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Abstract—A novel framework for sharing common randomness
and generating secret keys in wireless networks is considered.
In particular, a network of users equipped with pulse oscillators
(POs) and coupling mechanisms in between is considered. Such
mechanisms exist in synchronized biological and natural systems,
and have been exploited to provide synchronization in distributed
networks. We show that naturally-existing initial random phase
differences between the POs in the network can be utilized to
provide almost identical common randomness to the users. This
randomness is extracted from the synchronization time in the
network. Bounds on the entropy of such randomness are derived
for a two-user system and a conjecture is made for a general n-user
system. Then, a three-terminal scenario is considered including
two legitimate users and a passive eavesdropper, referred to as
Eve. Since in a practical setting Eve receives pulses with propa-
gation delays, she can not identify the exact synchronization time.
A simplified model is then considered for Eve’s receiver and then
a bound on the rate of secret key generation is derived. Also, it
is shown, under certain conditions, that the proposed protocol
is resilient to an active jammer equipped with a similar pulse
generation mechanism.

I. INTRODUCTION

Physical layer security methods provide an alternative to

conventional encryption schemes in order to ensure security in

wireless networks [1]. Alternatively, they can be deployed to

exchange secret keys between the nodes in order to complement

the higher layer encryption schemes. The fundamental works

of [2], [3] established the use of common randomness for

secret key generation. An important question is then how to

generate common randomness at the nodes in order to utilize

such protocols in wireless networks. To this end, properties of

wireless links, such as channel gain and delay are shown to

provide a great source for the common randomness, which have

recently received significant attention [4].

There are several challenges, however, to standardize

channel-based secret key generation protocols. A common as-

sumption in such protocols is the channel reciprocity between

the legitimate parties [5], [6]. This would require a perfect

synchronization to avoid phase and frequency mismatch be-

tween the wireless nodes which is often hard to ensure in

distributed networks [7]. Furthermore, if the nodes are static,

then with no channel variations the amount of secret key bits

that can be generated will be limited. To resolve this, induced

randomness can be introduced in wireless nodes to increase

the rate of secret key generation [8]. However, in general, such

channel-based secret key generation protocols require an extra

level of key reconciliation over the public channel to ensure
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the generated keys match at both ends. This would require an

entire standardization of channel coding and modulation for this

purpose which would make a barrier in deploying such methods

in practice.

We recently proposed a novel approach to implementation

of physical layer security by exploiting coupling dynamics in

the network [9]. Such coupling dynamics are already being

used for synchronization in wireless networks. In particular, we

suggested to use coupled oscillators to implement the proposed

approach in radio-frequency (RF) front end [9]. It is well-

known that a network of RF coupled oscillators converges

within nanoseconds to a steady-state condition provided that

initial free-running frequencies are within a certain locking

range [10], [11]. However, such coupling dynamics, such as

electromagnetic coupling, are often limited to short distance

ranges for this specific application.

In this paper, we propose to exploit synchronization mech-

anisms based on pulse-coupled oscillators in order to securely

generate random keys in distributed networks. The proposed

methods do not require extra processing, e.g., the shared ran-

domness is almost identical at the nodes, and extra hardware

to generate randomness. They also do not require channel ran-

domness and consequently, assumptions on channel reciprocity.

The naturally-existing random phase differences between the

wireless nodes, prior to synchronization, would serve as the

source of common randomness. It is shown, under a simplified

model for the eavesdropper, that a positive-rate secret key

can always be guaranteed. Furthermore, the resilience of the

proposed protocol to certain jamming attacks is discussed.

The rest of this paper is organized as follows. In Section II

some background on pulse-coupled oscillators and secret key

generation is provided. In Section III the system model is

formulated. In Section IV bounds on the entropy of shared

common randomness are derived. In Section V secret key gen-

eration rate in the presence of Eve is characterized. Resilience

of the proposed protocols to jamming attacks is discussed in

Section VI. Finally, the paper is concluded in Section VII.

