
ar
X

iv
:1

90
1.

06
84

0v
1

 [
cs

.I
T

]
 2

1
Ja

n
20

19

Anchor-Based Correction of Substitutions

in Indexed Sets
Andreas Lenz∗, Paul H. Siegel†, Antonia Wachter-Zeh∗, and Eitan Yaakobi‡

∗Institute for Communications Engineering, Technical University of Munich, Germany
†Department of Electrical and Computer Engineering, CMRR, University of California, San Diego, California

‡Computer Science Department, Technion – Israel Institute of Technology, Haifa, Israel

Emails: andreas.lenz@mytum.de, psiegel@ucsd.edu, antonia.wachter-zeh@tum.de, yaakobi@cs.technion.ac.il

Abstract—Motivated by DNA-based data storage, we investi-
gate a system where digital information is stored in an unordered
set of several vectors over a finite alphabet. Each vector begins
with a unique index that represents its position in the whole data
set and does not contain data. This paper deals with the design
of error-correcting codes for such indexed sets in the presence
of substitution errors. We propose a construction that efficiently
deals with the challenges that arise when designing codes for
unordered sets. Using a novel mechanism, called anchoring, we
show that it is possible to combat the ordering loss of sequences
with only a small amount of redundancy, which allows to use
standard coding techniques, such as tensor-product codes to
correct errors within the sequences. We finally derive upper and
lower bounds on the achievable redundancy of codes within the
considered channel model and verify that our construction yields
a redundancy that is close to the best possible achievable one.
Our results surprisingly indicate that it requires less redundancy
to correct errors in the indices than in the data part of vectors.

I. INTRODUCTION

Consider a system where digital information is embodied

in an unordered set of vectors and each vector holds a share

of the whole data set. To combat the unordered nature of the

data storage, such systems almost exclusively rely on indices,

which are prepended to each vector and denote the position of

that vector in the data set. An important example for a modern

communication system of such a type is internet routing,

where data is split into packets and transmitted over a network.

Since packets can have different propagation times over the

network, they might be received in a different order and hence

the ordering of the packets is lost. Another important example

for such a system is deoxyribonucleic acid (DNA)-based data

storage, which is the main focus of this paper.

Data storage in DNA is a novel technology that, due to

recent advancements in biochemical mechanisms of synthe-

sizing and sequencing DNA molecules, has advanced to be

a highly competitive candidate for long-term archival storage

of digital data. This is since DNA-based storage has several

important features that stand out with respect to conventional

digital data storage systems, such as tapes and hard disk drives.

These include outstandingly high data densities and long-

term robustness. Due to its chemical structure, from a coding

theoretic point of view, DNA can be seen as a vector over

symbols {A,C,G,T}, which abbreviate the four nucleotides

This work was done in part while A. Lenz was visiting the computer science
faculty of Technion – Israel Institute of Technology, Israel. This work was
supported by the Institute for Advanced Study (IAS), Technische Universität
München (TUM), with funds from the German Excellence Initiative and the
European Union’s Seventh Framework Program (FP7) under grant agreement
no. 291763. This work was also supported by NSF Grant CCF-BSF-1619053
and by the United States-Israel BSF grant 2015816.

adenine (A), cytosine (C), guanine (G), and thymine (T). Sin-

gle DNA strands can be synthesized chemically and modern

DNA synthesizers can concatenate the four DNA nucleotides

to form almost any possible sequence. This process enables

the storage of digital data in DNA. The data can be read back

with common DNA sequencers, while the most popular ones

use DNA polymerase enzymes.

Using DNA as a storage medium for digital data was

envisioned by Feynman in his famous speech “There’s plenty

of room at the bottom” and also by Baum [1]. It took

several decades until first experiments of Church et al. [4]

and later Goldman et al. [6] demonstrated the viability of

in vitro DNA storage on a large scale. In the next years,

many experiments followed, including Grass et al. [7] who

successfully employed error-correcting codes to recover the

data. Since then, several more groups have elaborated the

methods, storing ever larger amounts of data. For example,

Erlich and Zielinski [5] stored 2.11MB of data in DNA, Blawat

et al. [2] recovered a data archive of 22MB, and Organick

et al. [12] stored 200MB of digital information. Yazdi et

al. [20] developed a method that offers random read access and

rewritable storage using constrained codes. On the other hand,

coding theoretic aspects of DNA storage systems have received

significant attention recently. The work of [9] discusses error-

correcting codes for the DNA sequencing channel, where a

possibly erroneous collection of substrings of the original

strand is obtained. Codes over unordered sets of sequences,

where sequences are affected by a certain number of point

errors, such as insertions, deletions and substitutions, have

been discussed in [11], [15], [16]. In [15], codes and bounds

for a given number of substitutions have been proposed, which

require a redundancy that is both logarithmic in the number of

sequences and the length of the sequences. Based on a slight

adaptation of the model in [11], the sequence-subset distance

has been introduced and analyzed in [16] and Singleton-like

and Plotkin-like code size upper bounds have been derived.

