User 2 transmits at a positive rate, then

Encoder 1 may transmit a random sequence at zero rate, i.e. xn1 = f1(σ) where σ ∈ [1 : 2nε] is a random parameter, which is

not known to the other encoder, the decoder, nor the jammer, and the decoder is not required to recover the value of σ. This

means that the encoders have access to nε random bits, where ε > 0 is arbitrarily small. Since the randomness is local, such

an assumption is generally considered to be reasonable (see e.g. remark in [16, p. 282]). On the other hand, in the codes in

Definitions 2 and 3, there is shared randomness between the encoders and the decoder, which is often impractical [34, 6].

One may also consider the AVMAC with stochastic encoders, i.e. when Encoder k transmits xnk = fk(mk, σk), for mk ∈
[1 : 2nRk ], k = 1, 2, where σ1 and σ2 the random parameters . Then, our results apply to the stochastic encoder capacity

region.

C. Input and State Constraints

Next, we consider input constraints and state constraint, imposed on the encoders and the jammer, respectively. We note

that the constraints specifications are known to both users and the jammer in this model. Let φk : Xk → [0,∞), k = 1, 2, and

l : S → [0,∞) be some given bounded functions, and define

φnk (x
n
k ) =

1

n

n∑

i=1

φk(xk,i) , k = 1, 2 , (1)

ln(sn) =
1

n

n∑

i=1

l(si) . (2)

Let Ω1 > 0, Ω2 > 0, and Λ > 0. Below, we specify the input constraints (Ω1,Ω2) and state constraint Λ, corresponding to

the functions φn1 (x
n
1 ), φ

n
2 (x

n
2 ), and ln(sn), respectively, for the AVMAC and the compound MAC.

Given input constraints (Ω1,Ω2), the encoding functions need to satisfy

φnk (fk(mk)) ≤ Ωk , for all mk ∈ [1 : 2nRk ] , k = 1, 2. (3)

That is, the inputs satisfy φn1 (X
n
1 ) ≤ Ω1 and φn2 (X

n
2 ) ≤ Ω2 with probability 1. Moving to the state constraint Λ, we have

different definitions for the AVMAC and for the compound MAC.

The compound MAC has a constraint on average, with a memoryless state such that Eql(S) ≤ Λ, while the AVMAC has

an almost-surely constraint, with a non-stationary state sequence such that ln(Sn) ≤ Λ with probability 1. Explicitly, we say

that a compound MAC A Q is under a state constraint Λ, if the set Q of state distributions is limited to Q ⊆ PΛ(S), where

PΛ(S) , {q(s) ∈ P(S) : Eq l(S) ≤ Λ} . (4)

As for the AVMAC A , it is now assumed that the joint distribution of the state sequence is limited to q(sn) ∈ PΛ(Sn), where

PΛ(Sn) , {q(sn) ∈ P(Sn) : q(sn) = 0 if ln(sn) > Λ } . (5)

This includes the case of a deterministic unknown state sequence, i.e. when q gives probablity 1 to a particular sn ∈ Sn with

ln(sn) ≤ Λ.

We may assume without loss of generality that 0 ≤ Ωk ≤ φk,max, k = 1, 2, and 0 ≤ Λ ≤ lmax, where φk,max =
maxxk∈Xk

φk(xk), k = 1, 2, and lmax = maxs∈S l(s). It is also assumed that for some a ∈ X1, b ∈ X2, and s0 ∈ S,

φ1(a) = φ2(b) = l(s0) = 0.

D. Capacity Region Under Constraints

We move to the definition of achievable rate pairs and the capacity region of the AVMAC A under input and state constraints.

Deterministic codes and random codes over the AVMAC A are defined as in Definition 1 and Definition 2, respectively, with

the additional constraint (3) on the codebook.

Define the conditional probability of error of a code C given a state sequence sn ∈ Sn by

P
(n)
e|sn(C ) ,

1

2n(R1+R2)

2nR1∑

m1=1

2nR2∑

m2=1

∑

yn:g(yn) 6=(m1,m2)

WY n|Xn
1 ,Xn

2 ,Sn(yn|f1(m1), f2(m2), s
n) . (6a)
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Now, define the average probability of error of C for some distribution q(sn) ∈ P(Sn),

P (n)
e (q,C ) ,

∑

sn∈Sn

q(sn) · P (n)
e|sn(C ) . (6b)

Definition 4 (Achievable rate pair and capacity region under constraints). A code C = (f1, f2, g) is a called a (2nR1 , 2nR2 , n, ε)
code for the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ, when (3) is satisfied and

P (n)
e (q,C ) ≤ ε , for all q ∈ PΛ(Sn) , (7)

or, equivalently, P
(n)
e|sn(C ) ≤ ε for all sn ∈ Sn with ln(sn) ≤ Λ.

We say that a rate pair (R1, R2) is achievable, under input constraints (Ω1,Ω2) and state constraint Λ, if for every ε > 0
and sufficiently large n, there exists a (2nR1 , 2nR2 , n, ε) code for the AVMAC A under input constraints (Ω1,Ω2) and state

constraint Λ. The operational capacity region is defined as the closure of the set of achievable rate pairs, and it is denoted by

C(A ). We use the term ‘capacity region’ referring to this operational meaning, and in some places we call it the deterministic

code capacity region in order to emphasize that achievability is measured with respect to deterministic codes.

Analogously to the deterministic case, a (2nR1 , 2nR2 , n, ε) random code C Γ = (µ,Γ, {Cγ}γ∈Γ) for the AVMAC A , under

input constraints (Ω1,Ω2) and state constraint Λ, satisfies the requirements
∑

γ∈Γ

µ(γ)φnk (f
n
k,γ(mk)) ≤ Ωk , for all mk ∈ [1 : 2nRk ] , k = 1, 2 , (8a)

and

P (n)
e (q,C Γ) ,

∑

γ∈Γ

µ(γ)P (n)
e (q,Cγ) ≤ ε , for all q ∈ PΛ(Sn) . (8b)

The capacity region achieved by random codes is then denoted by C⋆(A ), and it is referred to as the random code capacity

region. In addition, a (2nR1 , 2nR2 , n, ε) divided-randomness code C Γ1×Γ2 satisfies the requirements
∑

γk

µk(γk)φ
n
k (f

n
k,γk

(mk)) ≤ Ωk , for all mk ∈ [1 : 2nRk ] , k = 1, 2 , (9a)

and

P (n)
e (q,C Γ1×Γ2) ,

∑

γ1,γ2

µ1(γ1)µ2(γ2)P
(n)
e (q,Cγ1,γ2) ≤ ε , for all q ∈ PΛ(Sn) . (9b)

The capacity region achieved by divided-randomness codes is then denoted by C⋆⋆(A ), and it is referred to as the divided-

randomness capacity region.

Note that based on the definitions above,

C(A ) ⊆ C
⋆⋆(A ) ⊆ C

⋆(A ) . (10)

The definitions above are naturally extended to the compound MAC, under input constraints (Ω1,Ω2) and state constraint

Λ, by limiting the requirements (3), (7) and (8) to i.i.d. state distributions q ∈ Q. The respective deterministic code capacity

region, random code capacity region, and divided-randmoness capacity region C(A Q), C⋆(A Q) and C⋆⋆(A Q) are defined

accordingly.

E. Related Work

1) Without Constraints: In this subsection, we briefly review known results for the case where there are no constraints.

Denote the deterministic code capacity region and the divided-randomness capacity regions of the AVMAC free of constraints

by C(Afree) and C⋆⋆(Afree), respectively. We note that this is a special case of the AVMAC under constraints, with Ω1 ≥ φ1,max,

Ω2 ≥ φ2,max, and Λ ≥ lmax.

We cite the divided-randomness capacity theorem of the AVMAC free of constraints, due to Jahn [33]. Let

C
⋆⋆(Afree) =

⋃

PUPX1|UPX2|U





(R1, R2) : R1 ≤ minq(s|u) Iq(X1;Y |X2, U) ,
R2 ≤ minq(s|u) Iq(X2;Y |X1, U) ,

R1 +R2 ≤ minq(s|u) Iq(X1, X2;Y |U)



 , (11)

with (U,X1, X2, S) ∼ PU (u)PX1|U (x1|u)PX2|U (x2|u)q(s|u).
Theorem 1 (see [33, Theorem 1a]). The divided-randomness capacity region of an AVMAC, free of constraints, is given by

C
⋆⋆(Afree) = C

⋆⋆(Afree) . (12)
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Remark 2. Originally, the random code capacity region is expressed in [33, Theorem 1] as a closed convex hull of a union of

regions. Achievability of (11) is established through time sharing.

Now, we move to the deterministic code capacity region.

Theorem 2 (Ahlswede’s Dichotomy [33, 34]). The capacity region of an AVMAC, free of constraints, either coincides with the

divided-randomness capacity region or else, it has an empty interior. That is, C(Afree) = C⋆⋆(Afree) or else, int
(
C(Afree)

)
= ∅.

Necessary and sufficient conditions for the capacity region to have a non-empty interior were established by Gubner [24, 23]

and Ahlswede and Cai [3] in terms of the following definition.

Definition 5. [24, 23, 22] A state-dependent MAC WY |X1,X2,S is said to be

1) symmetrizable-X1 ×X2 if for some conditional distribution J(s|x1, x2),
∑

s∈S
WY |X1,X2,S(y|x1, x2, s)J(s|x̃1, x̃2) =

∑

s∈S
WY |X1,X2,S(y|x̃1, x̃2, s)J(s|x1, x2) ,

∀x1, x̃1 ∈ X1 , x2, x̃2 ∈ X2 , y ∈ Y . (13)

Equivalently, the channel W̃ (y|x1, x2, x̃1, x̃2) =
∑

s∈S WY |X,S(y|x1, x2, s)J(s|x̃1, x̃2) is symmetric with respect to (x1, x2)
and (x̃1, x̃2).

2) symmetrizable-X1|X2 if for some conditional distribution J1(s|x1),
∑

s∈S
WY |X1,X2,S(y|x1, x2, s)J1(s|x̃1) =

∑

s∈S
WY |X1,X2,S(y|x̃1, x2, s)J1(s|x1) , ∀x1, x̃1 ∈ X1 , x2 ∈ X2 , y ∈ Y . (14)

3) symmetrizable-X2|X1 if for some conditional distribution J2(s|x2),
∑

s∈S
WY |X1,X2,S(y|x1, x2, s)J2(s|x̃2) =

∑

s∈S
WY |X1,X2,S(y|x1, x̃2, s)J2(s|x2) , ∀x1 ∈ X1 , x2, x̃2 ∈ X2 , y ∈ Y . (15)

We say that the AVMAC A is symmetrizable-X1×X2 if the corresponding state-dependent MACWY |X1,X2,S is symmetrizable-

X1 ×X2, and similarly for symmetrizability -X1|X2 and symmetrizability-X2|X1 .

Example 1. [24] Consider an adder channel specified by Y = X1 +X2 + S, where X1 = X2 = {0, 1}. For S = {0, 1, 2}, the

AVMAC satisfies the conditions in Definition 5, as (13)-(15) hold with J(s|x1, x2) = δ(s− x1 − x2), J1(s|x1) = δ(s− x1),
J2(s|x2) = δ(s − x2), where δ(u) is the Kronecker delta function, i.e. δ(u) = 1 for u = 0, and δ(u) = 0 otherwise. On

the other hand, it is shown in [24] that for S = {0, 1}, the AVMAC is symmetrizable-X1|X2 and symmetrizable-X2|X1, but

non-symmetrizable-X1×X2.

Ahlswede and Cai [3] showed by example that it is also possible that an AVMAC satisfies the first condition in Definition 5

but does not satisfy the other two.

Example 2. [3] Consider a binary MAC, with X1 = X2 = S = Y = {0, 1}, specified by the following. For s = 0,

WY |X1,X2,S(·|0, 0, 0) =WY |X1,X2,S(·|1, 1, 0) = (1, 0) ,

WY |X1,X2,S(·|1, 0, 0) =WY |X1,X2,S(·|0, 1, 0) =
(
1

2
,
1

2

)
, (16)

and for s = 1,

WY |X1,X2,S(·|0, 0, 1) =WY |X1,X2,S(·|1, 1, 1) =
(
1

2
,
1

2

)
,

WY |X1,X2,S(·|1, 0, 1) =WY |X1,X2,S(·|0, 1, 1) = (0, 1) . (17)

Then it is shown in [3] that WY |X1,X2,S is symmetrizable-X1×X2, as (13) holds for J(s|x1, x2) = 1 for (x1 = x2, s = 0) or

(x1 6= x2, s = 1), and J(s|x1, x2) = 0 otherwise. On the other hand, plugging x2 = 0 in (14) yields J1(s|x1) = δ(s−x1), while

plugging x2 = 1 in (14) yields J1(s|x1) = δ(s− (1−x1)). This means that fixing x2, both marginals WY |X1,X2,S(·|·, 0, ·) and

WY |X1,X2,S(·|·, 1, ·) of User 1 are symmetrizable in the single-user sense, i.e. as in [17, Definition 2]. However, the AVMAC

is not symmetrizable-X1|X2, because there is no J1(s|x1) which symmetrizes both marginals at the same time. In a similar

manner, (15) implies a contradiction as well. Therefore, the AVMAC is symmetrizable-X1×X2, but non-symmetrizable-X2|X1

and non-symmetrizable-X1|X2.

Intuitively, symmetrizability-X1 ×X2 identifies a poor channel, where the jammer can impinge the communication scheme

by randomizing the state sequence Sn according to Jn(sn|x̃n1 , x̃n2 ) =
∏n

i=1 J(si|x̃1,i, x̃2,i), for some codewords x̃n1 and x̃n2
in the codebooks of User 1 and User 2, respectively. Suppose that the transmitted codewords are xn1 and xn2 . The codewords

x̃n1 and x̃n2 can be thought of as impostors transmitted by the jammer. Now, since the “average channel” W̃ is symmetric

with respect to (xn1 , x
n
2 ) and (x̃n1 , x̃

n
2 ), the codeword pairs appear to the receiver as equally likely. Similarly, if the AVMAC is
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symmetrizable-X1|X2, then the decoder confuses between (xn1 , x
n
2 ) and (x̃n1 , x

n
2 ), and if the AVMAC is symmetrizable-X2|X1,

then the decoder confuses between (xn1 , x
n
2 ) and (xn1 , x̃

n
2 ), where x̃1 and x̃2 are the codewords chosen by the jammer. Indeed,

by [24], if one of the conditions in Definition 5 holds, then the capacity region of the AVMAC free of constraints has an empty

interior. This means that the capacity region C(Afree) is either an interval or {(0, 0)}, i.e. one of the users or both have zero

capacity.

Ahlswede and Cai [3] proved that the three types of non-symmetrizability are not only a necessary condition for a non-empty

capacity region, but they are sufficient conditions as well. This yields the following theorem.

Theorem 3 (see [24, 23][3, Theorem 1]). An AVMAC free of constraints has a capacity region with a non-empty interior, i.e.

int
(
C(Afree)

)
6= ∅, if and only if it is non-symmetrizable-X1×X2, non-symmetrizable-X1|X2, and non-symmetrizable-X2|X1.

The following theorem combines the results by Gubner [24, 23] and Ahlswede and Cai [3]. This statement was also given

by Boche and Wiese [48, 47], who considered the AVMAC with conferencing encoders.

Theorem 4 (see [48, Theorem 8]). There are four scenarios for the capacity region of the AVMAC free of constraints:

a) If WY |X1,X2,S is not symmetrizable-X1 ×X2, -X1|X2, nor -X2|X1, then

C(Afree) = C
⋆⋆(Afree) . (18)

b) If WY |X1,X2,S is not symmetrizable-X1 ×X2 nor -X2|X1, but symmetrizable-X1|X2, then

C(Afree) ⊆
{
(0, R2) : R2 ≤ min

q(s)
max

PX1PX2

Iq(X2;Y |X1)

}
. (19)

c) If WY |X1,X2,S is not symmetrizable-X1 ×X2 nor -X1|X2, but symmetrizable-X2|X1, then

C(Afree) ⊆
{
(R1, 0) : R1 ≤ min

q(s)
max

PX1PX2

Iq(X1;Y |X2)

}
. (20)

d) In all other cases,

C(Afree) = {(0, 0)} . (21)

Remark 3. Observe that in Case b) and Case c) of Theorem 4, the characterization is incomplete. As pointed out by Wiese

and Boche, this has remained an open problem for nearly 20 years [48, Remark 9] (see also [47, Remark 5.6]). At first glance,

it may appear as if achievability in Cases b) and c) immediately follows from the capacity theorem of the single user AVC

[17]. Consider Case c), and denote the channel from X1 to Y , for a fixed x2 ∈ X2, by W
(x2)
Y |X1,S

= WY |X1,X2,S(·|·, x2, ·).
Then, based on the results by Csiszár and Narayan for the single user AVC [17], if W

(x2)
Y |X1,S

is non-symmmetrizable-X1 for

some x2 ∈ X2, then the capacity of User 1 is positive. Furthermore, if W
(x2)
Y |X1,S

is non-symmetrizable for all x2 ∈ X2, then

User 1 can achieve every rate R1 < minq(s) maxPX1PX2
Iq(X1;Y |X2). However, in Case c), knowing that the AVMAC is

non-symmetrizable-X1|X2 does not guarantee that W
(x2)
Y |X1,S

is non-symmetrizable for all x2 ∈ X2. Actually, it only guarantees

that the channels W
(x2)
Y |X1,S

, x2 ∈ X2, are not all symmetrized by a single J1(s|x1) (see Example 2). Therefore, it is not

immediately clear whether the conditions in Cases b) and c) are sufficient for achievability. We are going to fill this gap and

show that (19) and (20) hold with equality.

Remark 4. The dichotomy property in Theorem 2 was proved using Ahlswede’s Elimination Technique [1], where the encoder

transmits the random elements γ1 and γ2 over a negligible portion of the blocklength. The Elimination Technique only works

without state constraints [17], since positive capacity under a state constraint does not guarantee reliable transmission over a

fraction of the blocklength. Moreover, as Csiszár and Narayan demonstrated in the single user setting, the dichotomy property

does not hold when state constraints are imposed on the jammer. That is, the deterministic code capacity can be lower than

the capacity with shared randomness, even if positive rates are achievable with deterministic codes. This demonstrates the

significant effect that constraints have on the behavior of the deterministic code capacity of arbitrarily varying channels.

2) Divided-Randomness Capacity Region: Gubner and Hughes [27] considered the AVMAC under input and state constraints,

and determined the divided-randomness capacity region, i.e. assuming each encoder shares an independent random element

with the decoder. Their result is given below. Define

C
⋆⋆(A ) =

⋃

PUPX1|UPX2|U :

Eφk(Xk)≤Ωk , k=1,2 .





