
ar
X

iv
:1

90
1.

06
73

8v
2 

 [
cs

.I
T

] 
 2

3 
Ja

n 
20

19

On the Number of Bins in Equilibria for Signaling Games

Serkan Sarıtaş1 Philippe Furrer2 Sinan Gezici3 Tamás Linder4 Serdar Yüksel4

1Division of Decision and Control Systems, KTH Royal Institute of Technology
SE-10044, Stockholm, Sweden. Email: saritas@kth.se.

2Oliver Wyman Inc.
M5J 0A1, Toronto, Ontario, Canada. Email:phil.furrer@oliverwyman.com
3Department of Electrical and Electronics Engineering, Bilkent University

06800, Ankara, Turkey. Email: gezici@ee.bilkent.edu.tr.
4Department of Mathematics and Statistics, Queen’s University

K7L 3N6, Kingston, Ontario, Canada. Email: {linder, yuksel}@mast.queensu.ca.

Abstract

We investigate the equilibrium behavior for the decentralized quadratic cheap talk problem in which an

encoder and a decoder, viewed as two decision makers, have misaligned objective functions. In prior work, we

have shown that the number of bins under any equilibrium has to be at most countable, generalizing a classical

result due to Crawford and Sobel who considered sources with density supported on [0, 1]. In this paper, we refine

this result in the context of exponential and Gaussian sources. For exponential sources, a relation between the

upper bound on the number of bins and the misalignment in the objective functions is derived, the equilibrium

costs are compared, and it is shown that there also exist equilibria with infinitely many bins under certain

parametric assumptions. For Gaussian sources, it is shown that there exist equilibria with infinitely many bins.

1 Introduction

Signaling games and cheap talk are concerned with a class of Bayesian games where a privately informed player
(encoder or sender) transmits information (signal) to another player (decoder or receiver), who knows the probability
distribution of the possible realizations of the private information of the encoder. In these games/problems, the
objective functions of the players are not aligned, unlike in classical communication problems. The cheap talk
problem was introduced in the economics literature by Crawford and Sobel [1], who obtained the striking result
that under some technical conditions on the cost functions, the cheap talk problem only admits equilibria that involve
quantized encoding policies. This is in significant contrast to the usual communication/information theoretic case
where the objective functions are aligned. Therefore, as indicated in [1], the similarity of players’ interests (objective
functions) indicates how much and to which extent the information should be revealed by the encoder; namely, the
message about the private information should be strategically designed and transmitted by the encoder. In this
paper, we discuss extensions and generalizations of strategic information transmission and cheap talk by focusing
on exponential and Gaussian distributions (rather than sources with a density supported on [0, 1] as studied in [1]),
and characterize the equilibrium solutions and properties for these kind of sources.
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1.1 Problem Definition

The focus of this paper is to address the following problems:

1.1.1 Number of Bins

In our previous work [2], we showed that, since the distances between the optimal decoder actions are lower bounded
by [2, Theorem 3.2], the quantized nature of an equilibrium holds for arbitrary scalar sources, rather than only
for sources with a density supported on [0, 1] as studied in the seminal paper by Crawford and Sobel [1]. Hence,
for bounded sources, it can easily be deduced that the number of bins at the equilibrium must be bounded. For
example, for a uniform source on [0, 1] and quadratic objective functions, [1] provides an upper bound on the number
of quantization bins as a function of the bias b. Accordingly, for unbounded sources, the following problems are of
interest:

• For unbounded sources, either one-sided or two-sided, is there an upper bound on the number of bins at the
equilibrium as a function of bias b? As a special case, is it possible to have only a non-informative equilibrium;
i.e., the upper bound on the number of bins is one?

• Is it possible to have an equilibrium with infinitely many bins?

At this point, one can ask why bounding the number of bins is important. Finding such bound is useful since if
one can show that there only exists a finite number of bins, and if for every bin there is a finite number of distinct
equilibria, then the total number of equilibria would be finite; this will allow for a feasible setting where the decision
makers can coordinate their policies.

Furthermore, in a recent work, where we generalized signaling games and cheap talk problems to dynamic /
multi-stage setups, a crucial property that allowed the generalization was the assumption that the number of bins
for each stage equilibrium, conditioned on the past actions, is uniformly bounded [3, Theorem 2.4]. In view of this,
showing that the number of bins is finite would be a useful technical result.

1.1.2 Equilibrium Selection

Attaining the upper bound N on the number of bins at the equilibrium implies that there exists at least one
equilibrium with 1, 2, . . . N bins due to [1, Theorem 1], and thus, a new question arises: among these multiple
equilibria, which one is preferred by the players? Results in [1] show that an equilibrium with more bins is preferable
for both the encoder and the decoder for any source with a density bounded on [0, 1]. Accordingly, for more general
sources, one can ask that

• if there exist more than one equilibrium, which one of these should be selected by the encoder and decoder?

• to what extent can one argue that more bins lead to better performance?

Indeed, it is important to know whether in general a higher number of bins implies more desirable equilibria. If
such a monotonic behavior holds for a class of sources, then both players will prefer to have an equilibrium with
the highest number of bins.

1.2 Preliminaries

In cheap talk, there are two players with misaligned objective functions. An informed player (encoder) knows the
value of an M-valued random variable M and transmits an X-valued random variable X to another player (decoder),
who generates his M-valued decision U upon receiving X . The policies of the encoder and decoder are assumed to
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be deterministic; i.e., x = γe(m) and u = γd(x) = γd(γe(m)). Let ce(m,u) and cd(m,u) denote the cost functions
of the encoder and the decoder, respectively, when the action u is taken for the corresponding message m. Then,
given the encoding and decoding policies, the encoder’s induced expected cost is Je

(
γe, γd

)
= E [ce(M,U)], whereas

the decoder’s induced expected cost is Jd
(
γe, γd

)
= E

[
cd(M,U)

]
. Here, we assume real valued random variables

and quadratic cost functions; i.e., M = X = R, ce (m,u) = (m− u− b)
2

and cd (m,u) = (m− u)
2
, where b denotes

a bias term which is common knowledge between the players. We assume the simultaneous-move game; i.e., the
encoder and the decoder announce their policies at the same time. Then a pair of policies (γ∗,e, γ∗,d) is said to be
a Nash equilibrium [4] if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) for all γe ∈ Γe ,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) for all γd ∈ Γd ,
(1)

where Γe and Γd are the sets of all deterministic (and Borel measurable) functions from M to X and from X to M,
respectively. As observed from the definition in (1), under the Nash equilibrium, each individual player chooses an
optimal strategy given the strategy chosen by the other player.

Due to results obtained in [1] and [2], we know that the encoder policy consists of convex cells (bins) at a
Nash equilibrium1. Now consider an equilibrium with N bins, and let the k-th bin be the interval [mk−1,mk) with
m0 < m1 < . . . < mN and let lk denote the length of the k-th bin; i.e., lk = mk −mk−1 for k = 1, 2, . . . , N (Note
that m0 = 0 and mN = +∞ for an exponential source, whereas m0 = −∞ and mN = +∞ for a Gaussian source).
By [2, Theorem 3.2], at the equilibrium, decoder’s best response to encoder’s action is characterized by

uk = E[M |mk−1 ≤ M < mk] (2)

for the k-th bin; i.e., the optimal decoder action is the centroid for the corresponding bin. From encoder’s point
of view, the best response of the encoder to decoder’s action is determined by the nearest neighbor condition [2,
Theorem 3.2] as follows:

uk+1 −mk = (mk − uk)− 2b ⇔ mk =
uk + uk+1

2
+ b . (3)

Due to the definition of Nash equilibirum [4], these best responses in (2) and (3) must match each other, and only
then the equilibrium can be characterized; i.e., for a given number of bins, the positions of the bin edges are chosen
by the encoder, and the centroids are determined by the decoder. Alternatively, the problem can be considered
as a quantization game in which the boundaries are determined by the encoder and the reconstruction values are
determined by the decoder.

Note that at the equilibrium of this quantization game, the relation between the encoder cost and the decoder
cost can be expressed as follows:

Je(γ∗,e, γ∗,d) =
N∑

i=1

Pr(mi−1 < M < mi)E
[
(M − E[M |mi−1 ≤ M < mi]− b)2|mi−1 < M < mi

]

=

N∑

i=1

Pr(mi−1 < M < mi)
(
E
[
(M − E[M |mi−1 ≤ M < mi])

2|mi−1 < M < mi

]
+ b2

)

= Jd(γ∗,e, γ∗,d) + b2 .

1We note that, unlike Crawford and Sobel’s simultaneous Nash equilibrium formulation, if one considers a Stackelberg formulation
(see [4, p.133] for a definition), then the problem would reduce to a classical communication problem since the encoder would be
committed a priori and the equilibrium would not be quantized; i.e., there exist affine equilibria [2, 3, 5–9].
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Since the difference between the encoder cost and the decoder cost is always b2 regardless of the number of bins,
the equilibrium preferences (i.e., which equilibrium to select) for the encoder and the decoder are aligned under the
quadratic cost assumption.

Based on the above, the problems we consider in this paper can be formulated more formally as follows:

1.2.1 Number of Bins

For a given finite (or infinite) N , does there exist an equilibrium; i.e., is it possible to find the optimal encoder
actions (the boundaries of the bins) m0,m1, . . . ,mN and decoder actions (the centroids of the bins) u1, u2, . . . , uN

which satisfy (2) and (3) simultaneously? Here two possible different methods are:

(i) Lloyd’s Method I: After the initial selection of m0,m1, . . . ,mN , determine u1, u2, . . . , uN by (2), and after
updating u1, u2, . . . , uN , find the corresponding m0,m1, . . . ,mN by (3). Then, continue this iteration. For
this approach, the convergence of this Lloyd-Max iteration is the key issue.