II. PRELIMINARIES

A. Pulse coupled oscillators

A pulse oscillator (PO) is characterized using a state variable

x which increases monotonically toward a normalized threshold

of x “ 1. In the model considered in [12], x evolves as x “
fpφq, where φ is the normalized time that increases from 0 to

1. Also, fp0q “ 0 and fp1q “ 1. The PO transmits a pulse,

which can be ideally considered as a delta function with width

0, once its state x reaches 1. Then φ is reset to 0. The function

f is assumed to be concave down and strictly increasing, i.e.,
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f 1 ą 0 and f2 ă 0 over r0, 1s. Also, we assume that f is semi-

diffrentiable at 0 and 1, and hence f 1 is bounded over r0, 1s. An

example of x in an electrical system is the charge of a capacitor

in a resistor-capacitor (RC) circuit as a function of time. This

matches with the Peskin model [13], which considers fpφq “
cp1 ´ e´γφq, where c, γ are constants.

Networks of coupled POs naturally exist in synchronized bi-

ological and natural systems [12], [13], and have been exploited

to provide synchronization in distributed wireless networks [7].

Such a network is modeled as follows. Suppose that each node

in the network is equipped with an identical PO. Let ǫ P p0, 1q
be a fixed parameter. When a node V receives a pulse from

one of its neighbors, denoted by U , in the network, its dynamic

changes as follows. If the current state of V , xV , is at least

1 ´ ǫ, then it is changed to xV “ 1 and a pulse is transmitted

by V right away. This implies that U and V are synchronized.

Otherwise, when xV ă 1 ´ ǫ, the state of V is changed to

xV ` ǫ, i.e., its phase φ is changed to φ1 “ f´1pfpφq ` ǫq. This

can be thought as applying an extra charge of ǫ to V ’s capacitor

upon arrival of an external pulse. For simplicity, suppose that

the network is fully connected, in which case when two nodes

become synchronized, they stay synchronized moving forward.

It is proved in [12] that, for any n, network synchronization

occurs in a fully connected network of n identical POs, i.e.,

all the nodes synchronize to each other, except for a measure-

zero set of initial phases pφ1, φ2, . . . , φnq, where φi is the initial

phase of the i-th PO.

B. Secret key generation

Secret key generation protocols aim at securely establishing

random keys between legitimate parties using common ran-

domness. In this paper, we mostly focus on a case involving

two legitimate parties Alice and Bob together with a passive

Eve. In particular, a three-terminal source-type model is con-

sidered. Such model, in general, can be described as follows.

Let X P X , Y P Y , and Z P Z denote Alice’s, Bob’s,

and Eve’s observations, respectively, where X , Y , and Z

are the corresponding alphabets. Following the convention, let

capital letters denote the random variables and small letters

denote their instances. In the considered source-type model,

X,Y, Z are distributed according to a joint probability distri-

bution pX,Y,Z . The goal for Alice and Bob is to agree on a

shared secret key K , based on their observations X and Y

using an arbitrary number of communication rounds over a

public channel with unlimited capacity. Such process is tightly

related to Slepian-Wolf compression. The connection is useful

for designing the so-called key reconciliation stage of secret key

generation protocols using cosets of practical error-correcting

codes. The security of K is measured in an information-

theoretic sense given Eve’s observation Z and all the public

interactions between Alice and Bob. The two-user secret key

capacity, denoted by SpX ;Y |Zq, is bounded as follows [3,

Theorem 2 and 3]:

maxtIpX ;Y q ´ IpX ;Zq, IpY ;Xq ´ IpY ;Zqu ď SpX ;Y |Zq

ď mintIpX ;Y q, IpX ;Y |Zqu.
(1)

Such results were later extended to multiple-terminal scenarios

[14]. Furthermore, an exact characterization was derived for a

case in which only one round of communication occurs from

Alice to Bob [2, Theorem 2].

III. SYSTEM MODEL

Consider a fully connected network where the network

nodes are equipped with identical POs. Suppose that each PO

starts with a random phase that is uniformly distributed over

r0, 1s. Then the POs enter a dynamic system as described in

Section II-A. Each node counts the number of pulses its PO

transmits till network synchronization occurs. The network

synchronization can be identified by individual nodes once no

external pulses are received between two consecutive pulses.