(R1, R2) : R1 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1;Y |X2, U) ,

R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X2;Y |X1, U) ,

R1 +R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1, X2;Y |U)




, (22)

with (U,X1, X2, S) ∼ PU (u)PX1|U (x1|u)PX2|U (x2|u)q(s|u). It is shown in [27] that the region above is not necessarily

convex. In Remark 7, we discuss the interpretation of this property and the connection to the statistical independence between

the variables S and U above.
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Theorem 5 (see [27]). The divided-randomness capacity region of the AVMAC under input constraints (Ω1,Ω2) and state

constraint Λ is given by

C
⋆⋆(A ) = C

⋆⋆(A ) . (23)

In the next sections, we determine both the random code capacity region and the deterministic code capacity region.

III. MAIN RESULTS – RANDOM CODE CAPACITY REGION

In this section, we establish the random code capacity region of the AVMAC under input and state constraints. To this end,

we first give an auxiliary result on the compound MAC.

A. The Compound MAC

We begin with the capacity theorem for the compound MAC A Q under input constraints (Ω1,Ω2) and state constraint Λ.

This is an auxiliary result, obtained by a simple extension of related work (see [38]). Let

C(A Q) =
⋃

PUPX1|UPX2|U :

Eφk(Xk)≤Ωk , k=1,2 .





(R1, R2) : R1 ≤ infq∈Q Iq(X1;Y |X2, U) ,
R2 ≤ infq∈Q Iq(X2;Y |X1, U) ,

R1 +R2 ≤ infq∈Q Iq(X1, X2;Y |U)



 . (24)

with (U,X1, X2, S) ∼ PU (u)PX1|U (x1|u)PX2|U (x2|u)q(s).
Lemma 6. The capacity region of the compound MAC A

Q is given by

C(A Q) = C(A Q) , (25)

and it is identical to the divided-randomness capacity region and the random code capacity region, i.e. C⋆(A Q) = C⋆⋆(A Q) =
C(A Q).

The proof of Lemma 6 is given in Appendix A.

Remark 5. Regardless of the statement in Lemma 6, the capacity region of the compound MAC must be convex, due to the

operational time sharing argument. That is, if (R1,u, R2,u), u ∈ U , are achievable rate pairs, then any convex combination
(
∑

u∈U
θuR1,u,

∑

u∈U
θuR2,u

)
(26)

is achievable, for θu ≥ 0,
∑

u∈U θu = 1. To achieve this rate pair, one can employ a sequence of consecutive codes that achieve

(R1,u, R2,u), such that θu is the fraction of the corresponding code length from the total blocklength (see [14, Section 15.3.3]).

In the classical setting, the random variable U is referred to as the time sharing variable, since PU (u) can be interpreted as

the coefficient θu in the convex combination. We explain below why this interpretation is lacking in the case of the compound

MAC. Furthermore, we will see that operational time sharing is impossible for the AVMAC, yet the convexity of C(A Q) will

play a role (see the remarks below Theorem 7).

For the classical MAC, achievability of the capacity region can be established by first considering independent inputs

(X1, X2) ∼ PX1(x1)PX2 (x2), and then generalizing to PU (u)PX1|U (x1|u)PX2|U (x2|u) through the operational time sharing

argument. However, for the compound MAC, a straightforward application of the operational time sharing argument is

insufficient, because

inf
q∈Q

Iq(X1, X2;Y |U) ≥
∑

u∈U
p(u) · inf

q∈Q
Iq(X1, X2;Y |U = u) , (27)

in general, and similarly for Iq(X1;Y |X2, U) and Iq(X2;Y |X1, U). Hence, achievability of the convex combination in the

RHS of (27) does not immediately imply achievability of the LHS.

We deduce that the external variable U may not represent the operational time sharing strategy as in the classical sense.

Nevertheless, we associate U with coded time sharing [28] [21, Section 4.5.3]. Specifically, to prove Lemma 6, we use a coded

time sharing scheme, where a time sharing sequence Un is generated, and then a single codebook is selected accordingly.
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B. The AVMAC

We determine the random code capacity region of the AVMAC under input constraints (Ω1,Ω2) and state constraint Λ.

As opposed to Theorem 5 by [27], considering divided-randomness coding, we address the case where the three parties, two

encoders and decoder, share randomness together. The random code derivation is based on our result on the compound MAC

and a simple extension of Ahlswede’s RT.

Define C
⋆(A ) , C(A Q)

∣∣
Q=PΛ(S)

, i.e.

C
⋆(A ) =

⋃

PUPX1|UPX2|U :

Eφk(Xk)≤Ωk , k=1,2 .





(R1, R2) : R1 ≤ min
q(s) : Eql(S)≤Λ

Iq(X1;Y |X2, U) ,

R2 ≤ min
q(s) : Eql(S)≤Λ

Iq(X2;Y |X1, U) ,

R1 +R2 ≤ min
q(s) : Eql(S)≤Λ

Iq(X1, X2;Y |U)




. (28)

with (U,X1, X2, S) ∼ PU (u)PX1|U (x1|u)PX2|U (x2|u)q(s). Notice the resemblance between the random code capacity region

formula (28) and the divided-randomness capacity region formula (22), as the only difference between the formulas is that the

state S and the “time-sharing” variable U are statistically independent in the random code case, while S and U are dependent

in the divided-randomness case. An intuitive interpretation is given in the remark.

Theorem 7. The random code capacity region of the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ is

given by

C
⋆(A ) = C

⋆(A ) . (29)

The proof of Theorem 7 is given in Appendix B. The proof is based on the aforementioned result on the compound MAC

and an extension of Ahlswede’s Robustification Technique [2]. Essentially, we use a reliable code for the compound MAC to

construct a random code for the AVMAC by applying random permutations to each codeword symbols.

Remark 6. As opposed to the compound channel, the operational time sharing argument is not eligible for the AVC under a

state constraint, even in the single user case, as we explain below. Suppose that two codebooks are used in time sharing, one

of rate R′ and length θn, and one of rate R′′ and length (1 − θ)n, for 0 < θ < 1, where R′ and R′′ are both achievable for

the AVC under a state constraint Λ. Due to the state constraint, it is guaranteed that
∑n

i=1 l(Si) ≤ nΛ with probability 1.

However, the jammer is entitled to concentrate the jamming power on the first θn symbols, in which case,
∑θn

i=1 l(Si) = nΛ.

If the jammer does so, then the first code, of rate R′ and length θn, needs to be robust against a state sequence Sθn with the

following cost,

1

θn

θn∑

i=1

l(Si) =
Λ

θ
> Λ a.s. (30)

Therefore, in order to achieve the rate R = θR′ + (1 − θ)R′′ with operational time sharing, the first coding rate R′ needs

to be achievable for an AVC under a state constraint Λ/θ, and the second coding rate R′′ needs to be achievable for a state

constraint Λ/(1− θ), which is not guaranteed. Hence, operational time sharing is not eligible for neither the single user AVC,

nor the AVMAC (see also [27]).

Nevertheless, we observe that using the proof technique in Appendix B, one can devise a reliable coding scheme with

“shuffled time sharing”. That is, instead of using the codes of rates R′ and R′′ above consecutively, random interleaving of the

codes can be realized. Intuitively, the users are thus able to carry out a time sharing protocol of which the jammer is oblivious,

which explains the statistical independence between the state S and the time sharing variable U in (28).

Remark 7. As mentioned above, the difference between the formulas given for the random code capacity region and for the

divided-randomness capacity region is the statistical independence between the state and the time sharing variable. Now, we

discuss the implications in terms of the convexity of the regions.

By Theorem 7 and Lemma 6, we have that the random code capacity region of the AVMAC under input and state constraints

is the same as that of the compound MAC with Q = PΛ(S). As a consequence, we have that the random code capacity region

of the AVMAC is convex. It can also be verified directly that the set in the RHS of (28) is convex, as (U, S) ∼ PU (u)q(s).
On the other hand, Gubner and Hughes [27] demonstrated that the divided-randomness capacity region given by (22) is

not necessarily convex, as (U, S) ∼ PU (u)q(s|u) (see Section IV in [27]). In their setting, the encoders have statistically

independent random elements γ1 and γ2 (see Definition 3). Gubner and Hughes attribute the non-convexity to the preclusion

of operational time sharing [27]. It is further mentioned in [27] that there are other instances of non-convex capacity regions

in the literature, such as the asynchronous MAC [32, 42], where the users’ timeframes do not synchronize hence time sharing

does not work either. We observe that the “shuffled time sharing” mentioned in the previous remark could only work if the

shared randomness element is exploited for the coordination between the users. Whereas, in a scenario where the random

elements are independent, as in [27], such coordination is impossible.

In our setting, the random elements are not independent, as γ1 = γ2 = γ (cf. Definition 2 and Definition 3). In the remark

that follows Definition 2 in [27], it is stated without proof that removing the restriction of independence could result in a



9

strictly larger capacity region. Indeed, our result above that C⋆(A ) is convex implies that for the erasure AVMAC in [27,

Section IV], our random code capacity region C
⋆(A ) must be strictly larger than the non-convex divided-randomness capacity

region. Therefore, we have now validated the assertion by Gubner and Hughes [27]. Comparing (22) and (28), we infer that the

conditioning of the state distribution on U may lead to a strictly smaller region. Intuitively, knowing the time sharing protocol

helps the jammer reduce the coding rates for such a channel.

IV. MAIN RESULTS – DETERMINISTIC CODE CAPACITY REGION

The principal result of this paper is the deterministic code capacity theorem, i.e. without shared randomness. The deterministic

code derivation is independent of our previous results, and the analysis modifies the techniques of Csiszár and Narayan [17],

and merges their ideas with those of Ahlswede and Cai [3].

Before we state the capacity theorem, we give the following definitions. Given an input distribution PX1,X2 ∈ P(X1×X2),
consider the average state costs below,

Ψ(PX1,X2) = min
symm. J

∑

xk∈Xk
k=1,2

∑

s∈S
PX1,X2(x1, x2)J(s|x1, x2)l(s) , (31a)

Ψ1(PX1) = min
symm. J1

∑

x1∈X1

∑

s∈S
PX1 (x1)J1(s|x1)l(s) , (31b)

Ψ2(PX2) = min
symm. J2

∑

x2∈X2

∑

s∈S
PX2 (x2)J2(s|x2)l(s) , (31c)

where the minimizations are over J(s|x1, x2), J1(s|x1), and J2(s|x2), which satisfy the symmetrizing conditions in (13),

(14), and (15), respectively. We use the convention that a minimum over an empty set is +∞. Then, for every PU,X1,X2 ∈
P(U × X1 ×X2), define

Λ̃(PU,X1,X2) =
∑

u∈U
PU (u)Ψ(PX1,X2|U=u) , (32a)

Λ̃1(PU,X1) =
∑

u∈U
PU (u)Ψ1(PX1|U=u) , (32b)

Λ̃2(PU,X2) =
∑

u∈U
PU (u)Ψ(PX1,X2|U=u) . (32c)

Intuitively, min{Λ̃(PU,X1,X2), Λ̃1(PU,X1 ), Λ̃2(PU,X2 )} is the minimal average state cost which the jammer has to pay to

symmetrize the channel, for a given inputs distribution PX1,X2|U , where symmetrizing refers to using a conditional distribution

that satisfies either one of the symmetrizability conditions in Definition 5. If this minimal state cost violates the state constraint

Λ, then the jammer is prohibited from symmetrizing the channel.

Remark 8. The minimal average state cost can be expressed more explicitly as

Λ̃(PU,X1,X2) = min
symm. {Ju}

∑

u,x1,x2,s

PU (u)PX1,X2|U (x1, x2|u)Ju(s|x1, x2)l(s) , (33)

with minimization over a set of distribution {Ju}u∈U , where each distribution Ju(s|x1, x2) symmetrizes-X1×X2 the AVMAC.

Notice that the state distributions are indexed by the time sharing variable. This has the interpretation of a jamming scheme

that varies over time in accordance with the time sharing sequence chosen by the users.

We have defined Λ̃(PU,X1,X2), Λ̃1(PU,X1 ) and Λ̃2(PU,X2 ) in (32) as the minimal average state costs which the jammer has

to pay to symmetrize the channel, for a given input distribution PU,X1,X2 . Intuitively, the users are interested in restricting the

jammer by increasing those costs as much as possible, hence the following quantities represent the best thresholds the users

can obtain,

L∗ , max
PU,X1,X2 : Eφk(Xk)≤Ωk, k=1,2

Λ̃(PU,X1,X2) , (34)

L∗
1 , max

PU,X1 : Eφ1(X1)≤Ω1

Λ̃1(PU,X1 ) , (35)

L∗
2 , max

PU,X2 : Eφ2(X2)≤Ω2

Λ̃2(PU,X2 ) , (36)

We note that L∗, L∗
1 and L∗

2 depend on the input constraints (Ω1,Ω2), the MAC WY |X1,X2,S , and the state cost function

l : S → [0,∞), but they do not depend on the state constraint Λ.

Definition 6. Define the rate region C(A ) as follows.
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a) If L∗ > Λ, L∗
1 > Λ, and L∗

2 > Λ, then

C(A ) =
⋃

PΩ1,Ω2,Λ(U×X1×X2)





(R1, R2) : R1 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1;Y |X2, U) ,

R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X2;Y |X1, U) ,

R1 +R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1, X2;Y |U)




, (37a)

where

PΩ1,Ω2,Λ(U × X1 ×X2) = {PUPX1|UPX2|U : Eφk(Xk) ≤ Ωk , k = 1, 2 , and

min{Λ̃(PU,X1,X2), Λ̃1(PU,X1), Λ̃2(PU,X2)} ≥ Λ} . (37b)

b) If L∗ > Λ, L∗
2 > Λ, but L∗

1 ≤ Λ, then

C(A ) = {(0, R2) : R2 ≤ min
q(s) : Eql(S)≤Λ

max
PX1PX2 : Eφk(Xk)≤Ωk , k=1,2 ,

min{Λ̃(PX1PX2 ),Λ̃2(PX2 )}≥Λ

Iq(X2;Y |X1)} . (37c)

c) If L∗ > Λ, L∗
1 > Λ, but L∗

2 ≤ Λ, then

C(A ) = {(R1, 0) : R1 ≤ min
q(s) : Eql(S)≤Λ

max
PX1PX2 : Eφk(Xk)≤Ωk , k=1,2 ,

min{Λ̃(PX1PX2 ),Λ̃1(PX1 )}≥Λ

Iq(X1;Y |X2)} . (37d)

d) Otherwise, if L∗ ≤ Λ, or if both L∗
1 ≤ Λ and L∗

2 ≤ Λ, then

C(A ) = {(0, 0)} . (37e)

Remark 9. Observe that the optimization set of the input distribution PUPX1|UPX2|U in (37) is a subset of the corresponding set

in (22), for the divided-randomness capacity region, hence C(A ) ⊆ C
⋆⋆(A ). Furthermore, if the AVMAC is non-symmetrizable

in the sense of neither X1 ×X2, X1|X2, nor X2|X1, then Λ̃(PU,X1,X2) = Λ̃1(PU,X1 ) = Λ̃2(PU,X2 ) = +∞, in which case we

have that C(A ) = C
⋆⋆(A ).

Theorem 8. Assume that L∗ 6= Λ, L∗
1 6= Λ and L∗

2 6= Λ. Then, the capacity region of the AVMAC A under input constraints

(Ω1,Ω2) and state constraint Λ is given by

C(A ) = C(A ) . (38)

Furthermore, if A is non-symmetrizable-X1×X2, non-symmetrizable-X1|X2, and non-symmetrizable-X2|X1, then the capacity

region coincides with the divided-randomness capacity region, i.e. C(A ) = C⋆⋆(A ) = C
⋆⋆(A ).

The proof of Theorem 8 is given in Appendix E. The second part of the theorem follows from Remark 9 and (38). The proof

does not use our results on the random code capacity region of the AVMAC and on the compound MAC, and it is independent

of the divided-randomness analysis by Gubner and Hughes [27]. The analysis, however, makes use of the properties established

for the decoding rule and codebooks specified below, in Subsections IV-A and IV-B. As mentioned, coded time sharing is

an essential replacement for the classical operational time sharing argument, which cannot be applied to the AVMAC under

constraints (see Remark 6). Hence, our analysis combines our coded time sharing variant of the decoder by Ahlswede and Cai

[3], with our generalization of the codebook generated by Csiszár and Narayan [17]. The converse proof further uses Gubner’s

observations in [24].

Remark 10. As explained in Remark 3 for the AVMAC without constraints, the case where one of the users has zero capacity

does not immediately follow from the results on the single user AVC. The reason behind this is that Gubner’s second and

third conditions are stronger than single-user symmetrizability, as defined in [17, Definition 2]. In particular, if the AVMAC

is symmetrized-X1|X2 by J1(s|x1), then the marginal AVC WY |X1,S is also symmetrized by J1(s|x1), but the other direction

is not true. In the constrained setting, this means that the minimal state cost Λ̃1(PX1) for symmetrizability-X1|X2 can be

higher than the minimal state cost Λ̃0(PX1 ) in [17, Equation (2.13)], for symmetrizability of the marginal AVC WY |X1,S .

In Example 2, we have seen that the AVMAC is non-symmetrizable-X1|X2, even though the marginal WY |X1,S could be

symmetrizable, in which case, Λ̃1(PX1) = +∞ but Λ̃0(PX1) ≤ lmax < ∞. Therefore, even if L∗
1 > Λ, it is not guaranteed

that User 1 can achieve a positive rate.

Remark 11. The boundary case where either L∗ = Λ or L∗
k = Λ, k = 1, 2, remains unsolved. Even in the single user setting,

say X2 = ∅, the case of L∗
1 = Λ is an open problem (see [17]), although it is conjectured in [17] that the capacity is zero

in this case. Similarly, we conjecture that the capacity region is C(A ) = C(A ) for all values of L∗, L∗
1 and L∗

2. There are

special cases where we can prove that this holds, given in the corollary below. The corollary generalizes the remark following

Theorem 3 in [17].
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Corollary 9. Let A be an AVMAC under input constraints (Ω1,Ω2) and state constraint Λ, where A is symmetrizable-X1×X2,

symmetrizable-X1|X2, and symmetrizable-X2|X1. If the symmetrizability equations (13), (14), and (15) are only satisfied by

conditional distributions J(s|x1, x2), J1(s|x1) J2(s|x2) which are 0-1 laws, then

C(A ) = C(A ) . (39)

The proof of Corollary 9 is given in Appendix F. In particular, we note that the condition of 0-1 laws in Corollary 9 holds

when the output Y is a deterministic function of X1, X2 and S.

A. Decoding Rule

We specify the decoding rule and state the corresponding properties, which are used in the analysis. As mentioned in

Remark 6 above, we cannot use the operational time sharing argument for the AVMAC under constraints, and therefore, we

use coded time sharing [28] [21, Section 4.5.3]. Our decoder is similar to that of Ahlswede and Cai [3], and the codebooks are

generated based on the techniques of Csiszár and Narayan [17], along with the insights of Ahlswede and Cai [3]. We note that

since the code is deterministic, the time sharing sequence is also deterministic, and it is known to the encoders, the decoder,

and the jammer as well.

A fundamental difference between our coding scheme and the one in [3] arises from Ahlswede’s dichotomy property.