(ii) Fixed-point approach: By combining (2) and (3),

mk =
E[M |mk−1 ≤ M < mk] + E[M |mk ≤ M < mk + 1]

2
+ b

is obtained for k = 1, 2, . . . , N . Then, the problem reduces to determining whether there exists a fixed vector
m0,m1, . . . ,mN satisfying these equations.

1.2.2 Equilibrium Selection

Let Jd,N denote the decoder cost at the equilibrium with N bins. Then, is it true that Jd,N > Jd,N+1 for any finite
N , or even, is Jd,N > Jd,∞ if an equilibrium with infinitely many bins exists?

1.3 Related Literature

Cheap talk and signaling game problems find applications in networked control systems when a communication
channel/network is present among competitive and non-cooperative decision makers [4,10]. Also, there have been a
number of related results in the economics and control literature in addition to the seminal work by Crawford and
Sobel, which are reviewed in [2, 3] (see [11] for an extensive survey).

The quantized nature of the equilibrium makes game theory connected with the quantization theory. For a
comprehensive survey regarding the history of quantization and results on the optimality and convergence properties
of different quantization techniques (including Lloyd’s methods), we refer to [12]. In particular, [13] shows that,
for sources with a log-concave density, Lloyd’s Method I converges to the unique optimal quantizer. It was shown
in [14] and [15] that Lloyd’s Method I converges to the globally optimal quantizer if the source density is continuous
and log-concave, and if the error weighting function is convex and symmetric. For sources with bounded support,
the condition on the source was relaxed to include all continuous and positive densities in [16], and convergence of
Lloyd’s Method I to a (possibly) locally optimal quantizer was proved. The number of bins of an optimal entropy-
constrained quantizer is investigated in [17], and conditions under which the number of bins is finite or infinite are
presented. As an application to smart grids, [18] considers the design of signaling schemes between a consumer
and an electricity aggregator with finitely many messages (signals); the best responses are characterized and the
maximum number of messages (i.e., quantization bins) are found using Lloyd’s Method II via simulation.

The existence of multiple quantized equilibria necessitates a theory to specify which equilibrium point is the
solution of a given game. Two different approaches are taken to achieve a unique equilibrium. One of them reduces
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the multiplicity of equilibria by requiring that off-the-equilibrium-path beliefs satisfy an additional restriction (e.g.,
by shrinking the set of players’ rational choices) [19], [11]. As introduced in [20], the other approach presents a
theory that selects a unique equilibrium point for each finite game as its solution; i.e., one and only one equilibrium
points out of the set of all equilibrium points of this kind (e.g., see [21] for the application).

1.4 Contributions

(i) Under the exponential source assumption with a negative bias; i.e., b < 0, we obtain an upper bound on the
number of bins at the equilibrium and show that the equilibrium cost reduces as the number of bins increases.

(ii) Under the exponential source assumption with a positive bias; i.e., b > 0, we prove that there exists a unique
equilibrium with N bins for any N ∈ N and there is no upper bound on the number of bins; in fact, there exist
equilibria with infinitely many bins. Further, the equilibrium cost achieves its minimum at the equilibrium
with infinitely many bins.

(iii) Under the Gaussian source assumption, we show that there always exist equilibria with infinitely many bins
regardless of the value of b.

2 Exponential Distribution

In this section, the source is assumed to be exponential and the number of bins at the equilibria is investigated.
Before delving into the technical results, we observe the following fact:

Fact 1. Let M be an exponentially distributed r.v. with a positive parameter λ: i.e., the probability distribution
function (PDF) of M is f(m) = λe−λm for m ≥ 0. The expectation and the variance of an exponential r.v. truncated

to the interval [a, b] are E[M |a < M < b] = 1
λ + a − b−a

eλ(b−a)−1
and Var (M |a < M < b) = 1

λ2 − (b−a)2

eλ(b−a)+e−λ(b−a)−2
,

respectively.

Proof. Consider the following integral:

∫
λme−λmdm

s=λm
ds=λdm=

∫
1

λ
se−sds

u=s, dv=e−sds/λ

du=ds, v=−e−s/λ
=

−se−s

λ
−
∫ −e−s

λ
ds

=
−se−s

λ
− e−s

λ

s=λm
= −me−λm − e−λm

λ
. (4)

Then, the expectation of an exponential r.v. truncated to [a, b] will be

E[M |a < M < b] =

∫ b

a

m
λe−λm

∫ b

a λe−λm
dm =

∫ b

a
mλe−λmdm

∫ b

a λe−λmdm
=

(
−me−λm − e−λm

λ

) ∣∣∣∣
b

a

−e−λm

∣∣∣∣
b

a

=
−be−λb − e−λb

λ + ae−λa + e−λa

λ

−e−λb + e−λa
=

1

λ
+

aeλb − beλa

eλb − eλa

=
1

λ
+ a− eλa(b− a)

eλb − eλa
=

1

λ
+ a− b− a

eλ(b−a) − 1
. (5)
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Now consider the following integral:

∫
λm2e−λmdm

u=λm2, dv=e−λmdm

du=2λmdm, v=−e−λm/λ
= λm2−e−λm

λ
−
∫ −e−λm

λ
2λmdm

= −m2e−λm +
2

λ

∫
λme−λmdm

(a)
= −m2e−λm − 2me−λm

λ
− 2e−λm

λ2
. (6)

Here, (a) holds due to (4). Then,

Var (M |a < M < b) = E[M2|a < M < b]− (E[M |a < M < b])
2

=

∫ b

a

m2 λe−λm

∫ b

a λe−λm
dm−

(
−be−λb − e−λb

λ + ae−λa + e−λa

λ

−e−λb + e−λa

)2

=
− e−λb

λ2

(
λ2b2 + 2λb+ 2

)
+ e−λa

λ2

(
λ2a2 + 2λa+ 2

)

−e−λb + e−λa
−

(
− e−λb

λ (λb + 1) + e−λa

λ (λa+ 1)
)2

(−e−λb + e−λa)
2

=
e−2λb

λ2

(
λ2b2 + 2λb+ 2

)
+ e−2λa

λ2

(
λ2a2 + 2λa+ 2

)

(−e−λb + e−λa)
2 −

e−λ(a+b)

λ2

(
λ2a2 + λ2b2 + 2λa+ 2λb+ 4

)

(−e−λb + e−λa)
2

−
e−2λb

λ2

(
λ2b2 + 2λb+ 1

)
+ e−2λa

λ2

(
λ2a2 + 2λa+ 1

)

(−e−λb + e−λa)
2 +

e−λ(a+b)

λ2

(
2λ2ab+ 2λa+ 2λb+ 2

)

(−e−λb + e−λa)
2

=
e−2λb

λ2 + e−2λa

λ2 − e−λ(a+b)

λ2

(
λ2a2 + λ2b2 + 2− 2λ2ab

)

(−e−λb + e−λa)
2

=
e−2λb

λ2 + e−2λa

λ2 − 2e−λ(a+b)

λ2 − e−λ(a+b)

λ2

(
λ2(b− a)2

)

e−2λb + e−2λa − 2e−λ(a+b)

=
1

λ2
− (b− a)2

e−λb+λa + e−λa+λb − 2

=
1

λ2
− (b − a)2

eλ(b−a) + e−λ(b−a) − 2
. (7)

The following result shows the existence of an equilibrium with finitely many bins. Here, ⌊x⌋ denotes the largest
integer less than or equal to x.

Proposition 1. Suppose M is exponentially distributed with parameter λ. Then, for b < 0, any Nash equilibrium
is deterministic and can have at most ⌊− 1

2bλ + 1⌋ bins with monotonically increasing bin-lengths.

Proof. Since uN = E[M |mN−1 ≤ M ≤ mN = ∞] = mN−1 +
1
λ , it follows that

1

λ
= uN −mN−1 = (mN−1 − uN−1)− 2b

> (uN−1 −mN−2)− 2b

6



= (mN−2 − uN−2)− 2(2b)

...

> u1 −m0 − (N − 1)(2b)

> −(N − 1)(2b) .

Here, the inequalities follow from the fact that the exponential PDF is monotonically decreasing. Hence, for b < 0,

N < − 1

2bλ
+ 1 ⇒ N ≤

⌊
− 1

2bλ
+ 1

⌋
.

Now, consider the bin-lengths as follows:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) ≥ (uk −mk−1) + (uk −mk−1)

= (mk−1 − uk−1 − 2b) + (mk−1 − uk−1 − 2b)

> (mk−1 − uk−1 − 2b) + (uk−1 −mk−2 − 2b)

= (mk−1 − uk−1) + (uk−1 −mk−2)− 4b = mk−1 −mk−2 − 4b = lk−1 − 4b

⇒ lk > lk−1 . (8)

Thus, the bin-lengths are monotonically increasing; i.e., l1 < l2 < . . . < lN−1 < lN = ∞.