Each node saves this number as the common randomness. The

following lemma shows that all the nodes observe the same

number, up to a difference of 1. Let mi denote the number of

pulses that the node Vi, for i “ 1, 2, . . . , n, has transmitted so

far at a given time.

Lemma 1: For any i, j, we have |mi ´ mj | ď 1.

Proof: The proof is by noting that before Vi and Vj

become synchronized, it is not possible that Vi transmits two

consecutive pulses without Vj transmitting any pulse in be-

tween. In fact once Vi sends a pulse, we have φi “ 0, while

φj ą 0. Now, since f´1pfpφq ` ǫq is a strictly increasing

function, we have φj ą φi which holds when pulses external to

Vi and Vj arrive as well. This holds till φj “ 1, in which case

Vj sends a pulse before Vi sends the next one.

The lemma implies that the number of pulses that each PO

counts till network synchronization occurs can serve as a source

of almost noise-free common randomness.

Let us refer to a time-interval during which each of the POs

send one pulse as a full cycle. Then time is split into non-

overlapping and consecutive full cycles. Note that since the time

between two consecutive pulses by each of the POs keep chang-

ing, we can not define a full cycle as a fixed time interval. Due to

delays in propagation of pulses, an external user/eavesdropper

can not exactly identify when synchronization occurs. Under

propagation delays, and assuming the delays between POs is

less than half the time unit, the synchronization still occurs for

n “ 2 [15], and under certain conditions for general n [15] and

also for locally connected networks [16]. To this end, a certain

refractory period ρ is defined and a PO does not update its state

for ρ seconds right after it sends a pulse.

Motivated by practical considerations of propagation delays

we describe Eve’s observation as follows. During each full

cycle, Eve receives n delayed pulses from the n POs. Then she

can process the timings between received pulses, compare them

with her estimates of propagation delays with each of the nodes,

and also compare the timings with previous full cycles. Taking

all these information into account to model Eve’s receiver is not

an easy task. Instead, we consider s simplified binary symmetric

channel-type model for Eve as follows. Let a binary random

variable S indicates whether all nodes are synchronized in the

current full cycle or not, e.g., if synchronization occurs/has

occurred, then S “ 1 and otherwise, S “ 0. Then Eve observes

Z “ S with probability 1 ´ p, and Z “ 1 ´ S with probability
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p, for some p P p0, 1{
2
q. Also, we consider a memoryless model,

in which Eve’s observation noise Z ‘ S is independent across

different full cycles.

Most of prior work on physical layer security involves a

passive eavesdropper. In our proposed framework, an active

eavesdropper may try to act as a legitimate node of the network

by deploying similar pulse-coupling mechanisms in order to

detect the synchronization time which will be used for key

generation. However, such a malicious act can be detected by

other nodes assuming they know the total number of nodes in

the network. In this paper, we do not formulate such active

eavesdropping methods and leave it for future work. There may

exist, however, another type of adversary interested in jamming

the proposed protocol by randomly/selectively sending pulses

into the network in order to prevent synchronization. We model

this scenario by assuming that the jammer has the same pulse

generation mechanism as other nodes in the network, i.e., it can

send at most one pulse during each full cycle. Also, suppose

that legitimate nodes can not distinguish between pulses sent

by other legitimate nodes and the jammer. We will show that

synchronization may not occur and provide an upper bound on

the probability of such event in Section VI.

IV. ENTROPY OF SHARED RANDOMNESS VIA

PULSE-COUPLED SYNCHRONIZATION

Let M denote the random variable that represents the total

number of pulses before synchronization. In order to simplify

the formulation, we take the maximum of the counted pulses

by POs as the shared randomness M , knowing that each of the

POs has counted either M or M ´ 1 pulses. At the end of this

section, we discuss how such inconsistency can be resolved.

Let tpiu
8
i“1

denote the probability distribution of M , where

pi “ Pr tM “ iu. The goal is to upper bound and lower bound

pi’s in order to provide bounds on the entropy of M .