Specifically, Ahlswede and Cai only showed achievability of positive rates R1 = R2 = ε > 0, proving that the capacity region

has a non-empty interior. According to the dichotomy result in Theorem 2 by Jahn [33, 34], this implies that the capacity region

of the AVMAC free of constraints is the same as the random code capacity region, which was also determined in [33, 34].

However, for the AVMAC under constraints, dichotomy does not apply and achievability of positive rates is insufficient.

Thereby, our proof is a lot more involved than the one in [3].

To specify the decoding rule, we define the decoding sets D(m1,m2) ⊆ Yn, for (m1,m2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ], such

that g(yn) = (m1,m2) iff yn ∈ D(m1,m2).

Definition 7 (Decoder). Given the codebooks {fk(mk)}mk∈[1:2nRk ], k = 1, 2, and a time sharing sequence un, declare that

yn ∈ D(m1,m2) if there exists sn ∈ Sn with ln(sn) ≤ Λ such that the following hold.

1) For (U,X1, X2, S, Y ) which is distributed according to the joint type P̂un,f1(m1),f2(m2),sn,yn , we have that

D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S) ≤ η . (40)

2) a) For every m̃1 6= m1 and m̃2 6= m2 such that for some s̃n ∈ Sn with ln(s̃n) ≤ Λ,

D(PU,X̃1,X̃2,S̃,Y
||PU × PX̃1|U × PX̃2|U × PS̃|U ×WY |X1,X2,S) ≤ η , (41)

where (U, X̃1, X̃2, S̃, Y ) ∼ P̂un,f1(m̃1),f2(m̃2),s̃n,yn , we have that

I(X1, X2, Y ; X̃1, X̃2|U, S) ≤ η . (42)

b) For every m̃1 6= m1 such that for some s̃n ∈ Sn with ln(s̃n) ≤ Λ,

D(PU,X̃1,X2,S̃,Y ||PU × PX̃1|U × PX2|U × PS̃|U ×WY |X1,X2,S) ≤ η , (43)

where (U, X̃1, X2, S̃, Y ) ∼ P̂un,f1(m̃1),f2(m2),s̃n,yn , we have that

I(X1, X2, Y ; X̃1|U, S) ≤ η1 . (44)

c) For every m̃2 6= m2 such that for some s̃n ∈ Sn with ln(s̃n) ≤ Λ,

D(PU,X1,X̃2,S̃,Y
||PU × PX1|U × PX̃2|U × PS̃|U ×WY |X1,X2,S) ≤ η , (45)

where (U,X1, X̃2, S̃, Y ) ∼ P̂un,f1(m1),f2(m̃2),s̃n,yn , we have that

I(X1, X2, Y ; X̃2|U, S) ≤ η2 . (46)

We note that in Definition 7, the variables U,X1, X2, X̃1, X̃2, S, S̃, Y are dummy random variables, distributed according to

the joint type of (un, f1(m1), f2(m2), f1(m̃1), f2(m̃2), s
n, s̃n, yn), where un is a given time sharing sequence, f1(m1), f2(m2)

are “tested” codewords, f1(m̃1), f2(m̃2) are competing codewords, sn is a “tested” state sequence, s̃n is a competing state

sequence, and yn is the received sequence. None of the sequences are random here. The Markov relation U (X1, X2, S) Y
may not hold for those dummy variables, and we may have that the conditional type PY |X1,X2,S differs from the actual channel

WY |X1,X2,S . Therefore, the divergences and mutual informations in Definition 7 could be positive.

For the definition above to be proper, we need to verify that the decoding sets are disjoint, as stated in the following lemma.
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Lemma 10 (Decoding Disambiguity). Let un be a given time sharing sequence, and denote by PU its type, that is, PU = P̂un .

Suppose that in each codebook, all codewords have the same conditional type, i.e. P̂f1(m1)|un = PX1|U and P̂f2(m2)|un = PX2|U
for all (m1,m2). Assume that for some δ, δk > 0, PU (u) ≥ δ, PXk|U (xk|u) ≥ δk ∀xk ∈ Xk, u ∈ U , k = 1, 2, and also

min
{
Λ̃(PU,X1,X2), Λ̃1(PU,X1 ), Λ̃2(PU,X2)

}
> Λ . (47)

Then, for sufficiently small η, η1, η2 > 0,

D(m1,m2) 6= D(m̃1, m̃2) , for all (m1,m2) 6= (m̃1, m̃2) . (48)

Specifically,

1) Conditions 1) and 2a) of the decoding rule, with Λ̃(PU,X1,X2) > Λ, imply that for sufficiently small η,

D(m1,m2) ∩ D(m̃1, m̃2) = ∅ , for m1 6= m̃1 and m2 6= m̃2 . (49)

2) Conditions 1) and 2b) of the decoding rule, with Λ̃1(PU,X1) > Λ, imply that for sufficiently small η and η1,

D(m1,m2) ∩ D(m̃1,m2) = ∅ , for m1 6= m̃1 . (50)

3) Conditions 1) and 2c) of the decoding rule, with Λ̃2(PU,X2 ) > Λ, imply that for sufficiently small η and η2,

D(m1,m2) ∩ D(m1, m̃2) = ∅ , for m2 6= m̃2 . (51)

The proof of Lemma 10 is given in Appendix C.

B. Codebooks

While the decoding rule above is similar to that of Ahlswede and Cai [3], here we prove a generalization of a lemma by

Csiszár and Narayan [17], in order to generate proper codebooks.

Lemma 11 (Codebooks Generation). For every ε > 0, sufficiently large n, rates Rk ≥ ε and types PU and Pk = PXk|U ,

k = 1, 2, there exist a time sharing sequence un ∈ T n(PU ), and codebooks, {(xn1 (m1), x
n
2 (m2)) : mk ∈ [1 : 2nRk ], k = 1, 2}

of type P1 × P2, such that for every an1 ∈ Xn
1 , an2 ∈ Xn

2 , sn ∈ Sn with ln(sn) ≤ Λ, and every joint type PU,X1,X2,X̃1,X̃2,S
with PX1,X2|U = PX̃1,X̃2|U = P1 × P2, the following hold.

1) Joint Typicality

|{(m̃1, m̃2) : (un, an1 , a
n
2 , x

n
1 (m̃1), x

n
2 (m̃2), s

n) ∈ T n(PU,X1,X2,X̃1,X̃2,S
)}| ≤ 2

n
(
[R1+R2−I(X̃1,X̃2;X1,X2,S|U)]

+
+ε

)

, (52)

|{(m1,m2) : (un, xn1 (m1), x
n
2 (m2), s

n) ∈ T n(PU,X1,X2,S)}| ≤ 2n(R1+R2− ε
2 ) , if I(X1, X2;S|U) > ε , (53)

and

|{(m1,m2) : (un, xn1 (m1), x
n
2 (m2), x

n
1 (m̃1), x

n
2 (m̃2), s

n) ∈ T n(PU,X1,X2,X̃1,X̃2,S
) , for some m̃1 6= m1, m̃2 6= m2}|

≤ 2n(R1+R2− ε
2 ) , if I(X1, X2; X̃1, X̃2, S|U)−

[
R1 +R2 − I(X̃1, X̃2;S|U)

]
+
> ε . (54)

2) Conditional Typicality Given m2

|{m̃1 : (un, an1 , a
n
2 , x

n
1 (m̃1), s

n) ∈ T n(PU,X1,X2,X̃1,S
)}| ≤ 2

n
(
[R1−I(X̃1;X1,X2,S|U)]

+
+ε

)

, (55)

and

|{m1 : (un, xn1 (m1), a
n
2 , x

n
1 (m̃1), s

n) ∈ T n(PU,X1,X2,X̃1,S
) for some m̃1 6= m1}| ≤ 2n(R1− ε

2 ) ,

if I(X1, X2; X̃1, S|U)−
[
R1 − I(X̃1;S|U)

]
+
> ε . (56)

3) Conditional Typicality Given m1

|{m̃2 : (un, an1 , a
n
2 , x

n
2 (m̃2), s

n) ∈ T n(PU,X1,X2,X̃2,S
)}| ≤ 2

n
(
[R2−I(X̃2;X1,X2,S|U)]

+
+ε

)

, (57)

and

|{m2 : (un, an1 , x
n
2 (m2), x

n
2 (m̃2), s

n) ∈ T n(PU,X1,X2,X̃2,S
) for some m̃2 6= m2}| ≤ 2n(R2− ε

2 )

, if I(X1, X2; X̃2, S|U)−
[
R2 − I(X̃2;S|U)

]
+
> ε . (58)

The proof of Lemma 11 is given in Appendix D.
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C. Examples

To illustrate our results, we give the following examples.

Example 3. (see [27]) In the first example, we use Corollary 9 and previous results by Gubner and Hughes [27] to show that

the deterministic code capacity region can be non convex. Consider the state dependent erasure MAC, specified

Y =

{
X1 +X2 X1 ·X2 = S = 0 ,

r otherwise
, (59)

where S = {0, 1}, X1 = X2 = {0, 1, . . . , r − 1}, and Y = {0, 1, . . . , r}, with r ≥ 2. Consider the AVMAC under a state

constraint 1
n

∑n
i=1 si ≤ Λ, for 0 < Λ ≤ 1, and with inactive input constraints, i.e. Ωk = φk,max for k = 1, 2.

It can be readily verified that the symmetrizability conditions in Definition 5 hold when the distributions J(s|x1, x2) and

Jk(s|xk) assign unit probability to S = 1. Then, Λ̃(PU,X1,X2) = Λ̃k(PU,Xk
) = 1 for all PU,X1,X2 , hence L∗ = L∗

k = 1 for

k = 1, 2. By Corollary 9, we have that without a state constraint, i.e. for Λ = 1, the deterministic code capacity region is

C(A ) = {(0, 0)} . (60)

Whereas, if Λ < 1, then Λ is strictly less than L∗ = L∗
k = Λ̃(PU,X1,X2) = Λ̃k(PU,Xk

) = 1, for all PU,X1,X2 , k = 1, 2. Hence,

by Corollary 9,

C(A ) =
⋃

PUPX1|UPX2|U





(R1, R2) : R1 ≤ min
q(s|u) : ES≤Λ

Iq(X1;Y |X2, U) ,

R2 ≤ min
q(s|u) : ES≤Λ

Iq(X2;Y |X1, U) ,

R1 +R2 ≤ min
q(s|u) : ES≤Λ

Iq(X1, X2;Y |U)




. (61)

Now, based on Theorem 5 (see [27]), we deduce that the deterministic code capacity region is the same as the divided-

randomness capacity region, i.e. C(A ) = C⋆⋆(A ). For the latter, Gubner and Hughes derive inner and outer bounds that

are close enough in order to establish that C⋆⋆(A ) is non convex for high values of r ≥ 2. This, in turn, implies that the

deterministic code capacity region is also non convex in general.

Example 4. Let A be an AVMAC which consists of independent binary symmetric channels. Specifically, let the state and the

output be pairs as well, i.e. S = (S1, S2) and Y = (Y1, Y2), such that

Y1 =X1 + S1 mod 2 ,

Y2 =X2 + S2 mod 2 , (62)

where X1, X2, S1, S2, Y1 and Y2 are binary. Suppose that the input and state cost functions are Hamming weights, i.e.

φ1(x1) = x1 , φ2(x2) = x2 , l(s) = s1 + s2 , (63)

while the constraints Ω1, Ω2 and Λ are in the interval (0, 1].
First, we use Theorem 7 to show that the random code capacity is given by

C
⋆(A ) =

{
(R1, R2) : R1 ≤ h(ω1 ∗ λ)− h(λ) ,

R2 ≤ h(ω2 ∗ λ)− h(λ)

}
, (64)

where

ω1 = min

(
Ω1,

1

2

)
, ω2 = min

(
Ω2,

1

2

)
, λ = min

(
Λ,

1

2

)
. (65)

In particular, if Λ ≥ 1
2 , then the random code capacity region is C⋆(A ) = {(0, 0)}.

It can further be seen that the binary AVMAC is symmetrizable-X1×X2, symmetrizable- X1|X2, and symmetrizable-X2|X1.

In particular, the symmetrizability equations (13), (14), and (15) only hold with the 0-1 laws J(s|x1, x2) = δ(s1−x1)δ(s2−x2),
J1(s|x1) = δ(s1 − x1)δ(s2 − x′2), J2(s|x2) = δ(s1 − x′1)δ(s2 − x2), for arbitrary x′1, x

′
2 ∈ {0, 1}, where δ(u) = 1 for u = 0,

and δ(u) = 0 otherwise.

Then, we use Corollary 9 to show that the capacity region is given by the following. If Ω1 > Λ and Ω2 > Λ, then

C(A ) = C
⋆(A ) =

{
(R1, R2) : R1 ≤ h(ω1 ∗ λ)− h(λ) ,

R2 ≤ h(ω2 ∗ λ)− h(λ)

}
, (66)

where h(t) = −t log t− (1− t) log(1− t) for 0 < t < 1, and α ∗ β = (1− α)β + α(1− β). If Ω1 ≤ Λ and Ω2 > Λ, then

C(A ) = {(0, R2) : R2 ≤ h(ω2 ∗ λ) − h(λ)} . (67)

If Ω1 > Λ and Ω2 ≤ Λ, then

C(A ) = {(R1, 0) : R1 ≤ h(ω1 ∗ λ) − h(λ)} . (68)
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Otherwise, if Ω1 ≤ Λ and Ω2 ≤ Λ, then

C(A ) = {(0, 0)} . (69)

The analysis is given in Appendix G.

We observe that the deterministic code capacity region and the random code capacity region are the same, only if Λ ≥ 1
2

or both input constraints are higher than the state constraints. In all other cases, the deterministic code capacity is strictly

included within the random code capacity region, i.e. C(A ) ⊂ C⋆(A ).

Example 5. Consider the Gaussian AVMAC, specified by

Y = X1 +X2 + S + Z , (70)

with Z ∼ N (0, σ2), where the transmitters and the jammer have the power constraints 1
n

∑n
i=1X

2
k,i ≤ Ωk, for k = 1, 2, and

1
n

∑n
i=1 S

2
i ≤ Λ. This channel was treated independently by Hosseinigoki and Kosut [31], using the packing lemmas from

[30]. Here, we use our results on the general AVMAC.

Although we previously assumed that the input, state and output alphabets are finite, our results can be extended to the

continuous case as well, using standard discretization techniques [7, 1, 15] [21, Section 3.4.1]. First, we use Theorem 7 to

show that the random code capacity region is

C
⋆(A ) =





(R1, R2) : R1 ≤ 1
2 log

(
1 + Ω1

Λ+σ2

)
,

R2 ≤ 1
2 log

(
1 + Ω2

Λ+σ2

)
,

R1 +R2 ≤ 1
2 log

(
1 + Ω1+Ω2

Λ+σ2

)




. (71)

Then, we use Theorem 8 to show that the capacity region is given by the following. If Ω1 > Λ and Ω2 > Λ, then

C(A ) = C
⋆(A ) =





(R1, R2) : R1 ≤ 1
2 log

(
1 + Ω1

Λ+σ2

)
,

R2 ≤ 1
2 log

(
1 + Ω2

Λ+σ2

)
,

R1 +R2 ≤ 1
2 log

(
1 + Ω1+Ω2

Λ+σ2

)




. (72)

If Ω1 ≤ Λ and Ω2 > Λ, then

C(A ) =

{
(0, R2) : R2 ≤

1

2
log

(
1 +

Ω2

Λ + σ2

)}
. (73)

If Ω1 > Λ and Ω2 ≤ Λ, then

C(A ) =

{
(R1, 0) : R1 ≤

1

2
log

(
1 +

Ω1

Λ + σ2

)}
. (74)

Otherwise, if Ω1 ≤ Λ and Ω2 ≤ Λ, then

C(A ) = {(0, 0)} . (75)

The analysis is given in Appendix H. We observe that the deterministic code capacity region and the random code capacity

region are the same, only if both input constraints are higher than the state constraints. In all other cases, the deterministic

code capacity is strictly included within the random code capacity region.

1) Without Constraints: We have seen in Subsection II-E1 that Gubner [24] and Ahlswede and Cai [3] determined the

capacity region in all but two cases, where User 1 has zero capacity and User 2 has positive capacity, and vice versa (see

Remark 3). In this subsection, we give full characterization of the capacity region of the AVMAC without constraints, closing

the gap in the results by Ahlswede and Cai [3].

Theorem 12. The capacity region of the AVMAC free of constraints is given by the following.

a) If WY |X1,X2,S is not symmetrizable-X1 ×X2, -X1|X2, nor -X2|X1, then

C(Afree) = C
⋆⋆(Afree) . (76)

b) If WY |X1,X2,S is not symmetrizable-X1 ×X2 nor -X2|X1, but symmetrizable-X1|X2, then

C(Afree) =

{
(0, R2) : R2 ≤ min

q(s)
max

p(x1)p(x2)
Iq(X2;Y |X1)

}
. (77)

c) If WY |X1,X2,S is not symmetrizable-X1 ×X2 nor -X1|X2, but symmetrizable-X2|X1, then

C(Afree) =

{
(R1, 0) : R1 ≤ min

q(s)
max

p(x1)p(x2)
Iq(X1;Y |X2)

}
. (78)
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d) In all other cases,

C(Afree) = {(0, 0)} . (79)

Theorem 12 is a direct consequence of our previous results in the presence of constraints, since plugging Ωk > φk,max,

k = 1, 2, and Λ > lmax yields the capacity region without constraints. In particular, if the AVMAC free of constraints is

non-symmetrizable-X1 × X2, then L∗ = +∞ > Λ. Otherwise, if the AVMAC free of constraints is symmetrizable-X1 × X2,

then L∗ ≤ lmax < Λ. A similar argument holds for L∗
1, L∗

2 and non-symmetrizability-X1|X2, -X2|X1, respectively. Thus,

Theorem 12 follows from Theorem 8 and Definition 6. The theorem above completes the partial characterization in Cases b)

and c) in Theorem 4.

APPENDIX A

PROOF OF LEMMA 6

Consider the compound MAC A Q under input constraints (Ω1,Ω2) and state constraint Λ. To prove the direct part, we

construct a code based on simultaneous decoding with respect to a state type which is “close” to some q ∈ Q. The converse

part follows by standard arguements.

A. Achievability Proof

Let ε, δ > 0 be arbitrarily small. We use the following notation. Basic method of types concepts are defined as in [16,

Chapter 2]; including the definition of a type P̂xn of a sequence xn; a joint type P̂xn,yn and a conditional type P̂xn|yn of a

pair of sequences (xn, yn); and a δ-typical set Aδ(PX,Y ) with respect to a distribution PX,Y (x, y). We also define a set of

state types Q̂n by

Q̂n = {P̂sn : sn ∈ Aδ1(q) for some q ∈ PΛ(S) } , (80)

where

δ1 ,
δ

2 · |S| . (81)

Namely, Q̂n is the set of types that are δ1-close to some state distribution q(s) in PΛ(S). Then, fix PUPX1|UPX2|U such that

Eφk(Xk) ≤ Ωk − ε, for k = 1, 2.