This is an important result as it provides us with a closed form expression for the maximum bit rate required
by a certain system to operate at a steady state. For example, there can be at most one bin at the equilibrium
(i.e., a non-informative equilibrium) if N ≤

⌊
− 1

2bλ + 1
⌋
< 2 ⇔ − 1

2bλ < 1 ⇔ b < − 1
2λ . However, this result does

not characterize the equilibrium completely; i.e., it does not give a condition on the existence of an equilibrium
with two or more bins. The following theorem characterizes the equilibrium with two bins, and forms a basis for
equilibria with more bins:

Theorem 1. When the source has an exponential distribution with parameter λ, there exist only non-informative
equilibria if and only if b ≤ − 1

2λ . An equilibrium with at least two bins is achievable if and only if b > − 1
2λ .

Proof. Consider the two bins [0 = m0,m1) and [m1,m2 = ∞). Then, the centroids of the bins (the decoder actions)
are u1 = E[M |0 < M < m1] =

1
λ − m1

eλm1−1
and u2 = E[M |m1 < M < ∞] = 1

λ +m1. In view of (3), an equilibrium
with these two bins exists if and only if

m1 =
u1 + u2

2
+ b =

1
λ − m1

eλm1−1
+ 1

λ +m1

2
+ b ⇒ m1

2

eλm1

eλm1 − 1
=

1

λ
+ b ⇒ eλm1

(
1

λ
+ b − m1

2

)
=

1

λ
+ b . (9)

Note that in (9), m1 = 0 is always a solution; however, in order to have an equilibrium with two bins, we need a
non-zero solution to (9); i.e., m1 > 0. For this purpose, the Lambert W -function will be utilized. Although the
Lambert W -function is defined for complex variables, we restrict our attention to the real-valued W -function; i.e.,
the W -function is defined as

W (xex) = x for x ≥ 0 ,

W0(xe
x) = x for − 1 ≤ x < 0 ,

W−1(xe
x) = x for x ≤ −1 .
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As it can be seen, for x ≥ 0, W (xex) is a well-defined single-valued function. However, for x < 0, W (xex) is doubly
valued, such as W (xex) ∈ (− 1

e , 0) and there exist x1 and x2 that satisfy x1e
x1 = x2e

x2 where x1 ∈ (−1, 0) and
x2 ∈ (−∞,−1). In order to differentiate these values, the principal branch of the Lambert W -function is defined to
represent the values greater than −1; e.g., x1 = W0(x1e

x1) = W0(x2e
x2). Similarly, the lower branch of the Lambert

W -function represents the values smaller than −1; e.g, x2 = W−1(x1e
x1) = W−1(x2e

x2). Further, for x = −1, two
branches of the W -function coincide; i.e., −1 = W0(− 1

e ) = W−1(− 1
e ). Regarding the definition above, by letting

t , 2λ
(
m1

2 − 1
λ − b

)
, the solution of (9) can be found as follows:

et+2+2λb

(−t

2λ

)
=

1

λ
+ b ⇒ tet = −(2 + 2λb)e−(2+2λb) ⇒ t = W0

(
−(2 + 2λb)e−(2+2λb)

)
. (10)

Note that, in (10), depending on the values of −(2 + 2λb), the following cases can be considered:

(i) −(2 + 2λb) ≥ 0 : tet = −(2 + 2λb)e−(2+2λb) ⇒ t = −(2 + 2λb) ⇒ m1 = 0, which implies a non-informative
equilibrium; i.e., an equilibrium with only one bin.

(ii) −1 < −(2 + 2λb) < 0 : Since tet = −(2 + 2λb)e−(2+2λb), there are two possible solutions:

(a) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
= −(2 + 2λb), we have m1 = 0, as in the previous case.

(b) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
⇒ t < −1 ⇒ −1 > t = 2λ

(
m1

2 − 1
λ − b

)
= λm1−2−2λb > λm1−1 ⇒

λm1 < 0, which is not possible.

(iii) −(2 + 2λb) = −1 : Since tet = −(2+2λb)e−(2+2λb), there is only one solution, t = −(2+2λb) = −1 ⇒ m1 = 0,
which implies that the equilibrium is non-informative.

(iv) −(2 + 2λb) < −1 : Since tet = −(2 + 2λb)e−(2+2λb), there are two possible solutions:

(a) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
= −(2 + 2λb), we have m1 = 0; i.e., an equilibrium with only one bin.

(b) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
, we have −1 < t < 0 ⇒ −1 < λm1−2−2λb < 0 ⇒ 1

λ+2b < m1 < 2
λ+2b.

Thus, if we have 1
λ + 2b > 0 ⇒ b > − 1

2λ , then m1 must be positive, which implies the existence of an
equilibrium with two bins.

Thus, as long as b ≤ − 1
2λ , there exists only one bin at the equilibrium; i.e., there exist only non-informative equilibria;

and the equilibrium with two bins can be achieved only if b > − 1
2λ . In this case, m1 = 1

λW0

(
−(2 + 2λb)e−(2+2λb)

)
+

2
(
1
λ + b

)
. Note that, since −1 < W0(·) < 0, the boundary between two bins lies within the interval 1

λ +2b < m1 <
2
λ + 2b.

Contrarily to the negative bias case, the number of bins at the equilibrium is not bounded when the bias is
positive. The following theorem investigates the case in which b > 0:

Theorem 2. When the source has an exponential distribution with parameter λ, for b > 0 and any number of bins
N ,

(i) There exists a unique equilibrium,

(ii) The bin-lengths are monotonically increasing.

Further, since the two statements above hold for any N ∈ N, there exists no upper bound on the number of bins at
an equilibrium.
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Proof. The proof consists of three main parts. After characterizing the equilibrium, the monotonicity of bin-lengths
and the upper bound on the number of bins are investigated.

Part-I: Equilibrium Solution : For the last two bins,

mN−1 =
uN−1 + uN

2
+ b =

(
mN−2 +

1
λ − lN−1

eλlN−1−1

)
+
(
mN−1 +

1
λ

)

2
+ b

⇒ lN−1
eλlN−1

eλlN−1 − 1
=

2

λ
+ 2b (11)

⇒ lN−1 =
1

λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+ 2

(
1

λ
+ b

)
(12)

can be obtained. For the other bins; i.e., the k-th bin for k = 1, 2, . . . , N − 2, observe the following:

uk+1 −mk = mk − uk − 2b = (mk −mk−1)− (uk −mk−1)− 2b

⇒ 1

λ
− lk+1

eλlk+1 − 1
= lk −

1

λ
+

lk
eλlk − 1

− 2b

⇒lk
eλlk

eλlk − 1
=

2

λ
+ 2b− lk+1

eλlk+1 − 1
. (13)

If we let ck , 2
λ + 2b− lk+1

eλlk+1−1
, the solution to (13) is

lk =
1

λ
W0

(
−λcke

−λck
)
+ ck . (14)

It can be observed from (12) and (14) that the bin-lengths l1, l2, . . . , lN−1 have a unique solution, which implies

that the bin edges have unique values as m0 = 0, mk =
∑k

i=1 lk for k = 1, 2, . . . , N − 1, and mN = ∞.

In order to represent the solutions in a recursive form, define g(lk) , lk
eλlk

eλlk−1
and h(lk) ,

lk
eλlk−1

. Then, the

recursions in (11) and (13) can be written as:

g(lN−1) =
2

λ
+ 2b , (15a)

g(lk) =
2

λ
+ 2b− h(lk+1) , for k = 1, 2, . . . , N − 2 . (15b)

Part-II: Monotonically Increasing Bin-Lengths : The proof is based on induction. Before the induction step,
in order to utilize (15b), we examine the structure of g and h. First note that both functions are continuous and
differentiable on [0,∞). Now, g has the following properties:

• g(0) = lims→0
seλs

eλs−1

H
= lims→0

1+λs
λ = 1

λ > 0 (
H
= represents l’Hôspital’s rule),

• lims→∞ g(s) = lims→∞
seλs

eλs−1

H
= lims→∞

1+λs
λ = ∞,

• d
ds (g(s))|s=0 = lims→0

eλs(eλs−λs−1)
(eλs−1)2

H
= lims→0

λeλs(2eλs−λs−2)
2λeλs(eλs−1)

H
= lims→0

2λeλs−λ
2λeλs = 1

2 > 0,

• d
ds (g(s)) =

eλs(eλs−λs−1)
(eλs−1)2

=
eλs ∑

∞

k=2
(λs)k

k!

(eλs−1)2
> 0, for any s > 0.
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All of the above imply that g is a positive, strictly increasing and unbounded function on R≥0.
Similarly, the properties of h can be listed as follows:

• h(0) = lims→0
s

eλs−1

H
= lims→0

1
λeλs = 1

λ > 0,

• lims→∞ h(s) = lims→∞
s

eλs−1

H
= lims→∞

1
λeλs = 0,

• d
ds (h(s))|s=0 = lims→0 − eλs(λs−1)+1

(eλs−1)2
H
= lims→0

−λ2ses

2(eλs−1)λeλs

H
= lims→0 − λ

2λeλs = − 1
2 < 0,

• d
ds (h(s)) = − eλs(λs−1)+1

(eλs−1)2

(a)
< 0, for any s > 0,

where (a) follows from the fact that d
ds (−eλs(λs−1)−1) = −λ2seλs < 0 for any s > 0, and −e0(λ(0)−1)−1 = 0.

All of the above imply that h is a positive and strictly decreasing function on R≥0.
Further, notice the following properties:

g(lk) = h(lk) + lk ,

g(lk) = lk
eλlk

eλlk − 1
> lk ,

h(lk) =
lk

eλlk − 1
=

lk∑∞
k=0

(λlk)k

k! − 1
=

lk

λlk +
∑∞

k=2
(λlk)k

k!

<
lk
λlk

=
1

λ
.