We consider only two nodes. For two oscillators, we show

that, roughly speaking, the probability distribution of the num-

ber of pulses before synchronization occurs behave like a

discretized exponential distribution.

Similar to [12], let

hpτq
def
“ f´1pǫ ` fp1 ´ τqq, Rpτq

def
“ hphpτqq. (2)

Let δ “ 1 ´ f´1p1 ´ ǫq. Then the domain of h is pδ, 1q and the

domain of R is pδ, h´1pδqq.

Let φ, φ ` τ denote the initial phases of the two POs, where

0 ă φ ă φ ` τ ă 1. If τ ď δ, i.e., fp1 ´ τq ě 1 ´ ǫ, then the

two POs synchronize after the next pulse. Otherwise, the phase

difference, after the first pulse is sent, become hpτq, where hp.q
is defined in (2). Hence, Rpτq is the phase difference after the

full cycle. Then it is shown in [12, Proposition 2.2.] that R has

a fixed point τ˚ that is a repeller, i.e., for τ ă τ˚, Rpτq ă τ ,

and for τ ą τ˚, Rpτq ą τ . Furthermore, it is shown in [12,

Lemma 2.1] that h1 ă ´1 and R1 ą 1 over their domains. Since

f 1 is bounded over r0, 1s, it can be shown that, sup |h1| ă 8,

inf R1 ą 1, and supR1 ă 8 over their domains. Then let

λ0

def
“ 1{| suph1|, λ1

def
“ 1{ supR1, λ2

def
“ 1{ inf R1, (3)

where 0 ă λ1 ă λ2 ă 1, and λ0 ą 1 by [12, Lemma 2.1]. Let

also τ˚ denote the fixed point of R.

Lemma 2: There exists an increasing sequence of tτiu
8
i“1

and

a decreasing sequence of tτ 1
iu

8
i“1

such that

‚ (i) limiÑ8 τi “ limiÑ8 τ 1
i “ τ˚.

‚ (ii) For initial phase difference τ P rτi, τi`1s Y rτ 1
i`1

, τ 1
is,

we have M “ i.

Proof: Let τ0 “ 0, τ 1
0 “ 1, τ1 “ δ, τ 1

1 “ h´1pδq, where

δ “ 1 ´ f´1p1 ´ ǫq. Then for i ě 1, let τi`1 “ R´1pτiq
and τ 1

i`1
“ R´1pτ 1

iq. To prove the first condition, note that

τ˚ is also a fixed point for R´1. Also, since R is a repeller,

R´1 is a contraction mapping. Hence, piq follows. The proof

of the second part is by induction on i. Note that if the initial

phase diffrence τ is in r0, δs, then synchronization occurs after

the first pulse is sent. Hence, M “ 1. If τ P rh´1pδq, 1s, then

after the first pulse the phase difference becomes hpτq P r0, δs.
Hence, synchronization occurs after each of the POs send one

pulse and again, M “ 1. Now, suppose that τ P rτi, τi`1s Y
rτ 1

i`1
, τ 1

is, where i ą 0. After a full cycle the phase difference

becomes Rpτq which belongs to rτi´1, τis Y rτ 1
i , τ

1
i´1s, and the

proof follows by induction hypothesis.

Let

ai “ τi ´ τi´1, bi “ τ 1
i´1 ´ τ 1

i , (4)

for any i ě 1, where tτiu and tτ 1
iu are as introduced in the proof

of Lemma 2. Then we have the following corollary.

Corollary 3: Assuming that the initial phase difference is

uniform we have pi “ ai ` bi, where pi “ Pr tM “ iu.

Lemma 4: For any i ě 2, λ1pi´1 ď pi ď λ2pi´1, where

λ1, λ2 are defined in (3).

Proof: Let τ “ τi, for some i ě 2, where tτiu is defined

in the proof of Lemma 2. Then we have

ai “ τ ´ Rpτq, ai´1 “ Rpτq ´ RpRpτqq,

where taiu is defined in (4). Since R is a continuous and

differentiable function, then by the mean value theorem, there

exists c P rτ, Rpτqs such that

R1pcq “
RpRpτqq ´ Rpτq

Rpτq ´ τ
“

ai´1

ai
.