Codebook Generation: Generate a random time sharing sequence un ∼ ∏n
i=1 PU (ui). Then, generate 2nRk conditionally

independent sequences xnk (mk), mk ∈ [1 : 2nRk ], at random, each according to
∏n

i=1 PXk|U (xk,i|ui), for k = 1, 2. Reveal the

sequence un and the codebooks {xn1 (m1)} and {xn2 (m2)} to the encoders and the decoder.

Encoding: To send (m1,m2), Encoder k transmits xnk (mk), provided that

φk(x
n
k (mk)) ≤ Ωk , for k = 1, 2 . (82)

Otherwise, repeatedly send the symbol ak with φk(ak) = 0.

Decoding: For every state distribution q(s), define

P q
Y |X1,X2

(y|x1, x2) =
∑

s∈S
q(s)WY |X1,X2,S(y|x1, x2, s) . (83)

As yn is received, the decoder finds a unique pair (m̂1, m̂2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ] such that (un, xn1 (m̂1), x
n
2 (m̂2), y

n) ∈
Aδ(PUPX1|UPX2|UP

q
Y |X1,X2

) for some type q ∈ Q̂n. If there is none, or more than one such pair, declare an error.

Analysis of Probability of Error: Assume without loss of generality that the users sent the messages m1 = m2 = 1. Let

q(s) ∈ Q denote the actual state distribution chosen by the jammer. The error event is within the union of the following events,

E1 ={(Un, Xn
1 (1), X

n
2 (1)) /∈ A

δ/3(PUPX1|UPX2|U )} , (84)

E2 ={(Un, Xn
1 (1), X

n
2 (1), Y

n) /∈ Aδ(PUPX1|UPX2|UP
q′

Y |X1,X2
) , for all q′ ∈ Q̂n} , (85)

E3 ={(Un, Xn
1 (m1), X

n
2 (m2), Y

n) ∈ Aδ(PUPX1|UPX2|UP
q′

Y |X1,X2
) , for some m1 6= 1, m2 6= 1, q′ ∈ Q̂n} , (86)

E4 ={(Un, Xn
1 (m1), X

n
2 (1), Y

n) ∈ Aδ(PUPX1|UPX2|UP
q′

Y |X1,X2
) , for some m1 6= 1, q′ ∈ Q̂n} , (87)

E5 ={(Un, Xn
1 (1), X

n
2 (m2), Y

n) ∈ Aδ(PUPX1|UPX2|UP
q′

Y |X1,X2
) , for some m2 6= 1, q′ ∈ Q̂n} . . (88)

The probability of error is then bounded by

P (n)
e (q,C ) ≤Pr (E1) + Pr (E2 | Ec1) + Pr (E3 | Ec2) + Pr (E4 | Ec2) + Pr (E5 | Ec2) , (89)

where the conditioning on (M1,M2) = (1, 1) is omitted for convenience of notation. The first term in the RHS of (89) tends

to zero exponentially as n→∞, by the law of large numbers and Chernoff’s bound (see e.g. [35, Theorem 1.1]). Now, given
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that the event Ec1 occurs, we have that Xn
1 (1) and Xn

2 (1) satisfy the input constraints (82), for sufficiently small δ > 0, and

are thus the channel inputs.

Moving to the second term, suppose that

(Un, Xn
1 (1), X

n
2 (1), Y

n) ∈ Aδ/2(PUPX1|UPX2|UP
q
Y |X1,X2

) . (90)

Then, for sufficiently large n, there is a type q′(s) such that |q′(s)− q(s)| ≤ δ1, for all s ∈ S, hence, q′ ∈ Q̂n (see definition

in (80)), and

|P q′

Y |X1,X2
(y|x1, x2)− P q

Y |X1,X2
(y|x1, x2)| ≤ |S| · δ1 =

δ

2
, xk ∈ Xk, y ∈ Y , (91)

for δ1 = δ/2|S| (see (83)), hence E2 does not hold. It follows by contradiction that

Pr (E2 | Ec1) ≤Pr
(
(Un, Xn

1 (1), X
n
2 (1), Y

n) /∈ Aδ/2(PUP
q
Y |U ) | Ec1

)
, (92)

which tends to zero exponentially as n→∞ by the law of large numbers and Chernoff’s bound.

As for the third term in the RHS of (89), by the union of events bound and the fact that the number of type classes in Sn
is bounded by (n+ 1)|S|, we have that

Pr (E3 | Ec2) ≤ (n+ 1)|S| · sup
q′∈Q̂n

Pr

(
(Un, Xn

1 (m1), X
n
2 (m2), Y

n) ∈ Aδ(PUPX1|UPX2|UP
q′

Y |X1,X2
) , for some m1 6= 1, m2 6= 1|Ec1

)

≤(n+ 1)|S| · 2n(R1+R2) · sup
q′∈Q̂n

[ ∑

un,xn
1 ,x

n
2

PUn(un)PXn
1 |Un(xn1 |un)PXn

2 |Un(xn2 |un)

·
∑

yn : (un,xn
1 ,x

n
2 ,y

n)∈Aδ(PUPX1|UPX2|UP q′

Y |X1,X2
)

P q
Y n(y

n|un)
]
, (93)

where we have defined P q
Y |U (y|u) =

∑
x1,x2,s∈S

PX1|U (x1|u)PX2|U (x2|u)q(s)WY |X1,X2,S(y| x1, x2, s). This follows since

Xn
1 (m1) andXn

2 (m2) are independent of Y n for everym1 6= 1 andm2 6= 1. Let yn satisfy (un, xn1 , x
n
2 , y

n) ∈ Aδ(PUPX1|UPX2|U
P q′

Y |X1,X2
). Then, (un, yn) ∈ Aδ2(P q′

U,Y ) with δ2 , |X1||X2| · δ. By Lemmas 2.6 and 2.7 in [16],

P q
Y n|Un(y

n|un) = 2
−n

(
H(P̂yn |un )+D(P̂yn|un ||P q

Y |U
)
)

≤2−nH(P̂yn|un ) ≤ 2−n(Hq′ (Y |U)−ε1(δ)) , (94)

where ε1(δ)→ 0 as δ → 0. Therefore, by (93)−(94), along with [16, Lemma 2.13],

Pr (E3|Ec2) ≤ (n+ 1)|S| · sup
q′∈Q

2−n[Iq′ (X1,X2;Y |U)−R1−R2−ε2(δ)] , (95)

with ε2(δ)→ 0 as δ → 0, The RHS of (95) tends to zero exponentially as n→∞, provided that

R1 +R2 < inf
q′∈Q

Iq′ (X1, X2;Y |U)− ε2(δ) . (96)

By similar considerations, the fourth term is bounded by Pr (E4|Ec2) ≤ (n+1)|S| ·supq′∈Q 2−n[Iq′ (X1;Y |X2,U)−R1−ε3(δ)], with

ε3(δ)→ 0 as δ → 0. This bound tends to zero exponentially as n→∞, provided that R1 < infq′∈Q Iq′ (X1;Y |X2, U)−ε3(δ).
By symmetry, we have that Pr (E5|Ec2) tends to zero as well, provided that R2 < infq′∈Q Iq′ (X2;Y |X1, U)− ε3(δ).

We conclude that the probability of error, averaged over the class of the codebooks, exponentially decays to zero as n→∞.

Therefore, there must exist a (2nR1 , 2nR2 , n, ε) deterministic code, for a sufficiently large n.

B. Converse Proof

The converse part follows from the same arguments as in the converse proof of the classical MAC [4] (see also [14, Section

15.3.4]). Since the deterministic code capacity region is always bounded by the random code capacity region, we consider a

sequence of (2nR1 , 2nR2 , n, αn) random codes, where αn → 0 as n → ∞. Then, let Xn
1 = fn

1,γ(M1) and Xn
2 = fn

2,γ(M2)
be the channel input sequences, and Y n be the corresponding output sequence, where γ ∈ Γ is the random element shared

between the encoders and the decoder. For every q ∈ Q, we have by Fano’s inequality that Hq(M1,M2|Y n, γ) ≤ nεn, hence

Hq(M1|M2, Y
n, γ) ≤ nεn and Hq(M2|M1, Y

n, γ) ≤ nεn, where εn → 0 as n→∞. Since

n(R1 +R2) =H(M1,M2|γ) = Iq(M1,M2;Y
n|γ) +H(M1,M2|Y n, γ) , (97)

nR1 =H(M1|M2, γ) = Iq(M1;Y
n|M2, γ) +H(M1|M2, Y

n, γ) , (98)

nR2 =H(M2|M1, γ) = Iq(M2;Y
n|M1, γ) +H(M2|M1, Y

n, γ) , (99)
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it follows that

nR1 ≤Iq(M1;Y
n|M2, γ) + nεn =

n∑

i=1

Iq(M1;Yi|M2, Y
i−1, γ) + nεn , (100)

nR2 ≤Iq(M2;Y
n|M1, γ) + nεn =

n∑

i=1

Iq(M2;Yi|M1, Y
i−1, γ) + nεn , (101)

n(R1 +R2) ≤Iq(M1,M2;Y
n|γ) + nεn =

n∑

i=1

Iq(M1,M2;Yi|Y i−1, γ) + nεn . (102)

As Xn
k = fk,γ(Mk), this yields

R1 ≤
1

n

n∑

i=1

Iq(X1,i,M1;Y
n|X2,i,M2, Y

i−1, γ) + εn (103)

R2 ≤
1

n

n∑

i=1

Iq(X2,i,M2;Y
n|X1,i,M1, Y

i−1, γ) + εn (104)

R1 +R2 ≤
1

n

n∑

i=1

Iq(X1,i, X2,i,M1,M2;Yi|Y i−1, γ) + εn . (105)

Then, since (γ,M1,M2, Y
i−1) (X1,i, X2,i) Yi form a Markov chain, we have that for every q ∈ Q,

R1 ≤Iq(X1,T ;YT |X2,T , T, γ) + εn , (106)

R2 ≤Iq(X2,T ;YT |X1,T , T, γ) + εn , (107)

R1 +R2 ≤Iq(X1,T , X2,T ;YT |T, γ) + εn , (108)

where T is a random variable which is uniformly distributed over [1 : n], and independent of (γ,Xn
1 , X

n
2 , S

n, Y n). Defining

X1 = X1,T , X2 = X2,T , Y = YT , and U = (T, γ), it follows that

R1 ≤ inf
q∈Q

Iq(X1;Y |X2, U) + εn , (109)

R2 ≤ inf
q∈Q

Iq(X2;Y |X1, U) + εn , (110)

R1 +R2 ≤ inf
q∈Q

Iq(X1, X2;Y |U) + εn . (111)

As X1 and X2 are conditionally independent given U , this completes the proof of the converse part.

APPENDIX B

PROOF OF THEOREM 7

Consider the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ.

A. Achievability Proof

To prove the random code capacity theorem for the AVMAC, we use our result on the compound MAC along with a simple

extension of Ahlswede’s Robustification Technique (RT). We begin with a lemma from [41], based on Ahlswede’s RT [2].

Lemma 13 (Ahlswede’s RT [2] [41, Lemma 9]). Let h : Sn → [0, 1] be a given function. If, for some fixed αn ∈ (0, 1), and

for all qn(sn) =
∏n

i=1 q(si), with q ∈ PΛ(S),
∑

sn∈Sn

qn(sn)h(sn) ≤ αn , (112)

then,

1

n!

∑

π∈Πn

h(πsn) ≤ βn , for all sn ∈ Sn such that ln(sn) ≤ Λ , (113)

where Πn is the set of all n-tuple permutations π : Sn → Sn, and βn = (n+ 1)|S| · αn.

Let (R1, R2) ∈ C
⋆(A ). At first, we consider the compound MAC under input constraints (Ω1,Ω2), with Q = PΛ(S).

According to Lemma 6, for some θ > 0 and sufficiently large n, there exists a (2nR1 , 2nR2 , n) code C = (fn
1 (m1), f

n
2 (m2),

g(yn)) for the compound MAC A PΛ(S) such that

φnk (fk(mk)) ≤ Ωk , for all mk ∈ [1 : 2nRk ], k = 1, 2 , (114)
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and

P (n)
e (q,C ) =

∑

sn∈Sn

q(sn) · P (n)
e|sn(C ) ≤ e−2θn , (115)

for all i.i.d. state distributions q(sn) =
∏n

i=1 q(si), with q ∈ PΛ(S).
Therefore, by Lemma 13, taking h0(s

n) = P
(n)
e|sn(C ) and αn = e−2θn, we have that for a sufficiently large n,

1

n!

∑

π∈Πn

EP
(n)
e|πsn(C ) ≤ (n+ 1)|S|e−2θn ≤ e−θn , (116)

for all sn ∈ Sn with ln(sn) ≤ Λ, where the sum is over the set of all n-tuple permutations.

On the other hand, for every π ∈ Πn,

P
(n)
e|πsn(C )

(a)
=

1

2n(R1+R2)

∑

m1,m2

∑

yn:g(yn) 6=(m1,m2)

WY n|Xn
1 ,Xn

2 ,Sn(yn|f1(m1), f2(m2), πs
n)

(b)
=

1

2n(R1+R2)

∑

m1,m2

∑

yn:g(πyn) 6=(m1,m2)

WY n|Xn
1 ,Xn

2 ,Sn(πyn|f1(m1), f2(m2), πs
n)

(c)
=

1

2n(R1+R2)

∑

m1,m2

∑

yn:g(πyn) 6=(m1,m2)

WY n|Xn
1 ,Xn

2 ,Sn(yn|π−1f1(m1), π
−1f2(m2), s

n) , (117)

where (a) is obtained by plugging πsn in (6a); in (b) we simply change the order of summation over yn; and (c) holds because

the channel is memoryless.

Then, consider the (2nR1 , 2nR2 , n) random code C Π, specified by

f1,π(m1) = π−1f1(m1) , f2,π(m2) = π−1f2(m2) , gπ(y
n) = g(πyn) , (118)

with a uniform distribution µ(π) = 1
|Πn| =

1
n! for π ∈ Πn. As the inputs cost is additive (see (1)), the permutation does not

affect the costs of the codewords, hence the random code satisfies the input constraints (Ω1,Ω2). From (117), we see that

P
(n)
e|sn(C

Π) =
∑

π∈Πn
µ(π) · EP (n)

e|πsn(C ), for all sn ∈ Sn with ln(sn) ≤ Λ. Therefore, together with (116), we have that the

probability of error of the random code C Π is bounded by P
(n)
e (q,CΠ) ≤ e−θn, for every q(sn) ∈ PΛ(Sn). It follows that

CΠ is a (2nR, n, e−θn) random code for the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ.

B. Converse Proof

Assume to the contrary that there exists an achievable rate pair

(R1, R2) /∈ C(A Q)
∣∣
Q=PΛ−δ

, (119)

using random codes over the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ, where δ > 0 is arbitrarily

small. That is, for every ε > 0 and sufficiently large n, there exists a (2nR1 , 2nR2 , n) random code C Γ = (µ,Γ, {Cγ}γ∈Γ) for

the AVMAC A , such that
∑

γ∈Γ µ(γ)φ
n
k (fk,γ(mk)) ≤ Ωk, for k = 1, 2, and

P (n)
e (q,C Γ) ≤ ε , (120)

for all m1 ∈ [1 : 2nR1 ], m2 ∈ [1 : 2nR2 ], and q(sn) ∈ PΛ(Sn). In particular, for distributions q(·) which give mass 1 to some

sequence sn ∈ Sn with ln(sn) ≤ Λ, we have that P
(n)
e|sn(C

Γ) ≤ ε.
Consider using the random code C Γ over the compound MAC WPΛ−δ(S) under input constraints (Ω1,Ω2). Let q(s) ∈
PΛ−δ(S) be a given state distribution. Then, define a sequence of i.i.d. random variables S1, . . . , Sn ∼ q(s). Letting qn(sn) ,∏n

i=1 q(si), the probability of error is bounded by

P (n)
e (q,C Γ) ≤

∑

sn : ln(sn)≤Λ

qn(sn)P
(n)
e|sn(C

Γ) + Pr
(
ln(S

n
) > Λ

)
. (121)

The first sum is bounded by (120), and the second term vanishes by the law of large numbers, since q(s) ∈ PΛ−δ(S). It

follows that the random code C Γ achieves a rate pair (R1, R2) as in (119) over the compound MAC A PΛ−δ(S) under input

constraints (Ω1,Ω2), for an arbitrarily small δ > 0, in contradiction to Lemma 6. We deduce that the assumption is false, and

C⋆(A ) ⊆ C(A Q)
∣∣
Q=PΛ

= C
⋆(A ).
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APPENDIX C

PROOF OF LEMMA 10

Consider the AVMAC A under input constraints (Ω1,Ω2) and state constraint Λ. We accommodate the proof of Lemma 1 in

[3] to the case where there are state constraints. We prove part 2 of the lemma, and the rest follows by similar considerations.

Our first step is to extend an auxiliary lemma by Csisàr and Narayan [17, Lemma A2]. Fix PU , PXk|U , for k = 1, 2, as in

Lemma 10.

Lemma 14. For every pair of conditional state distributions Q(s|x1, u) and Q′(s|x1, u) such that

max

{
∑

u,x1,s

PU (u)PX1|U (x1|u)Q(s|x1, u)l(s) ,
∑

u,x1,s

PU (u)PX1|U (x1|u)Q′(s|x1, u)l(s)
}
<Λ̃1(PU,X1) , (122)

there exists ξ > 0 such that

max
u,x1,x̃1,x2,y

∣∣∣
∑

s

Q(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s)−
∑

s

Q′(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s)
∣∣∣ ≥ ξ . (123)

Proof of Lemma 14. Assume to the contrary that the LHS in (123) is zero, and define

QA(s|x1, u) =
1

2
(Q(s|x1, u) +Q′(s|x1, u)) . (124)

By symmetry,

0 = max
u,x1,x̃1,x2,y

∣∣∣
∑

s

Q(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s)−
∑

s

Q′(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s)
∣∣∣

=
1

2
max

u,x1,x̃1,x2,y

∣∣∣
∑

s

Q(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s)−
∑

s

Q′(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s)
∣∣∣

+
1

2
max

u,x1,x̃1,x2,y

∣∣∣
∑

s

Q′(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s)−
∑

s

Q(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s)
∣∣∣

≥ max
u,x1,x̃1,x2,y

∣∣∣
∑

s

QA(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s)−
∑

s

QA(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s)
∣∣∣ , (125)

where the last line follows from the triangle inequality. Then, it follows that
∑

s∈S
QA(s|x1, u)WY |X1,X2,S(y|x̃1, x2, s) =

∑

s∈S
QA(s|x̃1, u)WY |X1,X2,S(y|x1, x2, s) , (126)

for all u ∈ U , x1, x̃1 ∈ X1, x2 ∈ X2, and y ∈ Y . In other words, J1,u ≡ QA(·|·, u) symmetrizes-X1|X2 the AVMAC, for all

u ∈ U .