(16)

Now consider the length of the (N − 2)-nd bin. By utilizing the properties in (16) on the recursion in (15b),

g(lN−2) =
2

λ
+ 2b− h(lN−1) = g(lN−1)− h(lN−1) = lN−1

⇒ lN−1 = g(lN−2) = lN−2 + h(lN−2)

⇒ lN−2 < lN−1 < lN−2 +
1

λ
(17)

is obtained. Similarly, for the (N − 3)-rd bin, the following relations hold:

g(lN−3) =
2

λ
+ 2b− h(lN−2) = g(lN−2) + h(lN−1)− h(lN−2) = lN−2 + h(lN−1)

g(lN−3) = lN−2 + h(lN−1) < lN−2 + h(lN−2) = g(lN−2) ⇒ lN−3 < lN−2

lN−2 < lN−2 + h(lN−1) = g(lN−3) = lN−3 + h(lN−3) < lN−3 +
1

λ

⇒ lN−3 < lN−2 < lN−3 +
1

λ
. (18)

Now suppose that lN−1 > lN−2 > . . . > lk is obtained. Then, consider the (k − 1)-st bin:

g(lk−1) =
2

λ
+ 2b− h(lk) = g(lk) + h(lk+1)− h(lk) = lk + h(lk+1)

g(lk−1) = lk + h(lk+1) < lk + h(lk) = g(lk) ⇒ lk−1 < lk

lk < lk + h(lk+1) = g(lk−1) = lk−1 + h(lk−1) < lk−1 +
1

λ

10



⇒ lk−1 < lk < lk−1 +
1

λ
. (19)

Thus, the bin-lengths form a monotonically increasing sequence.
Part-III: Number of Bins : Consider the length of the (N − 1)-st bin: Notice that, in (12), since b > 0, −(2 +

2λb) < −2 < −1 holds, and by the Lambert W -function, t = W0

(
−(2 + 2λb)e−(2+2λb)

)
such that tet = −(2 +

2λb)e−(2+2λb) and −1 < t < 0, which result in 2
λ + 2b > lN−1 > 1

λ + 2b > 1
λ ; i.e., the (N − 1)-st bin has a positive

length.
For the other bins, since ck = 2

λ + 2b − lk+1

eλlk+1−1
= 2

λ + 2b − h(lk+1) > 2
λ + 2b − 1

λ = 1
λ + 2b for b > 0, we

have −λck = −1− 2λb < −1, which implies that W0

(
−λcke

−λck
)

has a solution t such that tet = −λcke
−λck and

−1 < t < 0. Hence, from (14), lk = 1
λW0

(
−λcke

−λck
)
+ck > 1

λ(−1)+ 1
λ +2b = 2b > 0 is obtained. This means that,

for any given number of bins N , when b > 0, an equilibrium with positive bin-lengths l1, l2, . . . , lN−2 is obtained.
To summarize the results, for every N ∈ N with lN = ∞, there exists a solution l1, l2, . . . , lN so that

(i) these construct a unique equilibrium,

(ii) each of these are non-zero,

(iii) these form a monotonically increasing sequence.

By following an approach similar to that in Theorem 2, the bounds in Proposition 1 can be refined as follows:

Corollary 1. (i) There exists an equilibrium with at least two bins if and only if b > − 1
2λ .

(ii) There exists an equilibrium with at least three bins if and only if b > − 1
2λ

e−2
e−1 .

Proof. (i) In order to have an equilibrium with at least 2 bins, lN−1 > 0 must be satisfied. From (12), if
−(2 + 2λb) < −1 is satisfied, then the solution lN−1 will be positive. Thus, if b > − 1

2λ , an equilibrium with
at least 2 bins is obtained; otherwise; i.e., b ≤ − 1

2λ , there exists only one bin at the equilibrium.

(ii) In order to have an equilibrium with at least 3 bins, lN−2 > 0 must be satisfied. From (14), if −λcN−2 < −1
is satisfied, then the solution to lN−2 will be positive. Then,

−λcN−2 =− λ

(
2

λ
+ 2b− h(lN−1)

)
= −λ (g(lN−1)− h(lN−1)) = −λlN−1 < −1

⇒lN−1 =
1

λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+ 2

(
1

λ
+ b

)
>

1

λ

⇒W0

(
−(2 + 2λb)e−(2+2λb)

)
> −1− 2λb . (20)

Let t , W0

(
−(2 + 2λb)e−(2+2λb)

)
, then tet = −(2+ 2λb)e−(2+2λb) and −1 < t < 0. Then, from (20), since tet

is increasing function of t for t > −1,

t >− 1− 2λb ⇒ tet = −(2 + 2λb)e−(2+2λb) > −(1 + 2λb)e−(1+2λb)

⇒2 + 2λb < (1 + 2λb)e ⇒ b > − 1

2λ

e− 2

e− 1
. (21)

Thus, if b > − 1
2λ

e−2
e−1 , an equilibrium with at least three bins is obtained; otherwise; i.e., b ≤ − 1

2λ
e−2
e−1 , there

can exist at most two bins at the equilibrium.
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Theorem 2 shows that, when b > 0, there exists an equilibrium with N bins for any finite N ∈ N. The following
shows the existence of equilibria with infinitely many bins:

Theorem 3. For an exponential source and positive bias b > 0, there exist equilibria with infinitely many bins. In
particular, all bins must have a length of l∗, where l∗ is the solution to g(l∗) = 2

λ + 2b− h(l∗).

Proof. For any equilibrium, consider a bin with a finite length, let’s say the k-th bin, and by utilizing (15b) and
(16), we have the following inequalities:

2

λ
+ 2b =g(lk) + h(lk+1) = g(lk) + g(lk+1)− lk+1 > lk + lk+1 − lk+1 = lk ⇒ lk <

2

λ
+ 2b ,

2

λ
+ 2b =g(lk) + h(lk+1) = h(lk) + lk + h(lk+1) <

1

λ
+ lk +

1

λ
=

2

λ
+ lk ⇒ lk > 2b .

Thus, all bin-lengths are bounded from above and below: 2b < lk < 2
λ + 2b. Now consider the fixed-point solution

of the recursion in (15b); i.e., g(l∗) = 2
λ + 2b− h(l∗). Then, by letting c , 2

λ + 2b,

l∗
eλl

∗

eλl∗ − 1
= c− l∗

eλl∗ − 1
⇒ l∗

eλl
∗

+ 1

eλl∗ − 1
= c ⇒ (c− l∗)eλl

∗ − (c+ l∗) = 0 . (22)

In order to investigate if (22) has a unique solution l∗ such that 2b < l∗ < 2
λ + 2b, let Ψ(s) , (c − s)eλs − (c + s)

for s ∈
(
2b, 2

λ + 2b
)

and notice the following properties:

• Ψ(2b) = 2
λe

2λb −
(
2
λ + 4b

)
= 2

λ

(
e2λb − 1− 2λb

)
= 2

λ

(
1 + 2λb+

∞∑
k=2

(2λb)k

k! − 1− 2λb

)
= 2

λ

( ∞∑
k=2

(2λb)k

k!

)
> 0,

• Ψ( 2λ + 2b) = 0× e2+2λb −
(
4
λ + 4b

)
= −

(
4
λ + 4b

)
< 0,

• Ψ′(s) = d
ds (Ψ(s)) = eλs (λ(c− s)− 1)− 1,

• Ψ′(2b) = e2λb
(
λ( 2λ)− 1

)
− 1 = e2λb − 1 > 0,

• Ψ′( 2λ + 2b) = e2+2λb (λ× 0− 1)− 1 = −e2+2λb − 1 < 0,

• Ψ′′(s) = d
ds (Ψ

′) = λeλs (λ(c− s)− 2), since s ∈
(
2b, 2

λ + 2b
)

and c = 2
λ + 2b, we have 0 < c− s < 2

λ ⇒ −2 <
λ(c− s)− 2 < 0 ⇒ Ψ′′(s) > 0.

All of the above implies that Ψ(s) is a concave function of s for s ∈
(
2b, 2

λ + 2b
)
, Ψ(2b) > 0, Ψ(s) reaches its

maximum value on the interval
(
2b, 2

λ + 2b
)
; i.e., when Ψ′(s∗) = 0, and Ψ( 2λ +2b) < 0; thus, Ψ(s) crosses the s-axis

only once, which implies that Ψ(s) = 0 has a unique solution on the interval
(
2b, 2

λ + 2b
)
. In other words, the

fixed-point solution of the recursion in (15b) is unique; i.e., Ψ(l∗) = 0.
Hence, if the length of the first bin is l∗; i.e., l1 = l∗, then, all bins must have a length of l∗; i.e., l1 = l2 = l3 =

. . . = l∗. Thus, there exist equilibria with infinitely many equi-length bins.
Now, suppose that l1 < l∗. Then, by (15b), h(l2) = 2

λ + 2b − g(l1). Since g in an increasing function,

l1 < l∗ ⇒ g(l1) < g(l∗). Let g(l∗)− g(l1) , ∆ > 0, then,

g(l∗) + h(l∗) = g(l1) + h(l2) =
2

λ
+ 2b ⇒ ∆ = g(l∗)− g(l1) = h(l2)− h(l∗) . (23)
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From Theorem 2, we know that h(s) = s
eλs−1

is a decreasing function with h′(s) = − eλs(λs−1)+1
(eλs−1)2

< 0 for s > 0 and

h′(0) = − 1
2 . Slightly changing the notation, let h̃′(s) = h′( sλ ); i.e., h̃′(s) = es−1−ses