Then by definition of λ1, λ2 in (3) we have

λ1 ď
ai

ai´1

ď λ2.

The same argument can be applied to bi’s and then the lemma

follows by Corollary 3.

Note that Lemma 4 implies that the distribution of M re-

sembles a discretized exponential distribution, i.e., pi decays

exponentially fast as i grows. In particular, it is shown in the

next proposition that M has a bounded entropy. It is assumed

that p1 ă 1{e « 0.37. If p1, and possibly p2, are greater than

1{e, then we can exclude them, apply the following proposition

to the rest of pi’s, and add the terms corresponding to p1 and p2
in HpMq as constants.

Proposition 5: In the two-user pulse coupling system, we

have

gpcq

1 ´ λ1

`
cgpλ1q

p1 ´ λ1q2
ď HpMq ď

gpcq

1 ´ λ2

`
cgpλ2q

p1 ´ λ2q2
,

where gpxq “ ´x log x, λ1, λ2 are defined in (3), and c “ p1 “
1 ` δ ´ h´1pδq.
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Proof: By Lemma 4 we have p1λ
i´1

1
ď pi ď p1λ

i´1

2
.

Then the proof follows by the definition of entropy function

Hp.q and noting that gpxq “ ´x log x is increasing for x ď
1{e.

Remark 1. We conjecture that in a general set-up consisting of

n POs, HpMq “ Oplog nq. More specifically, we believe it

can be shown that after Opnq full cycles the POs are split into

Op1q clusters, each consisting of synchronized POs. Then one

can only analyze the entropy of shared randomness involving a

constant number of POs and use the bound on the entropy of

sum of two random variables to prove the conjecture.

Remark 2. In order to resolve the possible difference of 1

between counted pulses by the two users, a simple key reconcil-

iation method can be deployed as follows. Users will exchange

their observations modular 3. Then if there is a difference, the

user with smaller observation increments it by 1 which would

make it an error-free common randomness. In general, if we

want to recover from a larger difference, up to a certain d,

between observations, e.g., due to an initial phase difference

of more than one unit of time, the same procedure can be de-

ployed. In that case, users exchange their observation modular

2d ` 1 using which reconciliation can be done.

V. SECRET KEY RATE

A three-terminal model, as described in Section II-B, is con-

sidered. The common randomness M between Alice and Bob

is generated according to the process discussed in Section IV

with a slight modification as follows. In order to avoid long

waiting times, Alice and Bob set a fixed threshold m̃. They

continue to send pulses until each of them sends m̃ pulses,

regardless of whether synchronization has occurred or not, at

which point they stop the current session. Then they may start

a new session with new initial random phases, e.g., by simply

reseting their POs, and the same process will be repeated. If

synchronization has occurred at some point during the session,

then the common randomness M is the number of pulses till

that point. Otherwise, M “ m̃. In other words, the probability

distribution pp1, p2, . . . q, characterized in Corollary 3, is trun-

cated as follows. For i “ 1, 2, . . . , m̃ ´ 1, PrtM “ iu “ pi,

and PrtM “ m̃u “
ř8

i“m̃ pi. Also, for i ą m̃, PrtM “
iu “ 0. Furthermore, we assume that the common randomness

M is identical at Alice and Bob, i.e., X “ Y “ M , and

X “ Y “ t1, 2, . . . , m̃u.

Remark 3. In order to recover from possible differences be-

tween Alice’s and Bob’s observations a procedure, as discussed

in Remark 2, can be deployed. Since M mod p2d ` 1q is

then revealed to Eve, Alice and Bob take t M{p2d ` 1qu as

the common randomness. The bounds provided in this section

can be also modified to reflect this extra step, however, we

keep assuming M as the common randomness to simplify

derivations.