Next, recall from Remark 8 that the minimal state cost in (32b) can be written as

Λ̃1(PU,X1) = min
symm. {J1,u}

∑

u∈U

∑

x1∈X1

∑

s∈S
PU (u)PX1|U (x1|u)J1,u(s|x1)l(s) , (127)

where the minimization is over the set of distributions {J1,u}u∈U , such that each J1,u(s|x1) satisfies (14), for u ∈ U .

Nevertheless, by (122),
∑

u,x1,s

PU (u)PX1|U (x1|u)QA(s|x1, u)l(s) <Λ̃1(PU,X1 ) . (128)

This is a contradiction, since we have seen above that the distributions J1,u ≡ QA(·|·, u) symmetrize-X1|X2 the AVMAC, for

all u ∈ U . It follows that the LHS of (123) must be positive. This completes the proof of the auxiliary Lemma.

We move to the main part of the proof. Notice that while the parameters η, η1 and η2 can be chosen freely, the rest of

the parameters, ξ, δ0, δ1, and δ2, depend on PU and PXk|U . To show that (50) holds for sufficiently small η and η1, assume

to the contrary that there exists yn in D(m1,m2) ∩ D(m̆1,m2) 6= ∅ for some m̆1 6= m1. By the assumption in the lemma,

the codewords {fk(mk)}mk∈[1:2nRk ] in Codebook k have the same conditional type, given the time sharing sequence un, for

k = 1, 2. In particular, PX̃1|U = PX1|U = P1 and PX̃2|U = PX2|U = P2.

By Condition 1) of the decoding rule for D(m1,m2),

D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S)

=
∑

u,x1,x2,s,y

PU,X1,X2,S,Y (u, x1, x2, s, y) · log
PU,X1,X2,S,Y (u, x1, x2, s, y)

PU (u)P1(x1|u)P2(x2|u)PS|U (s|u)WY |X1,X2,S(y|x1, x2, s)
≤ η , (129)
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and by Condition 2b) of the decoding rule for D(m1,m2),

I(X1, X2, Y ; X̃1|U, S) =
∑

u,x1,x̃1,x2,s,y

PU,X1,X̃1,X2,S,Y
(u, x1, x̃1, x2, s, y) · log

PX̃1|U,X1,X2,S,Y
(x̃1|u, x1, x2, s, y)

PX̃1|U,S(x̃1|u, s)
≤ η1 ,

(130)

where U,X1, X̃1, X2, S, Y are distributed according to the joint type of un, f1(m1), f1(m̆1), f2(m2), s
n, and yn, for some

sn ∈ Sn with ln(sn) ≤ Λ. Adding (129) and (130) yields

∑

u,x1,x̃1,x2,s,y

PU,X1,X̃1,X2,S,Y
(u, x1, x̃1, x2, s, y) · log

PU,X1,X̃1,X2,S,Y
(u, x1, x̃1, x2, s, y)

PU (u)P1(x1|u)PX̃1,S|U (x̃1, s|u)P2(x2|u)WY |X1,X2,S(y|x1, x2, s)
≤ η + η1 . (131)

That is, D(PU,X1,X̃1,X2,S,Y
||PU × P1 × P1 × PS|U,X̃1

× P2 ×WY |X1,X2,S) ≤ η + η1. Therefore, by the log-sum inequality

(see e.g. [14, Theorem 2.7.1]),

D(PU,X1,X̃1,X2,Y
||PU × P1 × P1 × P2 × VY |U,X1,X̃1,X2

)

≤D(PU,X1,X̃1,X2,S,Y
||PU × P1 × P1 × PS|U,X̃1

× P2 ×WY |X1,X2,S) ≤ η + η1 , (132)

where VY |U,X1,X̃1,X2
(y|u, x1, x̃1, x2) =

∑
s∈S WY |X1,X2,S(y|x1, x2, s)PS|U,X̃1

(s|u, x̃1). Then, by Pinsker’s inequality (see

e.g. [16, Problem 3.18]),

∑

u,x1,x̃1,x2,y

|PU,X1,X̃1,X2,Y
(u, x1, x̃1, x2, y)− PU (u)P1(x1|u)P1(x̃1|u)P2(x2|u)VY |U,X1,X̃1,X2

(y|u, x1, x̃1, x2)|

≤ c√η + η1 , (133)

where c > 0 is a constant.

Similarly, following our assumption that the decoding rules for D(m̆1,m2) hold as well, Conditions 1) and 2b) claim that

D(PU,X̃1,X2,S,Y
||PU × PX̃1|U × PX2|U × PS̃|U ×WY |X1,X2,S) ≤ η , (134)

and

I(X̃1, X2, Y ;X1|U, S̃) ≤ η1 , (135)

where U,X1, X̃1, X2, S̃, Y are distributed according to the joint type of un, f1(m1), f1(m̆1), f2(m2), s̃
n, and yn, for some

s̃n ∈ Sn with ln(s̃n) ≤ Λ. Here, X̃1 and S̃ have switched places with X and S, respectively, since f1(m̆1) and s̃n are the

tested codeword and state sequence, while f1(m1) and sn are the competing ones. By the same arguments that led to (133),

it follows that

∑

u,x1,x̃1,x2,y

|PU,X1,X̃1,X2,Y
(u, x1, x̃1, x2, s)− PU (u)P1(x1|u)P1(x̃1|u)P2(x2|u)V ′

Y |U,X1,X̃1,X2
(y|u, x1, x̃1, x2)|

≤ c√η + η1 , (136)

where V ′
Y |U,X1,X̃1,X2

(y|u, x1, x̃1, x2) =
∑

s∈S WY |X1,X2,S(y|x̃1, x2, s)PS̃|U,X1
(s|u, x1). Since PU (u) ≥ δ0 and PXk|U (xk|u) ≥

δk, for all u ∈ U and xk ∈ Xk , for k = 1, 2, we have by (133) and (136) that

max
u,x1,x̃1,x2,y

∣∣∣VY |U,X1,X̃1,X2
(y|u, x1, x̃1, x2)− V ′

Y |U,X1,X̃1,X2
(y|u, x1, x̃1, x2)

∣∣∣ ≤ 2c
√
η + η1

δ0δ21δ2
, (137)

Equivalently, the above can be expressed as

max
u,x1,x̃1,x2,y

∣∣∣
∑

s

PS|U,X̃1
(s|u, x̃1)WY |X1,X2,S(y|x1, x2)−

∑

s

PS̃|U,X1
(s|u, x1)WY |X1,X2,S(y|x̃1, x2, s)

∣∣∣

≤ 2c
√
η + η1

δ0δ21δ2
, (138)
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Now, we show that the state distributions Q = PS|U,X̃1
and Q′ = PS̃|U,X1

satisfy the conditions of Lemma 14. Indeed,

max




∑

u,x̃1,s

PU (u)P1(x̃1|u)Q(s|u, x̃1)l(s),
∑

u,x1,s

PU (u)P1(x1|u)Q′(s|u, x1)l(s)





=max




∑

u,x̃1,s

PU (u)P1(x̃1|u)PS|U,X̃1
(s|u, x̃1)l(s),

∑

u,x1,s

PU (u)P1(x1|u)PS̃|U,X1
(s|u, x1)l(s)





=max

{
∑

s

PS(s)l(s),
∑

s

PS̃(s)l(s)

}

=max {ln(sn), ln(s̃n)} ≤ Λ < Λ̃1(PU,X1) , (139)

where the last inequality is due to (47). Thus, there exists ξ > 0 such that (123) holds with Q = PS|U,X̃1
and Q′ = PS̃|U,X1

,

which contradicts (138), if we choose η and η1 to be sufficiently small such that
2c

√
η+η1

δ0δ21δ2
< ξ.

APPENDIX D
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Fix a sequence un ∈ Un of type PU . Let Z̄n(m) = (Zn
1 (m1), Z

n
2 (m2)), m ∈ [1 : 2n(R1+R2)], be independent sequence

pairs, uniformly distributed over the conditional type classes T n(P1) and T n(P2), where we have assigned an index m ∈ [1 :
2n(R1+R2)] to each message pair (m1,m2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ]. Fix an1 ∈ Xn

1 , an2 ∈ Xn
2 , and sn ∈ Sn, and consider a

joint type PU,X1,X2,X̃1,X̃2,S
, such that PX1,X2|U = PX̃1,X̃2|U = P1 × P2, i.e.

PX1,X2|U (x1, x2|u) = PX̃1,X̃2|U (x1, x2|u) = P1(x1|u) · P2(x2|u) . (140)

We intend to show that {Zn
1 (m1)} and {Zn

2 (m2)} satisfy each of the desired properties with double exponential high probability

(1− e−2Bn), B > 0, implying that there exist deterministic codebooks that satisfy (52)-(58) simultaneously. This will only be

shown for the properties in parts 1 and 2, since part 3 is symmetric with part 2.

We will use the following large deviations result by Csiszár and Narayan [17].

Lemma 15 (see [17, Lemma A1]). Let α, β ∈ [0, 1], and consider a sequence of random vectors V n(m), and functions

ϕm : Xnm → [0, 1], for m ∈ [1 : M]. If

E
(
ϕm(V n(1) . . . , V n(m))

∣∣V n(1) . . . , V n(m− 1)
)
≤ α a.s., for m ∈ [1 : M] , (141)

then

Pr

(
M∑

m=1

ϕm(V n(1) . . . , V n(m)) > Mβ

)
≤ exp{−M(β − α log e)} . (142)

Part 1

To show that (52) holds, consider the indicator function

ϕm(Z̄n(1), . . . , Z̄n(m)) =

{
1 if (un, an1 , a

n
2 , Z

n
1 (m1), Z

n
2 (m2), s

n) ∈ T n(PU,X1,X2,X̃1,X̃2,S
)

0 otherwise
(143)

where Z̄n(m) = (Zn
1 (m1), Z

n
2 (m2)) as defined above. By standard type class considerations (see e.g. [35, Theorem 1.3]), we

have that

E
[
ϕm(Z̄n(1), . . . , Z̄n(m)

∣∣Z̄n(1), . . . , Z̄n(m− 1)
]
≤2−n(I(X̃1,X̃2;U,X1,X2,S)− ε

4 ) (144)

≤2−n(I(X̃1,X̃2;X1,X2,S|U)− ε
4 ) , (145)

where the last inequality holds since I(X̃1, X̃2;U,X1, X2, S) ≥ I(X̃1, X̃2;X1, X2, S|U).
Next, we use Lemma 15, and plug

(V (1), . . . , V (M))← (Z̄n(1), . . . , Z̄n(2n(R1+R2))) , M = 2n(R1+R2) ,

α = 2−n(I(X̃1,X̃2;X1,X2,S|U)− ε
4 ) ,

β = 2
n
(
[R1+R2−I(X̃1,X̃2;X1,X2,S|U)]

+
−(R1+R2)+ε

)

. (146)
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For sufficiently large n, we have that M(β − α log e) ≥ 2nε/2. Hence, by Lemma 15,

Pr




2n(R1+R2)∑

m=1

ϕm(Z̄n(1), . . . , Z̄n(2n(R1+R2))) > 2
n
(
[R1+R2−I(X̃1,X̃2;X1,X2,S|U)]

+
+ε

)

 ≤ e−2nε/2

. (147)

The double exponential decay of the probability above implies that there exist codebooks which satisfy (52).

Similarly, to show (53), we replace the indicator of the type PU,X1,X2,X̃1,X̃2,S
in (143) by an indicator of the type PU,X̃1,X̃2,S

,

and rewrite (144) with I(X̃1, X̃2;S|U), to obtain

Pr
(
|{(m̃1, m̃2) : (un, Zn

1 (m̃1), Z
n
2 (m̃2), s

n) ∈ T n(PU,X̃1,X̃2,S
)}| > 2

n
(
[R1+R2−I(X̃1,X̃2;S|U)]

+
+ε1

))
< e−2nε1/2

, (148)

where ε1 > 0 is arbitrarily small. If I(X̃1, X̃2;S|U) > ε and R1 +R2 ≥ ε, then choosing ε1 = ε
2 , we have that

[
R1 +R2 − I(X̃1, X̃2;S|U)

]
+
+ ε1 ≤ R1 +R2 −

ε

2
, (149)

hence,

Pr
(
|{(m̃1, m̃2) : (un, Zn

1 (m̃1), Z
n
2 (m̃2), s

n) ∈ T n(PU,X̃1,X̃2,S
)}| > 2n(R1+R2− ε

2 )
)
< e−2nε/4

. (150)

It remains to show that (54) holds. Assume that

I(X1, X2; X̃1, X̃2, S|U)−
[
R1 +R2 − I(X̃1, X̃2;S|U)

]
+
> ε . (151)

Let Am denote the set of indices m̃ < m such that (un, Z̄n(m̃), sn) ∈ T n(PU,X̃1,X̃2,S
), provided that their number does not

exceed 2
n
(
[R1+R2−I(X̃1,X̃2;S|U)]

+
+ ε

8

)

; else, let Am = ∅. Also, let

ψm(Z̄n(1), . . . , Z̄n(m)) =





1 if (un, Z̄n(m), Z̄n(m̃), sn) ∈ T n(PU,X1,X2,X̃1,X̃2,S
)

for some m̃ ∈ Am ,

0 otherwise.

(152)

Then, choosing ε1 = ε
8 in (148) yields

Pr
( 2n(R1+R2)∑

m=1

ψm(Z̄n(1), . . . , Z̄n(m)) 6=

|{m : (un, Z̄n(m), Z̄n(m̃), sn) ∈ T n(PU,X1,X2,X̃1,X̃2,S
) for some m̃ < m}|

)
< e−2nε/16

. (153)

Therefore, instead of bounding the set of message pairs, it is sufficient to consider the sum
∑
ψm(Z̄n(1), . . . , Z̄n(m)).

Furthermore, by standard type class considerations (see e.g. [35, Theorem 1.3]), we have that

E
(
ψm(Z̄n(1), . . . , Z̄n(m))

∣∣Z̄n(1), . . . , Z̄n(m− 1)
)
≤ |Am| · 2−n(I(X1,X2;X̃1,X̃2,S|U)− ε

8 )

≤2n
(
[R1+R2−I(X̃1,X̃2;S|U)]

+
−I(X1,X2;X̃1,X̃2,S|U)+ ε

4

)

< 2−3nε/4 , (154)

where the last inequality is due to (151). Thus, by Lemma 15,

Pr




2n(R1+R2)∑

m=1

ψm(Z̄n(1), . . . , Z̄n(m)) > 2n(R1+R2− ε
2 )


 < e−2

n(R1+R2− 3ε
4 ) ≤ e−2nε/4

, (155)

as we have assumed that R1+R2 ≥ ε. Equations (153) and (155) imply that the property in (54) holds with double exponential

probability 1− e−2E1·n

, where E1 > 0.

Part 2

Fix m2 ∈ [1 : 2nR2 ] and Zn
2 (m2) = zn2 ∈ T n(P2). To show that (55) holds, consider the indicator

ϕm1(Z
n
1 (1), . . . , Z

n
1 (m1)) =

{
1 if (un, an1 , z

n
2 , Z

n
1 (m1), s

n) ∈ T n(PU,X1,X2,X̃1,S
)

0 otherwise
(156)

By standard type class considerations (see e.g. [35, Theorem 1.3]), we have that

E
[
ϕm1(Z

n
1 (1), . . . , Z

n
1 (m1))

∣∣Zn
1 (1), . . . , Z

n
1 (m1 − 1)

]
≤ 2−n(I(X̃1;X1,X2,S|U)− ε

4 ) . (157)
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Next, we use Lemma 15, and plug

(V (1), . . . , V (M))← (Zn
1 (1), . . . , Z

n
1 (2

nR1)) , M = 2nR1 ,

α = 2−n(I(X̃1;X1,X2,S|U)− ε
4 ) ,

β = 2
n
(
[R1−I(X̃1;X1,X2,S|U)]

+
−R1+ε

)

. (158)

For sufficiently large n, we have that M(β − α log e) ≥ 2nε/2. Hence, by Lemma 15,

Pr




2nR1∑

m1=1

ϕm1(Z
n
1 (1), . . . , Z

n
1 (2

nR1)) > 2
n
(
[R1−I(X̃1;X1,X2,S|U)]

+
+ε

)

 ≤ e−2nε/2

. (159)

By the symmetry between m1 and m̃1 in the derivation above, the double exponential decay of the probability in (159) implies

that there exist codebooks which satisfy (55).

Next, we show that (56) holds. Replacing the indicator of the type PX1,X2,X̃1,S
in (156) with an indicator of the type PX̃1,S

yields

Pr
(
|{m̃1 : (un, xn1 (m̃1), s

n) ∈ T n(PU,X̃1,S
)}| > 2

n
(
[R1−I(X̃1;S|U)]

+
+ε2

))
< e−2nε2/2

, (160)

where ε2 > 0 is arbitrarily small. Assume that

I(X1, X2; X̃1, S|U)−
[
R1 − I(X̃1;S|U)

]
+
> ε . (161)

Let Am1 denote the set of indices m̃1 < m1 such that (Zn
1 (m̃1), s

n) ∈ T n(PX̃1,S
), provided that their number does not

exceed 2
n
(
[R1−I(X̃1;S)]

+
+ ε

8

)

; else, let Am1 = ∅. Also, let

ψm1(Z
n
1 (1), . . . , Z

n
1 (m1)) =

{
1 if (un, Zn

1 (m1), z
n
2 , Z

n
1 (m̃1), s

n) ∈ T n(PU,X1,X2,X̃1,S
), for some m̃1 ∈ Am1 ,

0 otherwise.
(162)

Then, choosing ε2 = ε
8 in (160) yields

Pr
( 2nR1∑

m1=1

ψm1(Z
n
1 (1), . . . , Z

n
1 (m1)) 6= |{m1 : (un, Zn

1 (m1), z
n
2 , Z

n
1 (m̃1), s

n) ∈

T n(PU,X1,X2,X̃1,S
) for some m̃1 < m1}|

)
< e−2nε/16

. (163)

Therefore, instead of bounding the set of messages, it is sufficient to consider the sum
∑
ψm1(Z

n
1 (1), . . . , Z

n
1 (m1)). Further-

more, by standard type class considerations (see e.g. [35, Theorem 1.3]), we have that

E
(
ψm1(Z

n
1 (1), . . . , Z

n
1 (m1))

∣∣Zn
1 (1), . . . , Z

n
1 (m1 − 1)

)
≤|Am1 | · 2−n(I(X1,X2;X̃1,S|U)+ ε

8 )

≤2n
(
[R1−I(X̃1;S|U)]

+
−I(X1,X2;X̃1,S|U)+ ε

4

)

< 2−3nε/4 , (164)

where the last inequality is due to (161). Thus, by Lemma 15,

Pr




2nR1∑

m1=1

ψm1(Z
n
1 (1), . . . , Z

n
1 (m1)) > 2n(R1− ε

2 )


 < e−2

n(R1− 3ε
4 ) ≤ e−2nε/4

, (165)

as we have assumed that R1 +R2 ≥ ε. The double exponential bounds in (163) and (165) imply that there exists codebooks

that satisfy (56) as well.

APPENDIX E
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To prove the theorem, we consider each case in the definition of the region C(A ) separately (see Definition 6). Case A

requires most of the effort, as the other cases follow from similar, yet simpler, considerations.