(es−1)2 . Then, h̃′′(s) = d
ds (h̃

′(s)) =

− es(es−1)(2es−ses−s−2)
(es−1)4 . Now, let ̺(s) , 2es − ses − s− 2, and observe the following:

̺(s) = 2es − ses − s− 2 ⇒ ̺(0) = 0 ,

̺′(s) =
d

ds
(̺(s)) = es − ses − 1 ⇒ ̺′(0) = 0 ,

̺′′(s) =
d

ds
(̺′(s)) = −ses ≤ 0 ⇒ ̺′′(0) = 0

⇒ ̺′(s) < 0 for s > 0 ⇒ ̺(s) < 0 for s > 0 ⇒ h̃′′(s) > 0 for s > 0 . (24)

Thus, h̃′(s) is an increasing function, which implies that h′(s) is also an increasing function. Since h′(0) = − 1
2 ,

h′(s) > − 1
2 for s > 0, it follows that h(l∗)−h(l2)

l∗−l2
> − 1

2 ⇒ −∆
l∗−l2

> − 1
2 ⇒ l∗ − l2 > 2∆. From (23),

∆+∆ = (g(l∗)− g(l1)) + (h(l2)− h(l∗)) = g(l∗)− g(l1) + (g(l2)− l2)− (g(l∗)− l∗)

= g(l2)− g(l1) + l∗ − l2︸ ︷︷ ︸
>2∆

⇒ g(l2)− g(l1) < 0 ⇒ l2 < l1 . (25)

Proceeding similarly, l∗ > l1 > l2 > . . . can be obtained. Now, notice that, since h(lk) is a monotone function and
2b < lk < 2

λ + 2b, the recursion in (15b) can be satisfied if

g(lk) =
2

λ
+ 2b− h(lk+1) ⇒

2

λ
+ 2b− h(2b) < g(lk) <

2

λ
+ 2b− h

(
2

λ
+ 2b

)
. (26)

Let l and l and defined as g(l) = 2
λ +2b−h(2b) and g(l) = 2

λ +2b−h
(
2
λ + 2b

)
, respectively. Thus, if lk /∈ (l, l), then

there is no solution to lk+1 for the recursion in (15b). Since the sequence of bin-lengths is monotonically decreasing,
there is a natural number K such that lK > l and lK+1 ≤ l, which implies that there is no solution to lK+2. Thus,
there cannot be any equilibrium with infinitely many bins if l1 < l∗.

A similar approach can be taken for l1 > l∗: Since g is an increasing function, l1 > l∗ ⇒ g(l1) > g(l∗). Let

g(l1) − g(l∗) , ∆̃ > 0 ⇒ g(l1) − g(l∗) = h(l∗)− h(l2) = ∆̃. Then, since h′(s) > − 1
2 for s > 0, h(l2)−h(l∗)

l2−l∗ > − 1
2 ⇒

−∆
l2−l∗ > − 1

2 ⇒ l2 − l∗ > 2∆. From (23),

∆̃ + ∆̃ = (g(l1)− g(l∗)) + (h(l∗)− h(l2)) = g(l1)− g(l∗) + (g(l∗)− l∗)− (g(l2)− l2)

= g(l1)− g(l2) + l2 − l∗︸ ︷︷ ︸
>2∆

⇒ g(l1)− g(l2) < 0 ⇒ l1 < l2 . (27)

Proceeding similarly, l∗ < l1 < l2 < . . . can be obtained. Since the sequence of bin-lengths is monotonically
increasing, there is a natural number K̃ such that lK̃ < l and lK̃+1 ≥ l, which implies that there is no solution to
lK̃+2. Thus, there cannot be any equilibrium with infinite number of bins if l1 > l∗. Notice that, it is possible to
have an equilibrium with finite number of bins since for the last bin with a finite length, (15a) is utilized. Further, it
is shown that, at the equilibrium, any finite bin-length must be greater than or equal to l∗; i.e., 2b < l∗ ≤ lk < 2

λ+2b
must be satisfied.

So far, we have shown that at the equilibrium there is an upper bound on the number of bins when b < 0; i.e.,
there can exist only finitely many equilibria with finitely many bins. On the other hand, when b > 0, there is no
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upper bound on the number of bins at the equilibrium, and even there exist equilibria with infinitely many bins.
Therefore, at this point, it is interesting to examine which equilibrium is preferred by the decision makers; i.e.,
which equilibrium is more informative (has smaller cost).

Theorem 4. The most informative equilibrium is reached with the maximum possible number of bins:

(i) for b < 0, if there are two different equilibria with K and N bins where N > K, the equilibrium with N bins
is more informative.

(ii) for b > 0, the equilibria with infinitely many bins are the most informative ones.

Proof. (i) Suppose that there exists an equilibrium with N bins, and the corresponding bin-lengths are l1 < l2 <
. . . < lN = ∞ with bin-edges 0 = m0 < m1 < . . . < mN−1 < mN = ∞. Then, the decoder cost is

Jd,N = E[(M − U)2] = E[(M − E[M |X ])2]

=

N∑

i=1

E

[
(M − E[M |mi−1 < M < mi])

2 |mi−1 < M < mi

]
Pr(mi−1 < M < mi)

=

N∑

i=1

Var (M |mi−1 < M < mi) Pr(mi−1 < M < mi)

=
N∑

i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

))
. (28)

Now, consider an equilibrium with N + 1 bins with bin-lengths l̃1 < l̃2 < . . . < l̃N+1 = ∞ and bin-edges
0 = m̃0 < m̃1 < . . . < m̃N < m̃N+1 = ∞. The relation between bin-lengths and bin-edges can be expressed

as lk = l̃k+1 and mk = m̃k+1 − l̃1, respectively, for k = 1, 2, . . . , N by Theorem 2. Then, the decoder cost at
the equilibrium with N + 1 bins can be written as

Jd,N+1 =
N+1∑

i=1

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)(
e−λm̃i−1

(
1− e−λl̃i

))

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
e−λm̃0

(
1− e−λl̃1

))
+

N+1∑

i=2

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)(
e−λm̃i−1

(
1− e−λl̃i

))

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+

N+1∑

i=2

(
1

λ2
− l2i−1

eλli−1 + e−λli−1 − 2

)(
e−λ(mi−2+l̃1)

(
1− e−λli−1

))

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+ e−λl̃1

(
N∑

i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

))
)

︸ ︷︷ ︸
Jd,N

(a)
< Jd,N

(
1− e−λl̃1

)
+ Jd,Ne−λl̃1 = Jd,N . (29)

Thus, Jd,N+1 < Jd,N is obtained, which implies that the equilibrium with more bins is more informative.
Here, (a) follows from the fact below:

Jd,N =

N∑

i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

))
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>

N∑

i=1

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
Pr(mi−1 < m < mi)

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
N∑

i=1

Pr(mi−1 < m < mi)

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
, (30)

where the inequality holds since l̃1 < l1 < l2 < . . . < lN and ϕ(s) , s2

eλs+e−λs−2
is a decreasing function of s,

as shown below:

ϕ(s) =
s2

eλs + e−λs − 2
=

s2eλs

(eλs − 1)2
,

ϕ′(s) =
seλs(eλs − 1)(2eλs − λseλs − λs− 2)

(eλs − 1)4
=

seλs(eλs − 1)̺(λs)

(eλs − 1)4
(a)
< 0 , (31)

where (a) follows from (24).

(ii) Now consider an equilibrium with infinitely many bins. By Theorem 3, bin-lengths are l1 = l2 = . . . = l∗,
where l∗ is the fixed-point solution of the recursion in (15b); i.e., g(l∗) = 2

λ + 2b − h(l∗), and bin-edges are
mk = kl∗. Then, the decoder cost is

Jd,∞ =

∞∑

i=1

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl∗

))

=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)
+

∞∑

i=2

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl∗

))

=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)
+ e−λl∗

∞∑

i=2

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−2)l∗

(
1− e−λl∗

))

=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)
+ e−λl∗

∞∑

i=1

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl∗

))

︸ ︷︷ ︸
Jd,∞

⇒Jd,∞
(
1− e−λl∗

)
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl∗

)

⇒Jd,∞ =

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)
. (32)

Since bin-lengths at the equilibria with finitely many bins are greater than l∗ by Theorem 3, and due to a
similar reasoning in (29) (indeed, by replacing l̃1 with l∗), Jd,∞ < Jd,N can be obtained for any finite N .
Actually, Jd,N is a monotonically decreasing sequence with limit limN→∞ Jd,N = Jd,∞. Thus, the lowest
equilibrium cost is achieved with infinitely many bins.

Theorem 4 implies that, among multiple equilibria, the one with the maximum number of bins must be chosen
by the players; i.e., the payoff dominant equilibrium is selected [20].
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3 Gaussian Distribution

Let M be a Gaussian r.v. with mean µ and variance σ2; i.e., M ∼ N (µ, σ2). Let φ(m) = 1√
2π

e−
m2

2 be the PDF

of a standard Gaussian r.v., and let Φ(b) =
∫ b

−∞ φ(m)dm be its cumulative distribution function (CDF). Then, the
expectation of a truncated Gaussian r.v. is the following:

Fact 2. The mean of a Gaussian r.v. M ∼ N (µ, σ2) truncated to the interval [a, b] is E[M |a < M < b] =

µ− σ
φ( b−µ

σ
)−φ( a−µ

σ
)

Φ( b−µ
σ

)−Φ( a−µ
σ

)
.

Proof.