In contrast, [10] proposes codes for errors that affect whole

strands in a storage system that stores multiset of sequences.

Recently, codes that can be equipped as primer addresses have

been proposed in [18], [3]. A comprehensive survey for DNA-

based storage can be found in [19].

From an information theoretic point of view DNA is fun-

damentally different than other storage media due to the fact

that all information about the ordering of the DNA strands

is lost during synthesis. One efficient and practical way to

circumvent this limitation is to prepend an index to each strand

that denotes the position of the strand in the archive. However,

http://arxiv.org/abs/1901.06840v1

1x1 u1

2x2 u2

...

MxM uM

Index Data

x
′
1 4 u

′
1

2x2 u2

...

7x
′
M u

′
M

Perturb

x2 2 u2

1x
′
5 u

′
5

...

7x
′
M u

′
M

Permute

Fig. 1. Channel model for information storage in indexed sets. First, some sequences xi are perturbed by substitution errors, resulting in x
′

i
= xi + ei.

Afterwards, the sequences can be permuted arbitrarily and hence all inherent information about their ordering is lost. Since the indices can be erroneous, too,
it is not necessarily directly possible to reconstruct their ordering.

due to errors during synthesis or sequencing, these indices

might be erroneous when reading the archive. A naive solution

to combat these errors is to protect each index by an error-

correcting code. Such an approach however already incurs a

redundancy that grows linearly with the number of strands,

which is suboptimal, especially for the practically important

case, when not all sequences contain errors. In this paper we

will analyze the approach of indexing sequences in the pres-

ence of errors inside the strands. We propose constructions that

efficiently cope with these errors and only have a redundancy

that is logarithmic in both the number and length of sequences.

Note that the employment of indices is not a necessity and the

more general setup of storing an arbitrary set of sequences has

been analyzed in [11]. However, the discussion of indexed-

based schemes is practically important due to its simplicity.

In this work we study only substitution errors, while insertion

and deletion errors are deferred for future work. Also, we

present our results for the binary case, while the extension to

non-binary alphabets is straightforward.

II. CHANNEL MODEL

In this work we study a system where user data is stored

in an indexed set S = {x1, . . . ,xM} of M unordered vectors

xi ∈ ΣL
2 , where i ∈ [M] , {1, 2, . . . ,M} and Σ2 = {0, 1}.

The vectors are also called sequences or strands in reference

to the DNA-based storage system. Hereby, each vector xi has

the same length L. Throughout the paper, we use that M =
2βL for some 0 < β < 1 such that βL ∈ N is an integer.

Mathematically, an indexed set is characterized as

S = {(I(1),u1), (I(2),u2), . . . , (I(M),uM)} ⊆ ΣL
2 ,

with sequences xi = (I(i),ui) ∈ ΣL
2 . Each sequence hereby

consists of two parts. It begins with a prefix I(i) ∈ ΣlogM
2 ,

also referred to as index, of length logM . This prefix is a

unique binary representation of the index i and designates

the position of this specific sequence in the data set S.

Note that in general it is possible to use any bijective map

I(i) : {1, . . . ,M} 7→ ΣlogM
2 as index, however in practice

this map is usually realized by a standard decimal to binary

conversion. The second part of each sequence, ui ∈ ΣL−logM
2 ,

will be referred to as the data part of a sequence and can be

filled arbitrarily by either user information or redundancy from

an error-correcting code, as illustrated later. For convenience,

we will abbreviate LM , L − logM throughout the paper.

The set of all indexed data sets is

IL
M =

{

S = {(I(1),u1), (I(2),u2), . . . , (I(M),uM)} :

ui ∈ ΣLM

2 ∀ i = 1, . . . ,M

}

,

and their total number is |IL
M | = 2MLM . Therefore, IL

M

denotes all feasible channel inputs of the channel, when using

indexed sets. The stored set can be corrupted by substitution

errors, caused by, e.g., synthesis or sequencing errors and

we model the errors by a channel that takes an indexed set

S ∈ IL
M as input and outputs an erroneous outcome of this set

based on the following procedure as visualized in Fig. 1. When

an indexed data set S = {x1, . . . ,xM} ∈ IL
M has been stored,

M−t strands are read correctly and t strands are read in error.