Case A

Suppose that L∗ > Λ, L∗
1 > Λ and L∗

2 > Λ.



24

Achievability Proof: Let ε > 0 be chosen later, and un ∈ Un be a sequence in the type class of PU , such that PU (u) > 0 ∀
u ∈ U . For k = 1, 2, let PXk|U be a conditional type over Xk, for which PXk|U (xk|u) > 0 ∀xk ∈ Xk, u ∈ U , Eφk(Xk) ≤ Ωk,

with

Λ̃k(PU,Xk
) >Λ , (166)

and

Λ̃(PU,X1,X2) >Λ . (167)

Furthermore, choose η, η1, η2 > 0 accordingly to be sufficiently small, such that Lemma 10 guarantees that the decoder in

Definition 7 is well defined. Now, Lemma 11 assures that there are codebooks, {xn1 (m1) : m1 ∈ [1 : 2nR1 ]} of type PX1|U ,

and {xn2 (m2) : m2 ∈ [1 : 2nR2 ]} of type PX2|U , which satisfy (52)-(58). Consider the following coding scheme.

Encoding: To send mk ∈ [1 : 2nRk ], Encoder k transmits xnk (mk), for k = 1, 2.

Decoding: Find a unique message pair (m̂1, m̂2) such that the received sequence yn belongs to D(m̂1, m̂2), as in Definition 7.

If there is none, declare an error. Lemma 10 guarantees that there cannot be two message pairs for which this holds.

Analysis of Probability of Error: Fix sn ∈ Sn with ln(sn) ≤ Λ, let q = PS|U denote the conditional type of sn given un,

and let (M1,M2) denote the transmitted message pair. Consider the error events

E1 ={D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S) > η} (168)

E2a ={Condition 2a) of the decoding rule is violated} (169)

E2b ={Condition 2b) of the decoding rule is violated} (170)

E2c ={Condition 2c) of the decoding rule is violated} (171)

and

F1 ={Iq(U,X1, X2;S) > ε} , (172)

F2 ={Iq(X1, X2; X̃1, X̃2, S|U) >
[
R1 +R2 − I(X̃1, X̃2;S|U)

]
+
+ ε , for some m̃1 6=M1 and m̃2 6=M2} , (173)

F3 ={Iq(X1, X2; X̃1, S|U) >
[
R1 − I(X̃1;S|U)

]
+
+ ε , for some m̃1 6=M1} , (174)

F4 ={Iq(X1, X2; X̃2, S|U) >
[
R2 − I(X̃2;S|U)

]
+
+ ε , for some m̃2 6=M2} , (175)

where (U,X1, X2, X̃1, X̃2, S) are dummy random variables, which are distributed as the joint type of (xn1 (M1), x
n
2 (M2), x

n
1 (m̃1),

xn2 (m̃2), s
n). By the union of events bound,

P
(n)
e|sn(C ) ≤Pr (F1) + Pr (F2) + Pr (F3) + Pr (F4)

+ Pr (E1 ∩ Fc
1) + Pr (E2a ∩ Ec1 ∩ Fc

2) + Pr (E2b ∩ Ec1 ∩ Fc
3) + Pr (E2c ∩ Ec1 ∩ Fc

4) , (176)

where the conditioning on sn is omitted for convenience of notation. Based on Lemma 11, the probabilities of the events F1,

F2, F3, and F4, tend to zero as n→∞, by (53), (54), (56), and (58), respectively.

Now, suppose that Condition 1) of the decoding rule is violated. Observe that the event E1 ∩ Fc
1 implies that

D(PU,X1,X2,S,Y ||PU,X1,X2,S ×WY |X1,X2,S)

=D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S)− I(X1, X2;S|U) > η − ε . (177)

Then, by standard large deviations considerations (see e.g. [14, pp. 362–364]),

Pr (E1 ∩ Fc
1) ≤ max

PU,X1,X2,S,Y : E1∩Fc
1 holds

2−n(D(PU,X1,X2,S,Y ||PU,X1,X2,S×WY |X1,X2,S)−ε) < 2−n(η−2ε) , (178)

which tends to zero as n→∞, for sufficiently small ε > 0, with ε < 1
2η.

Moving to Condition 2a) of the decoding rule, let D2a denote the set of joint types PU,X1,X2,X̃1,X̃2,S
such that

D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S) ≤ η , (179)

D(PU,X̃1,X̃2,S̃,Y
||PU × PX̃1|U × PX̃2|U × PS̃|U ×WY |X1,X2,S) ≤ η , for some S̃ ∼ q̃(s|u) , (180)

Iq(X1, X2, Y ; X̃1, X̃2|U, S) > η . (181)
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Observe that the event Ec1 implies that (179) holds. Also, when the event E2a occurs, i.e. Condition 2a) of the decoding rule is

violated, then there exist m̃1 6= m1 and m̃2 6= m2 such that (180) and (181) hold for some s̃n ∈ Sn with ln(s̃n) ≤ Λ. Then,

by standard type class considerations (see e.g. [35, Theorem 1.3]),

Pr (E2a ∩ Ec1 ∩ Fc
2 |M1 = m1,M2 = m2)

≤
∑

P
U,X1,X2,X̃1,X̃2,S

∈D2a :

Fc
2 holds

|{(m̃1, m̃2) : (un, xn1 (m1), x
n
2 (m2), x

n
1 (m̃1), x

n
2 (m̃2), s

n) ∈ T n(PU,X1,X2,X̃1,X̃2,S
)}|

× 2−n(Iq(X̃1,X̃2;Y |U,X1,X2,S)−ε) , (182)

for every given m1 ∈ [1 : 2nR1 ] and m2 ∈ [1 : 2nR2 ]. Hence, by (52),

Pr (E2a ∩ Ec1 ∩ Fc
2) ≤

∑

P
U,X1,X2,X̃1,X̃2,S

∈D2a :

Fc
2 holds

2
−n

(
Iq(X̃1,X̃2;Y |U,X1,X2,S)−[R1+R2−Iq(X̃1,X̃2;X1,X2,S|U)]

+
−2ε

)

. (183)

To further bound Pr (E2a ∩ Ec1 ∩ Fc
2), consider the following cases. Suppose that R1 +R2 ≤ Iq(X̃1, X̃2;S|U). Then, given

Fc
2 , we have that

Iq(X1, X2; X̃1, X̃2|U, S) ≤ Iq(X1, X2; X̃1, X̃2, S|U) ≤ ε . (184)

By (181), it then follows that

Iq(X̃1, X̃2;Y |U,X1, X2, S) =Iq(X̃1, X̃2;X1, X2, Y |U, S)− Iq(X̃1, X̃2;X1, X2|U, S)
≥η − ε . (185)

Returning to (183), we note that since the number of types is polynomial in n, the cardinality of the set of types D2a can be

bounded by 2nε, for sufficiently large n. Hence, by (183) and (185), we have that Pr (E2a ∩ Ec1 ∩ Fc
2) ≤ 2−n(η−4ε), which

tends to zero as n→∞, for ε < 1
4η.

Otherwise, if R1 +R2 > Iq(X̃1, X̃2;S|U), then given Fc
2 ,

R1 +R2 >Iq(X1, X2; X̃1, X̃2, S|U) + I(X̃1, X̃2;S|U)− ε
=Iq(X̃1, X̃2;X1, X2, S|U) + I(X1, X2;S|U)− ε
≥Iq(X̃1, X̃2;X1, X2, S|U)− ε . (186)

Thus,
[
R1 +R2 − Iq(X̃1, X̃2;X1, X2, S|U)

]
+
≤ R1 +R2 − Iq(X̃1, X̃2;X1, X2, S|U) + ε . (187)

Hence, by (183) we have that

Pr (E2a ∩ Fc
2) ≤

∑

P
U,X1,X2,X̃1,X̃2,S

∈D2a

Fc
2 holds

2−n(I(X̃1,X̃2;X1,X2,S,Y |U)−R1−R2−3ε)

≤
∑

P
U,X1,X2,X̃1,X̃2,S

∈D2a :

Fc
2 holds

2−n(Iq(X̃1,X̃2;Y |U)−R1−R2−3ε) . (188)

For PU,X1,X2,X̃1,X̃2,S
∈ D2a, we have by (180) that PX̃1,X̃2,S̃,Y |U is arbitrarily close to some PX1,X2,S̃,Ỹ |U , where

PX1,X2,S̃,Ỹ |U (x1, x2, s, y|u) = PX1|U (x1|u)PX2|U (x2|u)q̃(s|u)WY |X1,X2,S(y|x1, x2, s) , (189)

if η > 0 is sufficiently small. In which case,

Iq(X̃1, X̃2;Y |U) ≥ Iq̃(X1, X2;Y |U)− δ , (190)

where δ > 0 is arbitrarily small. Therefore, provided that

R1 +R2 < min
q(s|u) : Eql(S)≤Λ

Iq(X1, X2;Y |U)− δ − 5ε , (191)

we have that Pr (E2a ∩ Fc
2) ≤ 2−n(Iq(X̃1,X̃2;Y |U)−R1−R2−4ε) tends to zero as n→∞.
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Next, consider Condition 2b) of the decoding rule, and let D2b denote the set of joint types PU,X1,X2,X̃1,S
such that

D(PU,X1,X2,S,Y ||PU × PX1|U × PX2|U × PS|U ×WY |X1,X2,S) ≤ η , (192)

D(PU,X̃1,X2,S̃,Y ||PU × PX̃1|U × PX2|U × PS̃|U ×WY |X1,X2,S) ≤ η , for some S̃ ∼ q̃(s|u) (193)

Iq(X1, X2, Y ; X̃1|U, S) > η . (194)

Observe that when the event E2b occurs, i.e. Condition 2b) of the decoding rule is violated, then there exists m̃1 6= m1 such

that (193) and (194) hold for some s̃n ∈ Sn with ln(s̃n) ≤ Λ. Then, by standard type class considerations (see e.g. [35,

Theorem 1.3]),

Pr (E2b ∩ Ec1 ∩ Fc
3 |M1 = m1,M2 = m2)

≤
∑

P
U,X1,X2,X̃1,S

∈D2b :

Fc
3 holds

|{m̃1 : (un, xn1 (m1), x
n
2 (m2), x

n
1 (m̃1), s

n) ∈ T n(PU,X1,X2,X̃1,S
)}| · 2−n(Iq(X̃1;Y |U,X1,X2,S)−ε) ,

(195)

for every given m1 ∈ [1 : 2nR1 ] and m2 ∈ [1 : 2nR2 ]. Hence, by (55),

Pr (E2b ∩ Ec1 ∩ Fc
3) ≤

∑

P
U,X1,X2,X̃1,S

∈D2b

Fc
3 holds

2
−n

(
Iq(X̃1;Y |U,X1,X2,S)−[R1−Iq(X̃1;X1,X2,S|U)]

+
−2ε

)

. (196)

If R1 ≤ Iq(X̃1;S|U), then given Fc
3 , we have that

Iq(X1, X2; X̃1|U, S) ≤ Iq(X1, X2; X̃1, S|U) ≤ ε . (197)

Hence, by (194),

Iq(X̃1;Y |U,X1, X2, S) = Iq(X̃1;X1, X2, Y |U, S)− Iq(X̃1;X1, X2|U, S) ≥ η − ε . (198)

Returning to (196), we note that since the number of types is polynomial in the sequence length, |D2b| ≤ 2nε for sufficiently

large n. Hence, by (196) and (198), we have that Pr (E2b ∩ Fc
3) ≤ 2−n(η−4ε), which tends to zero as n→∞, for ε < 1

4η.

Otherwise, if R1 > Iq(X̃1;S|U), then given Fc
3 ,

R1 >Iq(X1, X2; X̃1, S|U) + I(X̃1;S|U)− ε
=Iq(X̃1;X1, X2, S|U) + I(X1, X2;S|U)− ε
≥Iq(X̃1;X1, X2, S|U)− ε . (199)

Thus,
[
R1 − Iq(X̃1;X1, X2, S|U)

]
+
≤ R1 − Iq(X̃1;X1, X2, S|U) + ε . (200)

Hence, by (196) we have that

Pr (E2b ∩ Ec1 ∩ Fc
3) ≤

∑

P
U,X1,X2,X̃1,S

∈D2b

Fc
3 holds

2−n(Iq(X̃1;X1,X2,S,Y |U)−R1−3ε)

≤
∑

P
U,X1,X2,X̃1,S

∈D2b :

Fc
3 holds

2−n(Iq(X̃1;Y |X2,U)−R1−3ε) , (201)

where the last inequality holds since

Iq(X̃1;X1, X2, S, Y |U) =Iq(X̃1;Y |X2, U) + Iq(X̃1;X2|U) + Iq(X̃1;X1, S|X2, Y, U)

≥Iq(X̃1;Y |X2, U) . (202)

For PU,X1,X2,X̃1,S
∈ D2b, we have by (193) that PX̃1,X2,S̃,Y |U is arbitrarily close to some PX1,X2,S̃,Ỹ |U , where

PX1,X2,S̃,Ỹ |U (x1, x2, s, y|u) = PX1|U (x1|u)PX2|U (x2|u)q̃(s|u)WY |X1,X2,S(y|x1, x2, s) , (203)

if η > 0 is sufficiently small. In which case,

Iq(X̃1;Y |X2, U) ≥ Iq̃(X1;Y |X2, U)− δ1 , (204)
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where δ1 > 0 is arbitrarily small. Therefore, provided that

R1 < min
q(s|u) : Eql(S)≤Λ

Iq(X1;Y |X2, U)− δ1 − 5ε (205)

we have that Pr (E2b ∩ Fc
3) ≤ 2−n(Iq(X̃1;Y |X2,U)−R1−4ε) tends to zero as n→∞.

In same manner, it can be shown that Pr (E2c ∩ Fc
4) tends to zero as n→∞, provided that

R2 < min
q(s|u) : Eql(S)≤Λ

Iq(X2;Y |X1, U)− δ2 − 5ε , (206)

where δ2 > 0 is arbitrarily small.

Converse Proof: We will use the following lemma, based on the observations of Gubner [24].

Lemma 16. Consider the AVMAC free of state constraints, and let C = (f1, f2, g) be a (2nR1 , 2nR2 , n) deterministic code.

1) Suppose that WY |X1,X2,S is symmetrizable-X1×X2, and let Ji(s|x1, x2), i ∈ [1 : n], be a set of conditional state distributions

that satisfy (13). If R1 +R2 > 0, then

P (n)
e (q̃,C ) ≥ 1

4
, (207)

for

q̃(sn) =
1

2n(R1+R2)

2nR1∑

m1=1

2nR2∑

m2=1

Jn(sn|f1(m1), f2(m2)) , (208)

where Jn(sn|xn1 , xn2 ) =
∏n

i=1 Ji(si|x1,i, x2,i).
2) Suppose that WY |X1,X2,S is symmetrizable-X1|X2, and let J1,i(s|x1), i ∈ [1 : n], be a set of conditional state distributions

that satisfy (14). If R1 > 0, then

P (n)
e (q̃1,C ) ≥ 1

4
, (209)

for

q̃1(s
n) =

1

2nR1

2nR1∑

m1=1

Jn
1 (s

n|f1(m1)) , (210)

where Jn
1 (s

n|xn1 ) =
∏n

i=1 J1,i(si|x1,i).
3) Suppose that WY |X1,X2,S is symmetrizable-X2|X1, and let J2,i(s|x2), i ∈ [1 : n], be a set of conditional state distributions

that satisfy (15). If R2 > 0, then

P (n)
e (q̃2,C ) ≥ 1

4
, (211)

for

q̃2(s
n) =

1

2nR2

2nR2∑

m2=1

Jn
2 (s

n|f2(m2)) , (212)

where Jn
2 (s

n|xn2 ) =
∏n

i=1 J2,i(si|x2,i).
For completeness, we give the proof below.

Proof of Lemma 16. Denote the codebooks size by Mk = 2nRk , k = 1, 2, M = 2n(R1+R2), and the codewords by xnk (mk) =
fk(mk), k = 1, 2.

Under the conditions of part 1,

P (n)
e (q̃,C ) =

∑

sn∈Sn

q(sn)
1

M

∑

m1,m2

∑

yn : g(yn) 6=(m1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)

=
1

M2

∑

m̃1,m̃2

∑

sn∈Sn

Jn(sn|xn1 (m̃1), x
n
2 (m̃2))

∑

m1,m2

∑

yn : g(yn) 6=(m1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n) (213)
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where have defined Wn ≡ WY n|Xn
1 ,Xn

2 ,Sn for short notation. By switching between the summation indices (m1,m2) and

(m̃1, m̃2), we obtain

P (n)
e (q̃,C ) =

1

2M2

∑

m1,m2,m̃1,m̃2

∑

yn : g(yn) 6=(m1,m2)

∑

sn∈Sn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn(sn|xn1 (m̃1), x
n
2 (m̃2))

+
1

2M2

∑

m1,m2,m̃1,m̃2

∑

yn : g(yn) 6=(m̃1,m̃2)

∑

sn∈Sn

Wn(yn|xn1 (m̃1), x
n
2 (m̃2), s

n)Jn(sn|xn1 (m1), x
n
2 (m2)) . (214)

Now, as the channel is memoryless,
∑

sn∈Sn

Wn(yn|xn1 (m̃1), x
n
2 (m̃2), s

n)Jn(sn|xn1 (m1), x
n
2 (m2))

=

n∏

i=1

∑

si∈S
WY |X1,X2,S(yi|x1,i(m̃1), x2,i(m̃2), si)Ji(si|x1,i(m1), x2,i(m2))

=

n∏

i=1

∑

si∈S
WY |X1,X2,S(yi|x1,i(m1), x2,i(m2), si)Ji(si|x1,i(m̃1), x2,i(m̃2))

=
∑

sn∈Sn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn(sn|xn1 (m̃1), x
n
2 (m̃2)) , (215)

where the second equality is due to (13). Therefore,

P (n)
e (q̃,C ) ≥ 1

2M2

∑

(m̃1,m̃2) 6=(m1,m2)

∑

sn∈Sn

[ ∑

yn : g(yn) 6=(m1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn(sn|xn1 (m̃1), x
n
2 (m̃2))

+
∑

yn : g(yn) 6=(m̃1,m̃2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn(sn|xn1 (m̃1), x
n
2 (m̃2))

]

≥ 1

2M2

∑

(m̃1,m̃2) 6=(m1,m2)

∑

sn∈Sn

∑

yn∈Yn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn(sn|xn1 (m̃1), x
n
2 (m̃2))

=
M(M− 1)

2M2
=

1

2

(
1− 1

M

)
. (216)

Assuming the sum rate is positive, we have that M ≥ 2, hence P
(n)
e (q̃,C ) ≥ 1

4 .