E[M |a < M < b] =

∫ b

a

m

1√
2πσ

e−
(m−µ)2

2σ2

∫ b

a
1√
2πσ

e−
(m−µ)2

2σ2

dm =

∫ b

a m 1√
2πσ

e−
(m−µ)2

2σ2 dm

∫ b

a
1√
2πσ

e−
(m−µ)2

2σ2 dm

s=(m−µ)/σ
ds=dm/σ

=

∫ (b−µ)/σ

(a−µ)/σ
(σs+ µ) 1√

2π
e−

s2

2 ds
∫ (b−µ)/σ

(a−µ)/σ
1√
2π

e−
s2

2 ds
= µ+ σ

∫ (b−µ)/σ

(a−µ)/σ
s 1√

2π
e−

s2

2 ds
∫ (b−µ)/σ

(a−µ)/σ
1√
2π

e−
s2

2 ds

u=s2/2
du=sds= µ+ σ

∫ (b−µ)2/(2σ2)

(a−µ)2/(2σ2)
1√
2π

e−udu

Φ( b−µ
σ )− Φ(a−µ

σ )
= µ+ σ

− 1√
2π

e−u|u=(b−µ)2/(2σ2)
u=(a−µ)2/(2σ2)

Φ( b−µ
σ )− Φ(a−µ

σ )

= µ+ σ
−φ( b−µ

σ ) + φ(a−µ
σ )

Φ( b−µ
σ )− Φ(a−µ

σ )

α,(a−µ)/σ

β,(b−µ)/σ
= µ− σ

φ(β) − φ(α)

Φ(β) − Φ(α)
. (33)

Now we consider an equilibrium with two bins:

Theorem 5. When the source has a Gaussian distribution as M ∼ N (µ, σ2), there always exists an equilibrium
with two bins regardless of the value of b.

Proof. Consider the two bins (−∞ = m0,m1) and [m1,m2 = ∞). The centroids of the bins (the action of the

decoder) are u1 = E[M | −∞ < M < m1] = µ− σ
φ(

m1−µ

σ
)

Φ(
m1−µ

σ
)

and u2 = E[M |m1 ≤ M < ∞] = µ+ σ
φ(

m1−µ

σ
)

1−Φ(
m1−µ

σ
)
. Then,

by utilizing (3), an equilibrium with two bins exists if and only if

m1 =
u1 + u2

2
+ b =

µ− σ
φ(

m1−µ

σ
)

Φ(
m1−µ

σ
)
+ µ+ σ

φ(
m1−µ

σ
)

1−Φ(
m1−µ

σ
)

2
+ b

= µ+
σ

2

(
φ(m1−µ

σ )

1− Φ(m1−µ
σ )

− φ(m1−µ
σ )

Φ(m1−µ
σ )

)
+ b

c,
m1−µ

σ⇒ σc+ µ = µ+
σ

2

(
φ(c)

1− Φ(c)
− φ(c)

Φ(c)

)
+ b

⇒ 2c− φ(c)

1− Φ(c)
+

φ(c)

Φ(c)
=

2b

σ
. (34)

16



Let f(c) , 2c− φ(c)
1−Φ(c) +

φ(c)
Φ(c) and

H
= denote l’Hôspital’s rule, then, observe the following:

lim
c→−∞

f(c) = lim
c→−∞

(
2c− φ(c)

1− Φ(c)
+

φ(c)

Φ(c)

)

= lim
c→−∞

(
2c+

φ(c)

Φ(c)

)
−
✘✘✘✘✘✘✘✘✘✿

0

lim
c→−∞

(
φ(c)

1− Φ(c)

)

= lim
c→−∞

(
2cΦ(c) + φ(c)

Φ(c)

)

H
= lim

c→−∞

(
2Φ(c) + cφ(c)

φ(c)

)

H
= lim

c→−∞

(
3φ(c)− c2φ(c)

−cφ(c)

)
= lim

c→−∞

(
3− c2

−c

)
H
= lim

c→−∞
2c → −∞ ,

lim
c→∞

f(c) = lim
c→∞

(
2c− φ(c)

1− Φ(c)
+

φ(c)

Φ(c)

)

= lim
c→∞

(
2c− φ(c)

1− Φ(c)

)
+
✟
✟
✟
✟

✟
✟✟✯

0

lim
c→∞

(
φ(c)

Φ(c)

)

= lim
c→∞

(
2c− 2cΦ(c)− φ(c)

1− Φ(c)

)

H
= lim

c→∞

(
2− 2Φ(c)− cφ(c)

−φ(c)

)

H
= lim

c→∞

(−3φ(c) + c2φ(c)

cφ(c)

)
= lim

c→∞

(−3 + c2

c

)
H
= lim

c→∞
2c → ∞ ,

f ′(c) = 2− φ(c)(−c)(1 − Φ(c))− φ(c)(−φ(c))

(1− Φ(c))
2 +

φ(c)(−c)Φ(c) − φ(c)φ(c)

Φ(c)2

= 2− φ(c)2

(
1

(1− Φ(c))2
+

1

Φ(c)2

)
+ cφ(c)

(
1

1− Φ(c)
− 1

Φ(c)

)

= 2− φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c

)
− φ(c)2

Φ(c)2
− cφ(c)

Φ(c)
. (35)

It can be seen that, by using the identities φ(c) = φ(−c) and Φ(c) = 1 − Φ(−c), f ′(c) is an even function of c;
i.e., f ′(c) = f ′(−c). Thus, it can be assumed that c ≥ 0 for the analysis of f ′(c). Then, observe the following
inequalities:

• In [22], the inequality on the upper bound of the Mill’s ratio is proved as φ(c)
1−Φ(c) <

√
c2+4+c

2 . Then,

φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c

)
<

√
c2 + 4 + c

2

(√
c2 + 4 + c

2
− c

)

=

√
c2 + 4 + c

2

√
c2 + 4− c

2
= 1 .
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• Since E[X | − ∞ < X < c] = − φ(c)
Φ(c) for standard normal distribution, φ(c)

Φ(c) is a decreasing function of c, and

for c > 0, φ(c)
Φ(c) <

φ(0)
Φ(0) =

√
2
π .

• Let g(c) ,
cφ(c)
Φ(c) , then g′(c) = φ(c)

(
(1−c2)Φ(c)−cφ(c)

(Φ(c))2

)
. If we let h(c) , (1 − c2)Φ(c) − cφ(c), then h′(c) =

−2cΦ(c) + (1 − c2)φ(c) − φ(c) − cφ(c)(−c) = −2cΦ(c) < 0 for c > 0. Thus, g′′(c) < 0b holds, which implies
that g(c) is a concave function of c, and takes its maximum value at g(c∗) which satisfies g′(c∗) = h(c∗) = 0.
By solving numerically, we obtain c∗ ≃ 0.9557 and g(c∗) ≃ 0.2908.

By utilizing the results above, (35) becomes

f ′(c) > 2− 1− 2

π
− 0.2908 ≃ 0.0726 > 0 . (36)

Thus, f(c) is a monotone increasing function and it takes values between (−∞,∞); thus, (34) has always a unique
solution to f(c) = 2b

σ . This assures that, there always exists an equilibrium with two bins regardless of the value of

b. Further, since f(0) = 2× 0− φ(0)
1−Φ(0) +

φ(0)
Φ(0) = 0, the signs of b and c must be the same; i.e., if b < 0, the boundary

between two bins is smaller than the mean (m1 < µ); if b > 0, the boundary between two bins is greater than the
mean (m1 > µ).

Since the PDF of a Gaussian r.v. is symmetrical about its mean µ, and monotonically decreasing in the interval
[µ,∞), the following can be obtained using a similar reasoning as in Proposition 1:

Proposition 2. Suppose there is an equilibrium with N bins for a Gaussian source M ∼ N (µ, σ2). Then,

(i) if b < 0, bin-lengths are monotonically increasing and the number of bins are upper bounded in the interval
[µ,∞),

(ii) if b > 0, bin-lengths are monotonically decreasing and the number of bins are upper bounded in the interval
(−∞, µ].

Proof. (i) Consider an equilibrium with N bins for a Gaussian source M ∼ N (µ, σ2): the k-th bin is [mk−1,mk),
and the centroid of the k-th bin (i..e, the corresponding action of the decoder) is uk = E[M |mk−1 ≤ M < mk]
so that −∞ = m0 < u1 < m1 < u2 < m2 < . . . < mN−2 < uN−1 < mN−1 < uN < mN = ∞. Further, assume
that µ is in the t-th bin; i.e., mt−1 ≤ µ < mt. Due to the nearest neighbor condition (the best response of
the encoder) we have uk+1 −mk = (mk − uk) − 2b; and due to the centroid condition (the best response of

the decoder), we have uk = E[M |mk−1 ≤ M < mk] = µ− σ
φ(

mk−µ

σ
)−φ(

mk−1−µ

σ
)

Φ(
mk−µ

σ
)−Φ(

mk−1−µ

σ
)
. Then, for any bin in [µ,∞),

since mk > µ, the following holds:

uk −mk−1 = E[M |mk−1 ≤ M < mk]−mk−1

< E[M |mk−1 ≤ M < ∞]−mk−1 = µ+ σ
φ(mk−1−µ

σ )

1− Φ(
mk−1−µ

σ )
−mk−1

(a)
< µ+ σ

√(
mk−1−µ

σ

)2
+ 4 + mk−1−µ

σ

2
−mk−1

=
σ

2



√(

mk−1 − µ

σ

)2

+ 4− mk−1 − µ

σ
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<
σ

2



√(

mk−1 − µ

σ

)2

+ 4

(
mk−1 − µ

σ

)
+ 4− mk−1 − µ

σ




=
σ

2

(
mk−1 − µ

σ
+ 2− mk−1 − µ

σ

)
= σ . (37)

Here, (a) in due to an inequality on the upper bound of the Mill’s ratio [22]. Now, observe the following:

σ > uN −mN−1 = (mN−1 − uN−1)− 2b

> (uN−1 −mN−2)− 2b

= (mN−2 − uN−2)− 2(2b)

...