Eve’s observation Z , according to the model described in

Section II-A, is as follows. Let S “ tSiu
m̃
i“1

denote the syn-

chronization indicator sequence, where Si is the indicator of

synchronization in the i-th full cycle, as defined in Section III,

for i “ 1, 2, . . . , m̃. Note that if M “ m, then we have Si “ 0,

for 1 ď i ă m, and Si “ 1, for m ď i ď m̃. Then

Z “ pZ1, Z2, . . . , Zm̃q, where Zi “ Si ‘ Qi, and Qi’s are

i.i.d. with Berppq, where p is the model parameter described in

Section III.

In general, when X “ Y “ M in the three-terminal model,

the lower and upper bounds in (1) match. Hence, the secret key

capacity, which can be denoted by SpM |Zq, is given as follows:

SpM |Zq “ HpMq ´ IpM ;Zq “ HpM |Zq. (5)

Since the complexity of the exact computation of HpM |Zq
is exponential in terms of m̃, we provide a lower bound on

SpM |Zq in terms of the parameters of the coupling system as

well as Eve’s parameter p. The lower bound shows that the

secret key rate SpM |Zq is strictly positive regardless of the

choice for m̃. The following lemma is useful to derive such a

bound.

Lemma 6: For any m1,m2 P t1, 2, . . . , m̃u we have

PrtZ|M “ m1u

PrtZ|M “ m2u
ě p

p

1 ´ p
q|m1´m2|,

for any instance of Z .

Proof: Let tsi,jum̃i“1 denote the synchronization indicator

sequences for mj , j “ 1, 2. Also, note that

PrtZ|M “ mju “ Πm̃
i“1PrtZi|Si “ si,ju.

This together with noting that tsi,1u and tsi,2u differ in exactly

|m1 ´ m2| positions, and the assumption on the noise Qi “
Zi ‘ Si (i.i.d. with Berppq) complete the proof.

Proposition 7: For the considered three-terminal model with

common shared randomness M the secret key rate SpM |Zq is

lower bounded as

SpM |Zq ě logmint
1

1 ´ δ1
, 1 ` p1 ´ λ2qδ2

1 ´ δm̃2
1 ´ δ2

u, (6)

where δ1 “ λ1p{p1 ´ pq, δ2 “ λ´1

2
p{p1 ´ pq, and λ1, λ2 are

defined in (3).

Proof: For any m0 P t1, 2, . . . , m̃u, using the Bayes’ rule

and the law of total probability we have

PrtM “ m0|Zu “
PrtZ|M “ m0uPrtM “ m0u

řm̃

m“1
PrtZ|M “ muPrtM “ mu

.

(7)

By plugging the bounds from Lemma 6 and Lemma 4 in (7), for

m0 P t1, 2, . . . , m̃ ´ 1u we have

PrtM “ m0|Zu ď 1{
8
ÿ

i“0

λi
1pp{1 ´ pqi “ 1 ´ δ1, (8)

for any instance of Z . And, similarly, for m̃ we have

PrtM “ m̃|Zu ď 1{
`

1 `
m̃´1
ÿ

i“1

λ´i
2

pp{1 ´ pqip1 ´ λ2q
˘

“ 1{
`

1 ` p1 ´ λ2qδ2
1 ´ δm̃2
1 ´ δ2

˘

,

(9)

where we again used bounds from Lemma 6 and Lemma 4 in

(7) while noting that PrtM “ m̃u “
ř8

i“m̃ pi.

As stated in (5), SpM |Zq “ HpM |Zq. Note that for any two

random variables M,Z , we have

HpM |Zq ě ´ logmax
m,z

PrtM “ m|Z “ zu.
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This together with bounds in (8) and (9) complete the proof.

Remark 4. Note that the second term over which minimization

of (6) takes place is increasing with m̃. Therefore, the lower

bound provided in Proposition 7 is non-decreasing with m̃.

Hence, the secret key rate, in terms of bits/session, is strictly

positive regardless of m̃ and is actually bounded away from 0 as

m̃ Ñ 8. Also, there is a certain threshold such that increasing

m̃ beyond that threshold does not improve the lower bound of

(6). It would be interesting to see if the actual secret key rate

SpM |Zq exhibits the same behavior.