Under the conditions of part 2,

P (n)
e (q̃1,C ) =

1

M2
1M2

∑

m̃1

∑

sn∈Sn

Jn
1 (s

n|xn1 (m̃1))
∑

m1,m2

∑

yn : g(yn) 6=(m1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n) . (217)

Then, switching between m1 and m̃1 yields

P (n)
e (q̃1,C ) =

1

2M2
1M2

∑

m1,m2,m̃1

∑

yn : g(yn) 6=(m1,m2)

∑

sn∈Sn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m̃1))

+
1

2M2
1M2

∑

m1,m2,m̃1

∑

yn : g(yn) 6=(m̃1,m2)

∑

sn∈Sn

Wn(yn|xn1 (m̃1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m1)) . (218)

Now, as the channel is memoryless, we have by (14) that
∑

sn∈Sn

Wn(yn|xn1 (m̃1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m1))

=
∑

sn∈Sn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m̃1)) . (219)
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Therefore,

P (n)
e (q̃1,C ) ≥ 1

2M2
1M2

∑

m̃1 6=m1,m2

∑

sn∈Sn

[ ∑

yn : g(yn) 6=(m1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m̃1))

+
∑

yn : g(yn) 6=(m̃1,m2)

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m̃1))
]

≥ 1

2M2
1M2

∑

m̃1 6=m1,m2

∑

sn∈Sn

∑

yn∈Yn

Wn(yn|xn1 (m1), x
n
2 (m2), s

n)Jn
1 (s

n|xn1 (m̃1))

=
M1(M1 − 1)M2

2M2
1

≥ 1

2

(
1− 1

M1

)
. (220)

Since User 1 has a positive rate, R1 > 0, the corresponding codebook has size M1 ≥ 2, hence P
(n)
e (q,C ) ≥ 1

4 .

The proof of part 3 is similar, and thus omitted.

Now, we are in position to prove the converse part of Theorem 8. Consider a sequence of (2nR1 , 2nR2 , n, αn) deterministic

codes Cn over the AVMAC under input constraints (Ω1,Ω2) and state constraint Λ, where αn → 0 as n→∞. In particular,

we have that the conditional probability of error given a state sequence sn is bounded by

P
(n)
e|sn(Cn) ≤ αn , for sn ∈ Sn with ln(sn) ≤ Λ . (221)

For simplicity, we assume that both R1 > 0 and R2 > 0, but the proof can be easily modified elsewhere.

First, we show that

R1 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1;Y |X2, U) + εn , (222)

R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X2;Y |X1, U) + εn , (223)

R1 +R2 ≤ min
q(s|u) : Eql(S)≤Λ

Iq(X1, X2;Y |U) + εn , (224)

where εn > 0 tends to zero as n→∞. To this end, consider using the same code in the following setting. Consider a different

channel model, with an average state constraint. Specifically, consider a MAC where the jammer selects an independent state

sequence at random, S
n ∼ ∏n

i=1 qi(zi), under the average state constraint 1
n

∑n
i=1 El(Si) ≤ Λ − δ. Here, there is no state

constraint with probability 1, as the jammer may select a sequence S
n

with ln(S
n
) > Λ. We claim that the code sequence of

the constrained AVMAC achieves the same rate pair (R1, R2) over the “new” MAC WY |X1,X2,S
, which is governed by the

state sequence S
n

, under an average constraint. Indeed, using the code Cn over the MAC WY |X1,X2,S
, the probability of error

is given by

P (n)
e (q,Cn) =

∑

sn∈Sn

qn(sn)P
(n)
e|sn(Cn)

≤
∑

sn∈Sn : ln(sn)≤Λ

qn(sn)P
(n)
e|sn(Cn) + Pr

(
ln(S

n
) ≥ Λ

)
. (225)

By (221), we have that the sum in the RHS is bounded by αn, hence tends to zero as n→∞. As for the second term,

Pr
(
ln(S

n
) ≥ Λ

)
≤ Pr

(
1

n

n∑

i=1

(l(Si)− El(Si)) ≥ δ
)
≤
∑n

i=1 Var
(
l(Si)

)

n2δ2
≤ l2max

nδ2
(226)

where the first inequality holds since 1
n

∑n
i=1 El(Si) ≤ Λ− δ, and the second is due to Chebyshev’s inequality. Thus, we have

by (225) that the probability of error tends to zero as n→∞, when using the code Cn over the MAC governed by S
n

.

Therefore, it suffices to prove the converse part for the MAC WY |X1,X2,S
governed by the state sequence S

n ∼ qn(sn) =∏n
i=1 qi(si). Then, let Xn

1 = fn
1 (M1) and Xn

2 = fn
2 (M2) be the channel input sequences, and Y n be the corresponding output

sequence. Fano’s inequality implies that for every jamming strategy qn(sn),

R1 ≤
1

n

n∑

i=1

Iqi(X1,i;Yi|X2,i) + εn (227)

R2 ≤
1

n

n∑

i=1

Iqi(X2,i;Yi|X1,i) + εn (228)

R1 +R2 ≤
1

n

n∑

i=1

Iqi(X1,i, X2,i;Yi) + εn . (229)
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(see [14, Section 15.3.4]). Let U be a random variable which is uniformly distributed over [1 : n], and independent of

(Xn
1 , X

n
2 , S

n, Y n). Then, the bounds can be expressed as

R1 ≤Iq(X1,U ;YU |X2,U , U) + εn , (230)

R2 ≤Iq(X2,U ;YU |X1,U , U) + εn , (231)

R1 + R2 ≤Iq(X1,U , X2,U ;YU |U) + εn , (232)

where we have defined q(s|u) = qu for u ∈ [1 : n]. Then, the bounds (230)-(232) hold for every conditional state distribution

q(s|u) such that El(SU ) ≤ Λ. Thus, the bounds in (222)-(224) follow by defining

X1 = X1,U , X2 = X2,U , and Y = YU , (233)

Note that X1 and X2 are conditionally independent given U , as required.

Returning to the original AVMAC, we now show that Λ̃(PU,X1,X2) ≥ Λ. If the AVMAC is non-symmetrizable-X1×X2, then

Λ̃(PU,X1,X2) = +∞, and there is nothing to show. Hence, consider the case where the AVMAC is symmetrizable-X1 × X2.

Assume to the contrary that Λ̃(PU,X1,X2) < Λ. Based on Remark 8, and our definition of the external variable U , this means

that there exist conditional state distributions Ji(s|x1, x2), i ∈ [1 : n], which symmetrize-X1 ×X2 the AVMAC, such that

Λ̃(PU,X1,X2) =
1

n

n∑

i=1

∑

x1,i,x2,i,si

PX1,i,X2,i(x1,i, x2,i)Ji(si|x1,i, x2,i)l(si) ≤ Λ . (234)

Now, consider the following jamming strategy. First, the jammer selects from the codebooks a pair of codewords (X̃n
1 , X̃

n
2 )

uniformly at random. Then, the jammer selects a sequence S̃n at random, according to the conditional distribution

Pr
(
S̃n = sn | X̃1 = xn1 , X̃2 = xn2

)
= Jn(sn|xn1 , xn2 ) ,

n∏

i=1

Ji(si|x1,i, x2,i) . (235)

At last, if ln(S̃n) ≤ Λ, the jammer chooses the state sequence to be Sn = S̃n. Otherwise, the jammer chooses Sn to be some

sequence of zero cost. Such jamming strategy satisfies the state constraint Λ with probability 1.

To contradict our assumption that Λ̃(PU,X1,X2) < Λ, we first show that Eln(S̃n) = Λ̃(PU,X1,X2). Observe that for every

(xn1 , x
n
2 ) ∈ Xn

1 ×Xn
2 ,

E

(
ln(S̃n)|X̃n

1 = xn1 , X̃
n
2 = xn2

)
=
1

n

n∑

i=1

∑

s∈S
l(s)Ji(s|x1,i, x2,i) . (236)

Since (X̃n
1 , X̃

n
2 ) are distributed as (Xn

1 , X
n
2 ), we obtain

E ln(S̃n) =
∑

s∈S
l(s) · 1

n

n∑

i=1

EJi(s|X1,i, X2,i)

=
∑

u,x1,x2,s

PU (u)PX1,X2|U (x1, x2|u)Ju(s|x1, x2)l(s)

=Λ̃(PX1,X2) < Λ . (237)

Thus, by Chebyshev’s inequality we have that for sufficiently large n,

Pr
(
ln(S̃n) > Λ

)
≤ δ0 , (238)

where δ0 > 0 is arbitrarily small. Now, on the one hand, the probability of error is bounded by

P (n)
e (q,Cn) ≥Pr

(
g(Y n) 6= (M1,M2), l

n(S̃n) ≤ Λ
)

=
∑

sn : ln(sn)≤Λ

q̃(sn)P
(n)
e|sn(Cn) , (239)

where q̃(sn) is as defined in (208). On the other hand, the sequence S̃n can be thought of as the state sequence of an AVMAC

without a state constraint, hence, by part 1 of Lemma 16,

1

4
≤P (n)

e (q̃,Cn) ≤
∑

sn : ln(sn)≤Λ

q̃(sn)P
(n)
e|sn(Cn) + Pr

(
ln(S̃n) > Λ

)

≤
∑

sn : ln(sn)≤Λ

q̃(sn)P
(n)
e|sn(Cn) + δ0 . (240)
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Thus, by (239)-(240), the probability of error is bounded by P
(n)
e (q,Cn) ≥ 1

4 − δ0. As this cannot be the case for a code with

vanishing probability of error, we deduce that the assumption is false, i.e. Λ̃(PU,X1,X2) ≥ Λ.

It remains to show that Λ̃1(PU,X1 ) ≥ Λ and Λ̃2(PU,X2) ≥ Λ. Due to the symmetry, it suffices to show this for User 1.

We only need to consider an AVMAC which is symmetrizable-X1|X2, as otherwise, Λ̃1(PX1 ) = +∞. Then, assume to the

contrary that Λ̃1(PX1) < Λ, and let J1,i(s|x1), i ∈ [1 : n], be the symmetrizing distributions that satisfy (14) and achieves the

minimum in (32b), i.e.

Λ̃1(PU,X1) =
∑

u,x1,s

PU (u)PX1|U (x1|u)J1,u(s|x1)l(s) < Λ . (241)

Consider a jamming strategy, where the jammer first selects a codeword X̃n
1 from the codebook of User 1, uniformly at random.

Then, the jammer selects a sequence S̃n
1 at random, according to the conditional distribution

Pr
(
S̃n
1 = sn | X̃1 = xn1

)
= Jn

1 (s
n|xn1 ) ,

n∏

i=1

J1,i(si|x1,i) . (242)

At last, if ln(S̃n
1 ) ≤ Λ, the jammer chooses the state sequence to be Sn = S̃n

1 . Otherwise, the jammer chooses Sn to be some

sequence of zero cost.

To contradict our assumption that Λ̃1(PU,X1 ) < Λ, we first show that Eln(S̃n
1 ) = Λ̃1(PU,X1 ). Observe that for every

xn1 ∈ Xn
1 ,

E

(
ln(S̃n

1 )|X̃n
1 = xn1

)
=
1

n

n∑

i=1

∑

s∈S
l(s)J1,i(s|x1,i) . (243)

Since X̃n
1 is distributed as Xn

1 , we obtain

E ln(S̃n
1 ) =

∑

u,s∈S
PU (u)PX1|U (x1|u)J1,u(s|x1)l(s) = Λ̃1(PU,X1 ) < Λ . (244)

where the last equality is due to (241). Next, the probability of error is bounded by

P (n)
e (q,Cn) ≥Pr

(
g(Y n) 6= (M1,M2), l

n(S̃n
1 ) ≤ Λ

)

=
∑

sn : ln(sn)≤Λ

q̃1(s
n)P

(n)
e|sn(Cn) , (245)

where q̃1(s
n) is as defined in (210). On the other hand, the sequence S̃n

1 can be thought of as the state sequence of an AVMAC

without a state constraint, hence, by part 2 of Lemma 16,

1

4
≤P (n)

e (q̃1,Cn) ≤
∑

sn : ln(sn)≤Λ

q̃1(s
n)P

(n)
e|sn(Cn) + Pr

(
ln(S̃n

1 ) > Λ
)

≤
∑

sn : ln(sn)≤Λ

q̃1(s
n)P

(n)
e|sn(Cn) + δ1 , (246)

where the last line is due to (244) and Chebyshev’s inequality, with arbitrarily small δ1 > 0. Thus, (245)-(246) imply that

P
(n)
e (q,Cn) ≥ 1

4 − δ1, which cannot hold for a code with vanishing probability of error. We deduce that the assumption is

false, i.e. Λ̃1(PU,X1 ) ≥ Λ. This completes the converse proof.

Case B and Case C

Before we begin, we note that Cases B-D can also be proved by directly adjusting the techniques of Csiszár and Narayan

for the single user AVC [17]. Although, as explained in Remark 3, it is not an immediate consequence. Thereby, it is easier

for us to use our previous derivations instead.

The proof follows similar arguments as in Case A, and thus we only give the outline. Since Case B and Case C in Definition 6

are symmetric, we only treat the former. Suppose that L∗ > Λ and L∗
2 > Λ, but L∗

1 < Λ. For the direct part, we can use the

same coding scheme as in Case A with the following changes. First, coded time sharing is no longer necessary, hence we

take U = ∅. Then, let PX1 and PX2 be types, such that Eφk(Xk) ≤ Ωk, for k = 1, 2, Λ̃2(PX2) > Λ and Λ̃(PX1,X2) > Λ. As

User 1 transmits at zero rate, we can discard of Condition 2b) of the decoding rule (see Definition 7). Nevertheless, given our

assumption in Remark 1, Encoder 1 may use “local randomness” and send a sequence xn1 = f1(σ), where σ ∈ [1 : 2nR1 ] is

drawn uniformly at random, with R1 = ε. Upon receiving yn ∈ Yn, the decoder declares its estimation g(yn) = m2 iff there

exists σ such that yn ∈ D(σ,m2), where the decoding sets D(σ,m2) ⊆ Yn are as in Definition 7. The message of User 2

is still decoded uniquely, since the only part of Lemma 10 that depends on Λ̃1(PX1 ) is part 2, which is no longer necessary.
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The analysis of the probability of error remains exactly the same, except that the error event E2b can be ignored. It follows

that the probability of error tends to zero, provided that

R1 +R2 < min
q(s) : Eql(S)≤Λ

Iq(X1, X2;Y )− δ − 5ε ,

R2 < min
q(s) : Eql(S)≤Λ

Iq(X2;Y |X1)− δ2 − 5ε . (247)

Since R1 = ε, and Iq(X1, X2;Y ) ≥ Iq(X2;Y |X1), the first inequality is inactive, and the direct part follows.

The converse part also follows from the converse proof for Case A. It was shown that if the jammer selects the state sequence

to be

Sn =

{
S̃n
1 if ln(S̃n

1 ) ≤ Λ,

(s0, . . . , s0) otherwise
, (248)

for S̃n
1 ∼ q̃1(sn) as in (210), and s0 ∈ S with l(s0) = 0, then the probability of error is lower bounded by P

(n)
e (q,Cn) ≥ 1

4−δ1
for R1 > 0, hence User 1 cannot achieve positive rates. As for User 2, we have by (223) that

R2 ≤ min
q(s|u) : Eql(S)≤Λ−δ

Iq(X2;Y |X1, U) + εn . (249)

Then, observe that Iq(X2;Y |X1, U) ≤ Iq(X2;Y |X1), since U (X1, X2) Y form a Markov chain, and conditioning reduces

entropy (see e.g. [14, Theorem 2.6.5]). By the same considerations as in Case A, Λ̃2(PX2) ≥ Λ, and the converse part

follows.

Case D

Suppose that L∗ < Λ. It was shown in the converse proof for Case A, that if the jammer selects the state sequence

Sn =

{
S̃n if ln(S̃n) ≤ Λ,

(s0, . . . , s0) otherwise
, (250)

for S̃n ∼ q̃(sn) as in (208), and s0 ∈ S with l(s0) = 0, then the probability of error is lower bounded by P
(n)
e (q,Cn) ≥ 1

4 −δ0
for R1 +R2 > 0. Thus, positive rates cannot be achieved.

Now, suppose that both L∗
1 < Λ and L∗

2 < Λ. We have already seen in the proof of Case B, that L∗
1 < Λ implies that User

1 cannot achieve R1 > 0, and by symmetry, L∗
2 < Λ implies that User 2 cannot achieve R2 > 0. Therefore, if L∗ < Λ, or

both L∗
1 < Λ and L∗

2 < Λ, then the deterministic code capacity region is {(0, 0)}, as we were set to prove. This concludes

the proof of Theorem 8.

APPENDIX F

PROOF OF COROLLARY 9

Assume that the AVMAC A satisfies the conditions of Corollary 9. Looking into the converse proof of Theorem 8 in

Appendix E above, the following addition suffices. We show that for every code Cn as in Appendix E, Λ̃(PU,X1,X2) = Λ

implies that R1 +R2 = 0, Λ̃1(PU,X1) = Λ implies that R1 = 0, and Λ̃2(PU,X2 ) = Λ implies that R2 = 0. Since there is only

a polynomial number of types, we may consider PU,X1,X2 to be the joint type of (un, f1(m1), f2(m2)), for all m1 and m2

(see [16, Problem 6.19]).

Suppose that Λ̃(PU,X1,X2) = Λ, assume to the contrary that R1 +R2 > 0, and let Ju(s|x1, x2) be distributions that achieve

the minimum in (32a), i.e.

Λ̃(PU,X1,X2) =
∑

u,x1,x2,s

PU (u)PX1,X2|U (x1, x2|u)Ju(s|x1, x2)l(s) = Λ . (251)

Based on the condition of the corollary, we may assume that Ju(s|x1, x2) is a 0-1 law, i.e.

Ju(s|x1, x2) =
{
1 if s = Gu(x1, x2),

0 otherwise
, (252)

for some deterministic function Gu : X1 ×X2 → S. Thus, by (251),

El(GU (X1, X2)) =
∑

u,x1,x2,s

PU (u)PX1,X2|U (x1, x2|u)Ju(s|x1, x2)l(s) = Λ . (253)

Recall that we have defined U in the converse proof as a uniformly distributed variable over U = [1 : n]. Now, consider the

following jamming strategy. First, the jammer selects from the codebooks a pair of codewords (X̃n
1 , X̃

n
2 ) uniformly at random.
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Then, given X̃n
1 = xn1 and X̃n

2 = xn2 , the jammer chooses the state sequence Sn = (Gi(x1,i, x2,i))
n
i=1. Observe that given

pair of codewords, X̃n
1 = xn1 and X̃n

2 = xn2 ,

ln(Sn) =
1

n

n∑

i=1

l(Gi(x1,i, x2,i)) = El(GU (X1, X2)) = Λ , (254)

where the last equality is due to (253). Thus, the state sequence satisfies the state constraint. Now, observe that the jamming

strategy Sn =
(
Gi(X̃1,i, X̃2,i)

)n
i=1

is equivalent to Sn ∼ q̃(sn) as in (208). Thus, by part 1 of Lemma 16, we have that

P
(n)
e (q̃,Cn) ≥ 1

4 , hence both users cannot achieve a positive rate.

Next, consider the case where Λ̃1(PU,X1) = Λ. Assume to the contrary that R1 > 0, and let J1,u(s|x1) be distributions that

achieves the minimum in (32b), i.e.