> ut+1 −mt − (N − t− 1)(2b)

= mt − ut − (N − t)(2b)

> −(N − t)(2b) ,

where the inequalities follow from the fact that the Gaussian PDF of M is monotonically decreasing on [µ,∞).
Hence, for b < 0, N − t < − σ

2b is obtained, which implies that the number of bins in [µ,∞) is bounded by⌊
− σ

2b

⌋
. Further, when b < 0, the following relation holds for bin-lengths:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) > (uk −mk−1) + (uk −mk−1)

= (mk−1 − uk−1 − 2b) + (mk−1 − uk−1 − 2b)

> (mk−1 − uk−1 − 2b) + (uk−1 −mk−2 − 2b)

= (mk−1 − uk−1) + (uk−1 −mk−2)− 4b = mk−1 −mk−2 − 4b = lk−1 − 4b

⇒ lk > lk−1 . (38)

Thus, the bin-lengths are monotonically increasing in the interval [µ,∞) when b < 0.

(ii) Similarly, for any bin in (−∞, µ], since mk < µ, the following holds:

mk − uk = mk − E[M |mk−1 < M < mk]

< mk − E[M | −∞ < M < mk] = mk − µ+ σ
φ(mk−µ

σ )

Φ(mk−µ
σ )

(a)
= σ

φ(µ−mk

σ )

1− Φ(µ−mk

σ )
− σ

µ−mk

σ

(b)
< σ




√(
µ−mk

σ

)2
+ 4 + µ−mk

σ

2
− µ−mk

σ




=
σ

2



√(

µ−mk

σ

)2

+ 4− µ−mk

σ




<
σ

2



√(

µ−mk

σ

)2

+ 4

(
µ−mk

σ

)
+ 4− µ−mk

σ
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=
σ

2

(
µ−mk

σ
+ 2− µ−mk

σ

)
= σ . (39)

Here, (a) holds since φ(x) = φ(−x) and Φ(x) = 1 − Φ(−x), and (b) follows from an inequality on the upper
bound of the Mill’s ratio [22]. Now, observe the following:

σ > m1 − u1 = u2 −m1 + 2b

> m2 − u2 + 2b

= u3 −m2 + 2(2b)

...

> mt−1 − ut−1 + (t− 2)(2b)

= ut −mt−1 + (t− 1)(2b)

> (t− 1)(2b) ,

where the inequalities follow from the fact that the Gaussian PDF of M is monotonically increasing on
(−∞, µ]. Hence, for b > 0, t − 1 < σ

2b is obtained, which implies that the number of bins in (−∞, µ] is
bounded by

⌊
σ
2b

⌋
. Further, when b > 0, the following relation holds for bin-lengths:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) > (mk − uk) + (mk − uk)

= (uk+1 −mk + 2b) + (uk+1 −mk + 2b)

> (mk+1 − uk+1 + 2b) + (uk+1 −mk + 2b)

= (mk+1 − uk+1) + (uk+1 −mk) + 4b = mk+1 −mk + 4b = lk+1 + 4b

⇒ lk < lk+1 . (40)

Thus, the bin-lengths are monotonically decreasing in the interval (−∞, µ] when b > 0.

After showing that there always exists an equilibrium with two bins independent of b, we may ask whether there
always exists an equilibrium with N bins, or infinitely many bins. The following theorem answers the second part
of this question:

Theorem 6. For the Gaussian source M ∼ N (µ, σ2), there exist equilibria with infinitely many bins.

Proof. The proof requires individual analysis for the positive and the negative b values. Firstly, assume a positive
bias term; i.e., b > 0. Now consider a bin on [µ,∞); i.e., the bin is the interval [mk−1,mk) with µ ≤ mk−1 < mk.
Let uk , E[M |mk−1 < M < mk], then uk−mk−1 < E[M |mk−1 < M < ∞]−mk−1 < σ, where the second inequality
follow from (37) in Proposition 2. Further, (3) implies mk − uk = uk+1 − mk + 2b ⇒ 2b + σ > mk − uk > 2b.
Thus, the length of the bin, lk , mk −mk−1 = (mk − uk) + (uk −mk−1), is between 2b < lk < 2b+ 2σ. Similarly,
if the bin is on (−∞, µ]; i.e., [ms−1,ms) with ms−1 < ms < µ and us , E[m|ms−1 < m < ms], it holds that
ms − us < ms − E[m| − ∞ < m < ms] < σ, where the second inequality follow from Proposition 2. Further,
(3) implies ms − us = us+1 − ms + 2b ⇒ ms − us > 2b and us+1 − ms < σ − 2b (indeed, if σ < 2b, there can
be at most one bin on (−∞, µ], which results in an absence of a bin-edge on (−∞, µ]). Thus, the length of the
bin, ls , ms − ms−1 = (ms − us) + (us − ms−1), is between 2b < ls < 2σ − 2b. If the bin contains mean; i.e.,
mt ≤ µ < mt+1, we have mt+1 − ut+1 = ut+2 −mt+1 + 2b < σ + 2b and ut+1 −mt = mt − ut − 2b < σ − 2b. Thus,
for the corresponding bin-length, 2b < mt+1 −mt < 2σ is obtained. For the left-most bin-edge, m1, there are two
possibilities:
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(i) m1 < µ : There can be at most
⌊

σ
2b

⌋
bins with maximum length 2σ− 2b, and there is a bin which contains µ,

thus m1 > µ−
⌊

σ
2b

⌋
(2σ − 2b)− 2σ.

(ii) m1 ≥ µ : Since u2 − m1 < σ by (37), m1 − u1 = u2 − m1 + 2b < 2b + σ is obtained. Further we have
u1 = E[M | −∞ < M < m1] < µ, which implies that m1 has an upper bound as m1 < µ+ 2b+ σ.

Thus, at the equilibrium, the value of the left-most bin-edge is lower and upper bounded as µ−
⌊

σ
2b

⌋
(2σ−2b)−2σ ≤

m1 ≤ µ+2b+σ (Note that, here, non-strict inequalities are preferred over the strict ones in order to obtain a bounded,
convex and compact set, which will be utilized in the fixed-point theorem to show the existence of an equilibrium).
Further, all bin lengths, l2, l3, . . . are lower and upper bounded as 2b ≤ li ≤ max{2b + 2σ, 2σ, 2σ − 2b} = 2b + 2σ
for i = 2, 3, . . .. Observe that the set K ,

[
µ−

⌊
σ
2b

⌋
(2σ − 2b)− 2σ, µ+ 2b+ σ

]
× [2b, 2b+ 2σ]× [2b, 2b+ 2σ]× · · ·

(where {m1, l2, l3, · · · } ∈ K ) is a convex and compact set by Tychonoff’s theorem [23], and the other bin-edges

can be represented by mi = m1 +
∑i

j=2 lj . Hence, another convex and compact set K̂ can be defined such that

{m1,m2, · · · } ∈ K̂ . Further, at the equilibrium, the best responses of the encoder and the decoder in (2) and (3)
can be combined to define a mapping as follows:

m ,




m1

m2

...
mk

...



=




E[M|m0<M<m1]+E[M|m1<M<m2]
2 + b

E[m|m1<M<m2]+E[M|m2<M<m3]
2 + b

...
E[m|mk−1<M<mk]+E[M|mk<M<mk+1]

2 + b
...



, T (m) , (41)

Note that the mapping T (m) : K̂ → K̂ is continuous under the point-wise convergence (since, for limn→∞ min =

mi, limn→∞
E[M|mi−1<M<min ]+E[M|min<M<mi+1]

2 + b = limn→∞

µ−σ
φ(

min
−µ

σ
)−φ(

mi−1−µ

σ
)

Φ(
min

−µ

σ
)−Φ(

mi−1−µ

σ
)

+µ−σ
φ(

mi+1−µ

σ
)−φ(

min
−µ

σ
)

Φ(
mi+1−µ

σ
)−Φ(

min
−µ

σ
)

2 +

b =
µ−σ

φ(
mi−µ

σ
)−φ(

mi−1−µ

σ
)

Φ(
mi−µ

σ
)−Φ(

mi−1−µ

σ
)
+µ−σ

φ(
mi+1−µ

σ
)−φ(

mi−µ

σ
)

Φ(
mi+1−µ

σ
)−Φ(

mi−µ

σ
)

2 + b = E[M|mi−1<M<mi]+E[M|mi<M<mi+1]
2 + b, and this analysis

can be generalized to the vector case to get the desired result), and hence, under the product topology (the result
follows by incrementing the dimension of the product one-by-one and showing the continuity at each step). Further,

since (countably) infinite product of real intervals is a locally convex vector space, K̂ is a bounded, convex and
compact and locally convex space. Hence, there exists a fixed point for the mapping T such that m∗ = T (m∗) by
Tychonoff’s fixed-point theorem [23]. This proves that there exists an equilibrium with infinitely many bins.