Remark 5. Here, we do not discuss a coding method for Alice

and Bob to extract a secure key K from M in an information-

theoretic sense, i.e., IpK;Zq being small. In particular, since

HpMq is bounded, as shown in Section IV, there is no asymp-

totic behavior for such information-theoretic arguments. One

has to consider several sessions between Alice and Bob and

then apply standard key extraction techniques, e.g., using polar

codes [17], to a sequence of shared symbols Mj’s. Alterna-

tively, an ad-hoc solution is also possible by simply applying a

linear transform, e.g. a polarization matrix [18], to the sequence

tSiu
m̃
i“1

in one session. Although Si’s are not independent, an

argument similar to [19, Proposition 3] can be used to show

that compression of M and also extracting a secure K can be

done to some extent (Again, no concrete results can be made

here as there is no asymptotic behavior). Such solutions are

low complex and can be locally and identically performed by

Alice and Bob without any need for further communication.

The details are left for future work.

VI. RESILIENCE AGAINST JAMMING ATTACKS

Consider a two-user scenario where legitimate users want to

establish synchronization and to extract a common randomness,

as discussed in Section IV. Suppose that there is a jammer

present in the network equipped with a similar PO, as modeled

in Section III.

Let λ0 be as defined in (3). This parameter is frequently

used throughout this section. Let τ denote the phase difference

between the two POs at the beginning of a full cycle. If there

is no jammer, then the phase difference becomes Rpτq at the

end of the full cycle, as discussed in Section IV. In the presence

of a jammer, the dynamic may change as will be described in

the following lemma. Note that in the remaining of this section

we discard specifying the domains of h and R and assume the

following: if τ ą 1, then hpτq is replaced by 0; if τ ą h´1pδq,

then Rpδq is replaced by 1; if τ ă δ, then hpτq is replaced by 1

and Rpτq is replaced by 0, where δ is defined in Section IV as

δ “ 1 ´ f´1p1 ´ ǫq.

Lemma 8: Let τ, τ 1 denote the phase differences at the

beginning and at the end of a full cycle. Then

τ 1 P
“

h
`

λ0hpτq
˘

,maxtRpλ0τq, λ0Rpτqu
‰

,

where h, R, and λ0 are defined in (2), and (3), respectively.

Proof: There are three possible scenarios for the arrival

time of jammer’s pulse during one full cycle in terms of how

many pulses, either 0, 1, or 2 pulses, have been sent in that

cycle. Consider the first case where jammer’s pulse arrives at

a time t before any of the two POs send a pulse. Let φ, φ ` τ

denote the phases of the two POs at time t. Then the phases

change to hp1 ´ φq, hp1 ´ φ ´ τq right after t (Note that h is a

decreasing function with h1 ă ´1). Since h is a continuous and

differentiable function, then by the mean value theorem, there

exists c P rφ, φ ` τ s such that

1 ă
hp1 ´ φ ´ τq ´ hp1 ´ φq

τ
“ ´h1p1 ´ cq ď λ0.

Hence, the phase difference τ is scaled by at most a factor of

λ0 ą 0. Since R “ hphp.qq is an increasing function, the phase

τ 1 at the end of full cycle is at most h
`

hpλ0τq
˘

“ Rpλ0τq.

Similarly, if t is after both users have sent a pulse, then τ 1 is at

most λ0h
`

hpτq
˘

“ λ0Rpτq. And if t is after one of the users

has sent a pulse, then τ 1 is actually reduced and lower bounded

by h
`

λ0hpτq
˘

. This completes the proof.

Let Rλpτq
def
“ h

`

λhpτq
˘

. Then we have the following lemma.

Lemma 9: There exists at most one fixed point for each

of the functions Rλpτq, λRpτq, and Rpλτq, for any λ ą 1.

Furthermore, if Rpλδq ă δ, then Rλpτq, λRpτq, and Rpλτq
have exactly one fixed point.