Λ̃1(PU,X1 ) =
∑

u,x1,s

PU (u)PX1|U (x1|u)Ju(s|x1)l(s) = Λ . (255)

By assumption, every J1,u(s|x1) has a 0-1 law,

J1,u(s|x1) =
{
1 if s = G1,u(x1),

0 otherwise
, (256)

for some deterministic function G1,u : X1 → S. Thus, by (255),

El(G1,U (X1)) =
∑

u,x1

PU (u)PX1|U (x1|u)J1,u(s|x1)l(s) = Λ . (257)

Now, suppose the jammer selects from the codebook of User 1, a codeword X̃n
1 uniformly at random. Then, given X̃n

1 = xn1 ,

the jammer chooses the state sequence Sn = (G1,i(x1,i))
n
i=1. Hence, For every given codeword X̃n

1 = xn1 ,

ln(Sn) =
1

n

n∑

i=1

l(G1,i(x1,i)) = El(G1,U (X1)) . (258)

Thus, by (257), we have that ln(Sn) = Λ with probability 1. This means that the state sequence satisfies the state constraint.

Now, observe that the jamming strategy Sn =
(
G1,i(X̃1,i)

)n
i=1

is equivalent to Sn ∼ q̃1(s
n) as in (210). Thus, by part 2 of

Lemma 16, we have that P
(n)
e (q̃1,Cn) ≥ 1

4 , hence R1 = 0. By symmetry, we have that Λ̃2(PX2) = Λ implies that R2 = 0.

APPENDIX G

ANALYSIS OF EXAMPLE 4

Let A be the arbitrarily varying binary symmetric MAC, with two independent binary symmetric channels, as in Example 4.

We begin with the random code capacity region. To show achievability, set U = ∅, X1 ∼ Bernoulli(ω1), X2 ∼ Bernoulli(ω2),
and observe that

Iq(X1;Y1, Y2|X2) ≥ Iq(X1;Y1|X2)
(a)
= Iq(X1;Y1) ,

Iq(X2;Y1, Y2|X1) ≥ Iq(X2;Y2|X1)
(b)
= Iq(X2;Y2) , (259)

and

Iq(X1, X2;Y1, Y2) =H(X1) +H(X2)−Hq(X1, X2|Y1, Y2)
(c)

≥H(X1) +H(X2)−Hq(X1|Y1, Y2)−Hq(X2|Y1, Y2)
(d)

≥ Iq(X1;Y1) + Iq(X2;Y2) , (260)

where (a) holds since X2 is independent of (X1, S1, Y1); (b) holds since X1 is independent of (X2, S2, Y2); (c) is due to the

independence bound on entropy [14, Theorem 2.6.6.]; and (d) holds since conditioning reduces entropy [14, Theorem 2.6.5.].

Therefore, based on Theorem 7, (R1, R2) is achievable for

R1 ≤ min
q(s1):ES1≤Λ

Iq(X1;Y1) = min
0≤q1≤Λ

[h(ω1 ∗ q1)− h(q1)] , (261)

R2 ≤ min
q(s2):ES2≤Λ

Iq(X2;Y2) = min
0≤q1≤Λ

[h(ω2 ∗ q2)− h(q2)] . (262)
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Since h(ω ∗ t)− h(t) is a convex-∪ function over 0 ≤ t ≤ 1 with minimum at t = 1
2 , we have that

C
⋆(A ) ⊇

{
(R1, R2) : R1 ≤ h(ω1 ∗ λ)− h(λ) ,

R2 ≤ h(ω2 ∗ λ)− h(λ)

}
, (263)

which completes the achievability proof. To prove the converse part, we observe that the rate of User 1 is bounded by

min
q(s1,s2):ES1+ES2≤Λ

Iq(X1;Y1, Y2|X2, U) ≤ Iq(X1;Y1, Y2|X2, U)
∣∣∣S1∼Bernoulli(λ)

S2=0

=Iq(X1;Y1|X2, U)
∣∣∣S1∼Bernoulli(λ)

S2=0

= h(p1 ∗ λ)− h(λ) ≤ h(ω1 ∗ λ)− h(λ) , (264)

with X1 ∼ Bernoulli(p1), for 0 ≤ p1 ≤ Ω1, where the first equality holds since S2 = 0 implies that Y2 = X2, and the last

inequality holds since h(α ∗ t) is a concave-∩ function over 0 ≤ t ≤ 1 with maximum at t = 1
2 . Similarly, the rate of User 2

is bounded by

min
q(s1,s2):ES1+ES2≤Λ

Iq(X2;Y1, Y2|X1, U) ≤ h(ω2 ∗ λ)− h(λ) . (265)

This proves that the random code capacity region of the AVMAC in in Example 4 is given by (64).

Moving to the deterministic code capacity region, we first compute L∗, L∗
1 and L∗

2. For every PX1,X2 ,

Ψ(PX1,X2) = min
0≤α1,α2≤1

(α1 ∗ p1 + α2 ∗ p2) = min(p1, 1− p1) + min(p2, 1− p2) , (266)

Ψ1(p1) = min
0≤α1≤1

α1 ∗ p1 = min(p1, 1− p1) , (267)

Ψ2(p2) = min
0≤α2≤1

α2 ∗ p2 = min(p2, 1− p2) , (268)

where we have used the notation p1 = PX1 (1) = 1− PX1 (0) and p2 = PX2 (1) = 1− PX2(0). Therefore,

L∗ = max
0≤p1≤Ω1 ,
0≤p2≤Ω2

Ψ(PX1,X2) = ω1 + ω2 , (269)

L∗
1 = max

0≤p1≤Ω1

Ψ1(p1) = ω1 , (270)

L∗
2 = max

0≤p2≤Ω2

Ψ2(p2) = ω2 . (271)

Observe that based on the result on the random code capacity region, we have that for Λ ≥ 1
2 , or equivalently, λ = 1

2 , the

capacity region is given by C(A ) = C⋆(A ) = {(0, 0)}, in agreement with (66)-(69). Henceforth, assume that Λ < 1
2 .

The first case to consider is Ω1 > Λ and Ω2 > Λ. The converse part is immediate, since the deterministic code capacity

region is always bounded by the random code capacity region. As for the direct part, we are going to show that under the

assumption that Λ < 1
2 , we have that L∗, L∗

1 and L∗
2 are greater than Λ. Indeed, if Ωk ≥ 1

2 , then ωk = 1
2 > Λ, for k = 1, 2.

Otherwise, if Ωk <
1
2 , then ωk = Ωk > Λ, for k = 1, 2. Therefore, in both cases, we have by (269)-(271) that L∗ > Λ, L∗

1 > Λ,

and L∗
2 > Λ, which corresponds to Case a) in Definition 6. It is further inferred that taking p1 = ω1 and p2 = ω2, we have

that Λ̃(p1, p2) = ω1 + ω2 > Λ and Λ̃k(pk) = ωk > Λ for k = 1, 2. It follows that this inputs distribution is legitimate, in the

sense that it belongs to the optimization set PΩ1,Ω2,Λ(U ×X1×X2) (see definition in (37b)). This completes the achievability

proof for the first case, because we have already seen in the achievability proof of the random code capacity region above,

that the inputs distribution p1 = ω1 and p2 = ω2 achieves the region in the RHS of (66), with U = ∅.
Next, we consider the second case, Ω1 ≤ Λ and Ω2 > Λ. Assuming that Λ < 1

2 , we have that Ω1 <
1
2 , hence L∗

1 = ω1 =
Ω1 ≤ Λ. As for L∗

2, if Ω2 ≥ 1
2 , then ω2 = 1

2 > Λ, and if Ω2 <
1
2 , then ω2 = Ω2 > Λ. It follows that L∗ = ω1 + ω2 > Λ

and L∗
2 = ω2 > Λ, but L1 ≤ Λ, which corresponds to Case b) in Definition 6. Furthermore, the input distributions p1 = ω1

and p2 = ω2 belong to the maximization set in (37a), as Λ̃(p1p2) = ω1 + ω2 > Λ and Λ̃2(p2) = ω2 > Λ. Thus, User 2 can

achieve rates below

min
q(s1,s2):ES1+ES2≤Λ

Iq(X2;Y1, Y2|X1) ≥ min
q(s1,s2):ES1+ES2≤Λ

Iq(X2;Y2|X1)

= min
0≤q2≤Λ

[h(ω2 ∗ q2)− h(q2)] = h(ω2 ∗ λ)− h(λ) . (272)

It is also the highest rate achievable for User 2, since

R2 ≤ min
q(s1,s2):ES1+ES2≤Λ

Iq(X2;Y1, Y2|X1) ≤ Iq(X2;Y1, Y2|X1)
∣∣∣ S1=0
S2∼Bernoulli(λ)

=Iq(X2;Y2)
∣∣∣ S1=0
S2∼Bernoulli(λ)

≤ max
0≤p2≤Ω2

h(p2 ∗ λ)− h(λ) = h(ω2 ∗ λ)− h(λ) , (273)
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following the same considerations as in the derivation of the random code capacity region above. The third case, Ω1 > Λ and

Ω2 ≤ Λ, follows by symmetry.

In the fourth case, Ω1 < Λ and Ω2 < Λ, we have that

L∗
1 = ω1 ≤ Ω1 < Λ ,

L∗
2 = ω2 ≤ Ω2 < Λ , (274)

as in Case d) in Definition 6. Thus, the capacity region is C(A ) = {(0, 0)}.

APPENDIX H

ANALYSIS OF EXAMPLE 5

Deriving the random code capacity region is straightforward. To show achievability, we set U = ∅, X1 ∼ N (0,Ω1), and

X2 ∼ N (0,Ω2). Then, since Gaussian noise is known to be the worst additive noise under variance constraint [20, Lemma

II.2], we have that

min
FS : ES2≤Λ

I(X1;Y |X2) =
1

2
log

(
1 +

Ω1

Λ + σ2

)
, (275)

min
FS : ES2≤Λ

I(X2;Y |X1) =
1

2
log

(
1 +

Ω2

Λ + σ2

)
, (276)

min
FS : ES2≤Λ

I(X1, X2;Y ) =
1

2
log

(
1 +

Ω1 +Ω2

Λ + σ2

)
. (277)

This proves achievability. To prove the converse part, observe that the rate of User 1 is bounded by

min
FS :ES2≤Λ

I(X1;Y |X2, U) ≤ I(X1;Y |X2, U)
∣∣∣
S∼N (0,Λ)

≤ 1

2
log

(
1 +

Ω1

Λ + σ2

)
, (278)

where the last inequality follows as in the converse proof of the classical Gaussian MAC Y = X1 + X2 + Z̃ , with Z̃ ∼
N (0,Λ + σ2) [50]. The bounds on the rate of User 2 and on the sum rate are proved in the same manner. We have thus

determined the random code capacity region.

We move to the deterministic code capacity region, as in Theorem 8. First, we calculate the thresholds L∗, L∗
1, and L∗

2.

Based on Definition 5, the Gaussian AVMAC is symmetrized-X1 ×X2 by a conditional pdf ϕ(s|x1, x2) if
∫ ∞

−∞
ϕ(s|x̃1, x̃2)fZ(y − x1 − x2 − s) ds =

∫ ∞

−∞
ϕ(s|x1, x2)fZ(y − x̃1 − x̃2 − s) ds , ∀x1, x2, x̃1, x̃2, y ∈ R , (279)

where fZ(z) = 1√
2πσ2

e−z2/2σ2

. In particular, observe that (279) holds for ϕ(s|x1, x2) = δ(s − x1 − x2), where δ(·) is

the Dirac delta function. In other words, the channel is symmetrized by a distribution ϕ(s|x1, x2) which gives probability

1 to S = x1 + x2. The minimal state cost Λ̃(FX1FX2 ) for the jammer to symmetrize-X1 × X2, for the input distribution

fX1(x1)fX2(x2), is the contiuous version of (32a),

Λ̃(FX1FX2 ) = min

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2)ϕ(s|x1, x2)s2 ds dx1 dx2 , (280)

where the minimization is over all conditional pdfs ϕ(s|x1, x2) that symmetrize-X1 × X2 the channel, that is, satisfy (279).

Similar expressions can be written for the individual state costs Λ̃1(FX1 ) and Λ̃2(FX2 ) as the continuous versions of (32b) and

(32c), respectively. The following lemma states that the minimal state cost for joint symmetrizability is the total input power,

and the minimal state cost for individual symmetrizability is the input power of the corresponding transmitter.

Lemma 17. For zero mean random variables X1 and X2,

Ψ(FX1FX2 ) =EX2
1 + EX2

2 , (281)

Ψ1(FX1 ) =EX2
1 , (282)

Ψ2(FX2 ) =EX2
2 . (283)

Proof of Lemma 17. First, we evaluate Ψ(FX1FX2). Observe that by (280), the Gaussian AVMAC is symmetrized-X1 × X2

by a conditional pdf ϕx1,x2(s) = ϕ(s|x1, x2) if
∫ ∞

−∞
ϕ0,0(s)fZ(y − x1 − x2 − s) ds =

∫ ∞

−∞
ϕx1,x2(s)fZ(y − s) ds , (284)

for all x1, x2, y ∈ R. By substituting z = y − x1 − x2 − s in the LHS, and z̄ = y − s in the RHS, this is equivalent to
∫ ∞

−∞
ϕ0,0(y − x1 − x2 − z)fZ(z) dz =

∫ ∞

−∞
ϕx1,x2(y − z̄)fZ(z̄) dz̄ . (285)
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For every x1, x2 ∈ R, define the random variable S(x1, x2) ∼ ϕx1,x2 . We note that the RHS is the convolution of the pdfs

of the random variables Z and S(x1, x2), while the LHS is the convolution of the pdfs of the random variables Z and

S(0, 0) + x1 + x2. This is not surprising since the channel output Y is a sum of independent random variables, and thus the

pdf of Y is a convolution of pdfs. It follows that ϕ0,0(y − x1 − x2) = ϕx1,x2(y), and by plugging s instead of y, we have

that ϕx1,x2 symmetrizes-X1 ×X2 the Gaussian AVMAC if and only if

ϕx1,x2(s) = ϕ0,0(s− x1 − x2) . (286)

Then, the corresponding state cost satisfies
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2)ϕx1,x2(s)s

2 dx1 dx2 ds

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2)ϕ0,0(s− x1 − x2)s2 dx1 dx2 ds

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2)ϕ0,0(a)(a+ x1 + x2)

2 da dx1 dx2

=

∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞
(x1 + x2 + a)2fX1(x1)fX2(x2) dx1 dx2

]
ϕ0,0(a) da (287)

where the second equality follows by the integral substitution of a = s− x1 − x2. Observe that the bracketed integral can be

expressed as E[(X1 +X2 + a)2] = EX2
1 + EX2

2 + a2. Thus,
∫ ∞

−∞

∫ ∞

−∞
(x1 + x2 + a)2fX1(x1)fX2(x2) dx1 dx2 ≥EX2

1 + EX2
2 . (288)

The last inequality holds for any ϕx1,x2 which symmetrizes-X1×X2 the channel. Now, observe that (286) holds for ϕ̂x1,x2(s) =
δ(s− x1− x2), where δ(·) is the Dirac delta function, hence ϕ̂x1,x2 symmetrizes-X1×X2 the channel. In addition, since ϕ̂0,0

gives probability 1 to S = 0, we have that (288) holds with equality for ϕ̂x1,x2 , and thus, Ψ(FX1FX2 ) = EX2
1 + EX2

2 .

Next, consider Ψ1(FX1 ). The Gaussian AVMAC is symmetrized-X1|X2 by a conditional pdf ϕ′
x1
(s) = ϕ1(s|x1) if

∫ ∞

−∞
ϕ′
0(s)fZ(y − x1 − x2 − s) ds =

∫ ∞

−∞
ϕ′
x1
(s)fZ(y − x2 − s) ds , (289)

for all x1, x2, y ∈ R. By substituting y′ = y−x2, z = y′−x1− s in the LHS, and z̄ = y′− s in the RHS, this is equivalent to
∫ ∞

−∞
ϕ′
0(y

′ − x1 − z)fZ(z) dz =
∫ ∞

−∞
ϕ′
x1
(y′ − z̄)fZ(z̄) dz̄ . (290)

As earlier, it follows that ϕ′
x1

symmetrizes-X1|X2 if and only if ϕ′
x1
(s) = ϕ′

0(s− x1). By similar derivation as in (287), the

corresponding state cost satisfies
∫ ∞

−∞

∫ ∞

−∞
fX1(x1)ϕ

′
x1
(s)s2 dx1 ds =EX2

1 +

∫ ∞

−∞
a′2ϕ′

0(a
′) da′ ≥ EX2

1 , (291)

with equality for ϕ′
x1
(s) = δ(s−x1). Hence, Λ̃1(FX1 ) = EX2

1 , and by symmetry, Ψ2(FX2 ) = EX2
2 . This completes the proof

of Lemma 17.

Going forward with the derivation of the deterministic code capacity region, we have by Lemma 17 that the thresholds

defined in (34)-(36) are given by

L∗ = max
FX1FX2 :EX

2
1≤Ω1,EX2

2≤Ω2

Λ̃(FU,X1,X2) = Ω1 +Ω2 , (292)

L∗
1 = max

FX1EX
2
1≤Ω1

Λ̃1(FU,X1 ) = Ω1 , (293)

L∗
2 = max

FX2EX
2
2≤Ω2

Λ̃2(FU,X2 ) = Ω2 . (294)

We can now complete the derivation by applying Theorem 8 to cases where Ωk 6= Λ for k = 1, 2.

If Ω1 > Λ and Ω2 > Λ, then L∗ > Λ, L∗
1 > Λ, and L∗

2 > Λ, which corresponds to Case a) in Definition 6. We have

seen that the random code capacity region is achieved with the input distribution specified by U = ∅, X1 ∼ N (0,Ω1), and

X2 ∼ N (0,Ω2), which is in the set PΩ1,Ω2,Λ(U ×X1×X2) (see (37b)). It follows that the capacity region is the same as the

random code capacity region, i.e. C(A ) = C⋆(A ), as in (72).

For the Gaussian AVMAC, as opposed to the scenario discussed in Remark 10, the cases where one of the users has zero

capacity can be derived from the single user results. This occurs as the minimal state cost Λ̃1(FU,X1 ) for symmetrizability-X1,

given in Lemma 17, is the same as the minimal state cost for single user symmmetrizability of the Gaussian AVC (see [17]).
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Now, based on Csiszár and Narayan’s results on the single user Gaussian AVC [18], we have the following. If Ω1 ≤ Λ and

Ω2 > Λ, then the individual capacities of User 1 and User 2 are C1 = 0 and C2 = 1
2 log

(
1 + Ω2

Λ+σ2

)
, respectively, which

implies (73). Similarly, if Ω1 > Λ and Ω2 ≤ Λ, then the individual capacities are C1 = 1
2 log

(
1 + Ω1

Λ+σ2

)
and C2 = 0, which

results in (74). If Ω1 ≤ Λ and Ω2 ≤ Λ, then C1 = C2 = 0, hence, (75) follows.
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