These sequences result from clustering and reconstructing a

large number of sequences, which has been illustrated and dis-

cussed in [12], [11]. Denote by F = {f1, f2, . . . , ft} ⊆ [M]
with 1 ≤ f1 < f2 < · · · < ft ≤ M the ordered indices of the

sequences that are received in error and ef1 , . . . , eft ∈ ΣL
2

the corresponding error patterns. The index I(i) of each

erroneous sequence xi, i ∈ F is affected by at most ǫ1
substitution errors and the data part ui is affected by at most

ǫ2 substitutions. Therefore, each error vector is composed of

two parts efi = (eIfi , e
D
fi
) of lengths logM and LM , with

Hamming weights wt(eI
fi
) ≤ ǫ1 and wt(eD

fi
) ≤ ǫ2 for all

i ∈ [t]. The received set S ′ ⊆ ΣL
2 can then be written as

S ′ =

M
⋃

i=1

{

xi, if i /∈ F ,
xi + ei, if i ∈ F

.

Throughout the paper the (t, ǫ1, ǫ2)-channel will refer to the

entity which, given an input set S ∈ IL
M , outputs a received

set S ′ resulting from arbitrary F and ef1 , . . . , eft as described

above. This set of all possible channel outputs is denoted by

B(S). Note that when there are errors in the indices, the erro-

neous sequences x
′
fj

, xfj + efj , j ∈ [t] are not necessarily

distinct from each other or from the error-free sequences and

in this case these sequences adjoin and appear as a single

sequence at the receiver. Therefore the number of received

sequences can be less than M , i.e., M − t ≤ |S ′| ≤ M . In

particular here it is also possible that the received set S ′ /∈ IL
M ,

since some indices might not be present in the received set or

others might appear multiple times. Another particularity of

the channel is that different error patterns F and ef1 , . . . , eft
might lead to the same channel output S ′. We will use the

following standard definition of an error-correcting code.

Definition 1 ((t, ǫ1, ǫ2)-indexed-set code). A code C ⊆ IL
M

is called a (t, ǫ1, ǫ2)-indexed-set code, if B(S1) ∩B(S2) = ∅
for every pair S1,S2 ∈ C with S1 6= S2. Accordingly, the

redundancy of an indexed-set code C ⊆ IL
M is defined to be

r(C) = MLM − log |C|.

By this definition, an indexed-set code is a set of codewords

for which, for each channel output S ′ ⊆ ΣL
2 , there exists at

most one codeword which could have resulted in this exact

channel output S ′. Note that here, each codeword is not a

vector, as in the standard channel coding problem, but a set of

indexed vectors. In this paper, we distinguish between errors

in the index of sequences and data part of the sequences due

to the following reasons. It is observed that the sequencing

error rates at the beginning of DNA strands are lower with

several sequencing technologies [5], [8], [12]. Second, from

a theoretical point of view, errors inside the indices have a

different character than those in the data part, as they do

not affect data directly but hinder the correct identification

of the strand order. We will also elaborate in this paper that

the redundancy required to correct errors in the indices is

significantly smaller than that in the data part of sequences.

Finally, the channel model is strongly connected to the more

general model presented in [11] as follows.

1) Each (0, t, ǫ)S-correcting code [11] is a (t, ǫ1, ǫ2)-
indexed-set code, if ǫ1 + ǫ2 ≤ ǫ.

2) Each (t, ǫ1, ǫ2)-indexed-set code is a (0, t, ǫ)S-correcting

code [11], if ǫ ≤ min(ǫ1, ǫ2).

III. CONSTRUCTION

Finding codes that can correct errors from the DNA-storage

channel, one faces two main challenges that have to be tackled.

To begin with, substitution errors that are solely in the data part

of the sequences can be corrected by standard error-correcting

schemes, such as tensor-product codes [17], which we will

discuss in more detail later. However, errors in the indices of

sequences will corrupt the ordering of the sequences, which

hinders the direct employment of tensor-product codes. We

therefore will construct a code that first enables to reconstruct

the correct ordering of the sequences using so called anchors,

and then uses a tensor-product code to correct the errors in the

data part of the sequences. The anchors are defined as follows.

Definition 2 (Anchor). Let l, t, ǫ1, ǫ2 ∈ N and a1, . . . ,aM ∈
Σl

2 be M vectors of length l with 2l ≥ M . Further, denote

by MDS[M, 2t] a maximum-distance-separable (MDS) code

of length M and redundancy 2t over the field Σ2l . The set of

anchor vectors A(l, t, ǫ1, ǫ2) is defined to be

A(l, t, ǫ1, ǫ2)=

(a1, . . . ,aM) ∈ ΣMl
2 : ∀i, j∈[M], i 6= j :

d(ai,aj) > 2ǫ2, if d(I(i), I(j)) ≤ 2ǫ1,
(a1, . . . ,aM) ∈ MDS[M, 2t]

.