Proof: Since R1 ą 1 and h1 ă ´1 over their domains,

the derivatives of Rλpτq, λRpτq, and Rpλτq are also greater

than 1 over their domains. Hence, the first part follows. Now, let

F pτq “ Rpλτq ´ τ . Note that the domain of R is pδ, h´1pδqq
and it can be observed that F ph´1pδqq ą 0. Now, if Rpλδq ă δ

(equivalent to F pδq ă 0) and since F 1 ą 0, then there exists

exactly one root for F which becomes a fixed point for λRpτq.

Since F is an increasing function, then F pδ{λq ă F pδq ă 0 or

equivalently λRpδq ă δ. Therefore, λRpδq has a unique fixed

point using the same argument. Also, note that Rλpδq ă δ and

it can be observed that Rλph´1pδqq ą h´1pδq is equivalent to

Rpλδq ă δ since h is a decreasing function. Hence, Rλpδq has

a unique fixed point using the same argument.

Corollary 10: Suppose that Rpλδq ă δ and let τ˚
λ denote the

fixed point for Rpλτq. Then λτ˚
λ is the fixed point for λRpτq

and h´1pτ˚
λ q is the fixed point for Rλpτq.

The following proposition is the main result of this section

which shows that synchronization always occurs, under certain

conditions, in the presence of jamming attacks.

Proposition 11: If Rpλ0δq ă δ, where λ0 is defined in (3),

then there exists a τ˚ P pδ, h´1pδqq such that for any initial

phase difference τ with τ R pτ˚, h´1pτ˚qq, synchronization

always occurs in the presence of the jamming attack.

Proof: Let τ˚ denote the fixed point of Rpλ0τq, which ex-

ists by Lemma 9. Then for any λ, where 1 ă λ ă λ0, the fixed

points of Rλpτq, λRpτq, and Rpλτq belong to pτ˚, h´1pτ˚qq.

Furthermore, since the derivatives of Rλpτq, λRpτq, and Rpλτq
are also greater than 1, they are repeller functions. In particular,

for τ ą h´1pτ˚q, we have Rλpτq ą τ , and for τ ă τ˚, we

have maxtRpλ0τq, λ0Rpτqu ă τ . The proposition follows by

this together with Lemma 8.

The result of Proposition 11 can be also interpreted as fol-

lows. Assuming that Rpλ0δq ă δ holds, then synchronization

occurs with probability at least 1 ´ h´1pτ˚q ` τ˚, where τ˚

is the fixed point of Rpλ0τq. Then the results of Section IV

and Section V can be extended to cases where a jammer is

also present. In fact, we expect that these results will be scaled

by a constant factor as the probability of synchronization and
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perhaps a modification of the parameters of the distribution of

shared randomness is also needed.

VII. CONCLUSION

In this paper, motivated by practical limitations of secret key

generation protocols, we proposed to exploit readily available

synchronization mechanisms in wireless networks, in particular

pulse-coupled synchronization, for sharing common random-

ness between legitimate parties. The initial random phases of

the POs deployed by the parties serve as the source of common

randomness. Bounds on the entropy of such randomness, which

is almost identically observed by the users, are derived for

a two-user system. Furthermore, a three-terminal scenario is

considered including two legitimate parties and a passive Eve.

Eve’s receiver is modeled and then a bound on the secret key

rate is derived. Also, it is shown that, under certain conditions,

the proposed protocol is resilient to active jamming with similar

pulse generation mechanism.

There are several directions for future work. It is interesting

to generalize the result of Section IV to networks with more

than two users and, in particular, to check the validity the

conjecture discussed in Remark 1. In a more abstract setup and

assuming a central user, this relates to the problem of distributed

secret sharing in multi-user scenarios [20]. The eavesdropper’s

model, described in Section III and investigated in Section V,

can be extended to take into account memory, imperfectness of

pulses, synchronization error, etc. The model for the jamming

attack, discussed in Section VI, can be also extended to consider

more general attacks such as a fixed-power interference, send-

ing higher frequency pulses, etc. Furthermore, implementing

the proposed system in front-end antennas, e.g., using setups

similar to [21], is another interesting future direction.
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