Now assume a negative bias term; i.e., b < 0 and consider a bin on (−∞, µ]; i.e., the bin is the interval [mk−1,mk)
with mk−1 < mk < µ. Let uk , E[M |mk−1 < M < mk], then mk − uk < mk − E[M | − ∞ < M < mk] < σ,
where the second inequality follow from (39) in Proposition 2. Further, (3) implies uk+1 −mk = mk − uk − 2b ⇒
σ − 2b > uk+1 − mk > −2b. Thus, the length of the bin, lk , mk − mk−1 = (mk − uk) + (uk − mk−1), is
between −2b < lk < 2σ − 2b. Similarly, if the bin is on [µ,∞); i.e., [ms−1,ms) with µ ≤ ms−1 < ms and
us , E[M |ms−1 < M < ms], it holds that us − ms−1 < E[M |ms−1 < M < ∞] − ms−1 < σ, where the second
inequality follow from Proposition 2. Further, (3) implies us+1 − ms = ms − us − 2b ⇒ us+1 − ms > −2b and
ms − us < σ + 2b (indeed, if σ < −2b, there can be at most one bin on [µ,∞), which results in an absence
of a bin-edge on [µ,∞)). Thus, the length of the bin, ls , ms − ms−1 = (ms − us) + (us − ms−1), is between
−2b < ls < 2σ+2b. If the bin contains mean; i.e., mt ≤ µ < mt+1, we have mt+1−ut+1 = ut+2−mt+1+2b < σ+2b
and ut+1−mt = mt−ut− 2b < σ− 2b. Thus, for the corresponding bin-length, −2b < mt+1−mt < 2σ is obtained.
For the right-most bin-edge, mr, there are two possibilities:
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(i) mr ≥ µ : There can be at most
⌊
− σ

2b

⌋
bins with maximum length 2σ+ 2b, and there is a bin which contains

µ, thus mr < µ−
⌊

σ
2b

⌋
(2σ + 2b) + 2σ.

(ii) mr < µ : Since mr − ur < σ by (39), ur+1 − mr = mr − ur − 2b < σ − 2b is obtained. Further we have
ur+1 = E[M |mr < M < ∞] > µ, which implies that mr has a lower bound as mr > µ+ 2b− σ.

Thus, at the equilibrium, the value of the right-most bin-edge is lower and upper bounded as µ + 2b − σ ≤
mr ≤ µ −

⌊
σ
2b

⌋
(2σ + 2b) + 2σ (Note that, here, non-strict inequalities are preferred over the strict ones in order

to obtain a bounded, convex and compact set, which will be utilized in the fixed-point theorem to show the
existence of an equilibrium). Further, all bin lengths, lr−1, lr−2, . . . are lower and upper bounded as −2b ≤ li ≤
max{2σ − 2b, 2σ, 2σ + 2b} = 2σ − 2b for i = r − 1, r − 2, . . .. Based on the right-most bin-edge and the bin-

lengths, the other bin-edges can be represented by mr−i = mr −
∑i

j=1 lr−j . Similar to the previous case, the set

{mr, lr−1, lr−2, · · · } ∈
[
µ+ 2b− σ, µ −

⌊
σ
2b

⌋
(2σ + 2b) + 2σ

]
× [−2b, 2σ − 2b]× [−2b, 2σ − 2b]× · · · is a convex and

compact set by Tychonoff’s theorem [23]. After defining a mapping similar to that in (41), which is continuous
under the point-wise convergence, and hence, under the product topology. Then, there exists a fixed point by
Tychonoff’s fixed-point theorem [23], which implies the existence of an equilibrium with infinitely many bins.

Remark 1. At the equilibrium with infinitely many bins, as the bin-edges get very large in absolute value (i.e.,
mi → ∞ for b > 0 and mi → −∞ for b < 0), bin-lengths converge to 2|b|.
Proof. For b > 0, we can characterize what the bins looks like as the bin-edges get very large with the following
analysis:

lim
i→∞

E[M |m∗
i−1 < M < m∗

i ]−m∗
i−1 = lim

i→∞
E[M |m∗

i−1 < M < m∗
i−1 + l∗i ]−m∗

i−1

= lim
m∗

i−1→∞
µ− σ

φ(
m∗

i−1+l∗i −µ

σ )− φ(
m∗

i−1−µ

σ )

Φ(
m∗

i−1+l∗
i
−µ

σ )− Φ(
m∗

i−1−µ

σ )
−m∗

i−1

H
= lim

m∗

i−1→∞
µ−m∗

i−1 − σ
φ(

m∗

i−1+l∗i −µ

σ )
−m∗

i−1−l∗i +µ

σ
1
σ − φ(

m∗

i−1−µ

σ )
−m∗

i−1+µ

σ
1
σ

φ(
m∗

i−1+l∗
i
−µ

σ ) 1σ − φ(
m∗

i−1−µ

σ ) 1σ

= lim
m∗

i−1→∞
µ−m∗

i−1 −
(−m∗

i−1 − l∗i + µ)φ(
m∗

i−1+l∗i −µ

σ )− (−m∗
i−1 + µ)φ(

m∗

i−1−µ

σ )

φ(
m∗

i−1+l∗
i
−µ

σ )− φ(
m∗

i−1−µ

σ )

= lim
m∗

i−1→∞
µ−m∗

i−1 −
(
−m∗

i−1 + µ− l∗i φ(
m∗

i−1+l∗i −µ

σ )

φ(
m∗

i−1+l∗
i
−µ

σ )− φ(
m∗

i−1−µ

σ )

)

= lim
m∗

i−1→∞
µ−m∗

i−1 +m∗
i−1 − µ+

l∗i

1− φ(
m∗

i−1
−µ

σ
)

φ(
m∗

i−1
+l∗

i
−µ

σ
)

(a)→ 0 (42)

Here, (a) follows from limm∗

i−1→∞
φ(

m∗

i−1−µ

σ
)

φ(
m∗

i−1
+l∗

i
−µ

σ
)
= limm∗

i−1→∞ e
−(

m∗

i−1−µ

σ
)2+(

m∗

i−1+l∗
i
−µ

σ
)2

2 → ∞. Then, (3) reduces to

lim
i→∞

mi−E[M |mi−1 < M < mi] = lim
i→∞

E[M |mi < M < mi+1]−mi + 2b

⇒ lim
i→∞

mi −mi−1 = lim
i→∞

mi −mi + 2b

⇒ lim
i→∞

mi −mi−1 = 2b . (43)
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In other words, the distance between the centroid and the lower edge of the bin converges to zero (i.e., the centroid
of the bin converges to the left-edge), and length of the bins converge to 2b.

Similarly, for b < 0, we can characterize what the bins looks like as the bin-edges get very large (in absolute
value) with the following analysis:

lim
i→∞

m∗
r−i − E[M |m∗

r−i−1 < M < m∗
r−i] = lim

i→∞
m∗

r−i − E[M |m∗
r−i − l∗r−i < M < m∗

r−i]

= lim
m∗

r−i→−∞
m∗

r−i − µ+ σ
φ(

m∗

r−i−µ

σ )− φ(
m∗

r−i−l∗r−i−µ

σ )

Φ(
m∗

r−i
−µ

σ )− Φ(
m∗

r−i
−l∗

r−i
−µ

σ )

H
= lim

m∗

r−i
→−∞

m∗
r−i − µ+ σ

φ(
m∗

r−i−µ

σ )
−m∗

r−i+µ

σ
1
σ − φ(

m∗

r−i−l∗r−i−µ

σ )
−m∗

r−i+l∗r−i+µ

σ
1
σ

φ(
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σ ) 1σ − φ(
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σ ) 1σ

= lim
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r−i + µ)φ(
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r−i−µ

σ )− (−m∗
r−i + l∗r−i + µ)φ(
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σ )

φ(
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σ )− φ(
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m∗

r−i
−µ

σ )− φ(
m∗

r−i
−l∗

r−i
−µ

σ )

)
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m∗
r−i − µ−m∗

r−i + µ− l∗i
φ(

m∗

r−i
−µ

σ
)

φ(
m∗

r−i
−l∗

r−i
−µ

σ
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− 1

(a)→ 0 . (44)

Here, (a) follows from limm∗

r−i
→−∞

φ(
m∗

r−i
−µ

σ
)

φ(
m∗

r−i
−l∗

r−i
−µ

σ
)
= limm∗

r−i
→∞ e

−(
m∗

r−i
−µ

σ
)2+(

m∗

r−i
−l∗

r−i
−µ

σ
)2

2 → ∞. Similar to the

b > 0 case, the distance between the centroid and the upper edge of the bin converges to zero (i.e., the centroid of
the bin converges to the right-edge), and length of the bins converge to −2b.

4 Concluding Remarks

In this paper, the Nash equilibrium of cheap talk has been characterized for exponential and Gaussian sources.
For exponential sources, it has been shown that the number of bins is bounded for bias b < 0, whereas there exist
equilibria with infinitely many bins for b > 0. Further, it has been proved that, as the number of bins increases,
the equilibrium cost of the encoder and decoder reduces. For Gaussian sources, there always exists an equilibrium
with infinitely many bins.

Future work includes extending the analysis to arbitrary sources with semi-infinite support and two-sided infinite
support, and the investigation of upper bounds on the number of bins and the relation between the number of bins
and the equilibrium costs of the players (i.e., equilibrium selection problem). Further, the existence and convergence
of equilibria; i.e., under what conditions the best responses of the encoder and the decoder match each other, can
be analyzed. It is also interesting to analyze the performance loss due to the misalignment between the objective
functions in order to obtain comparisons with optimal quantizers.
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