That is, if the indices I(i), I(j) of two vectors ai,aj have

distance at most 2ǫ1, the vectors have distance more than 2ǫ2.

Further, the equivalents of the vectors a1, . . . ,aM in Σ2l are

a codeword of an MDS code with minimum distance 2t+ 1.

This definition implies that the anchor vectors have both

a large intra-anchor distance between vectors of one anchor

and a large inter-anchor distance between two anchors due to

the MDS code. Note that for 2ǫ1 = logM and t = 0 this

definition is equivalent to a standard error-correcting code,

which corrects ǫ2 errors. The redundancy required to force

such a constraint on a collection of vectors will be calculated

later. For the case of t = 0, the set A(l, 0, ǫ1, ǫ2) is called

clustering-correcting code, and explicit constructions which

1x1 a1 v1

2x2 a2 v2

...

M − r2xM−r2 aM−r2 vM−r2

M−r2+1xM−r2+1 aM−r2+1 vM−r2+1

...

M − 1xM−1 aM−1 vM−1

MxM aM vM

Index Anchor TPC

logM l r1

r2

L
Fig. 2. Schematic of Construction 1

require only one bit of redundancy and can be encoded and

decoded efficiently can be found in [14]. The anchoring prop-

erty will be used to reconstruct the ordering of the sequences.

After the ordering of sequences is restored, it is possible to

correct the errors in the sequences using tensor-product codes

[17], which are defined as follows.

Definition 3 (Tensor-product code). Let C1 ⊆ Σ2 be a linear

[LM , LM − r1, ǫ2] binary ǫ2-error-correcting code of length

LM , redundancy r1 and parity-check matrix H1 ∈ Σr1×LM

2

and let C2 ⊆ Σ2r1 be a linear [M,M − r2, t] code over the

field Σ2r1 . The tensor-product code is then defined to be

TPC(t, ǫ2) =

{

(u1, . . . ,uM) ∈ ΣMLM

2 :
(s1, . . . , sM) ∈ C2

}

,

where si = uiH
T
1 are syndromes whose equivalents in

the finite field Σ2r1 form a codeword of C2. The overall

redundancy of the tensor-product code is r1r2 bits.

Correcting errors using the tensor-product code is done as

follows [17]. Assume the word U = (u′
1, . . . ,u

′
M) is received,

where at most t vectors u
′
i have been affected by at most ǫ2

errors each. The receiver first computes the syndromes s
′
i =

u
′
iH

T
1 of all vectors. Since there are at most t syndromes

corrupted, the correct syndromes si can be recovered using

the code C2. Now, in each row, ǫ2 errors can be corrected

using the knowledge of the correct syndrome si and the code

C1. Combining the anchoring property with the tensor-product

code leads to the following construction.

Construction 1. Let l, t, ǫ1, ǫ2 ∈ N with l ≥ logM . Further,

TPC(t, ǫ2) denotes a tensor-product code over an array of

size M × LM . We define the construction CA ⊆ IL
M as

CA =

S = {(I(1),a1,v1), . . . , (I(M),aM ,vM)} :
(a1, . . . ,aM) ∈ A(l, t, ǫ1, ǫ2),
((a1,v1), . . . , (aM ,vM)) ∈ TPC(t, ǫ2)

.

Note that with this construction, the anchors a1, . . . ,aM

can also contain user data. The correctness of Construction 1

and its decoding algorithm are presented in the following.

Lemma 1. Construction 1 is a (t, ǫ1, ǫ2)-indexed-set code.

Proof. We will prove the correctness of Construction 1 by

providing an algorithm that can be used to correct errors from

the (t, ǫ1, ǫ2)-channel. The decoding algorithm can be split

into the following two steps.

1) Retrieve the correct order of sequences using the an-

choring property of a1, . . . ,aM .

2) Correct errors inside the sequences using the tensor-

product code TPC(t, ǫ2).

Assume S = {x1, . . . ,xM} ∈ CA has been stored and S ′ =
{x′

1, . . . ,x
′
M} ∈ B(S) has been received after transmission

over a (t, ǫ1, ǫ2)-channel. We will write x
′
i = (I(i′),a′

i,v
′
i),

which is either x′
i = xi, if the sequence was received correctly,

i.e., i /∈ F , or x
′
i = xi + ei, if the sequence was received in

error, i.e., i ∈ F . This correct ordering of received sequences is

however only used to simplify notation and is not known to the

receiver, as the indices I(i′) can be erroneous. Note that due

to the anchoring property, it is guaranteed that an erroneous

sequence can never adjoin with another sequence and therefore

|S ′| = M . The anchors can be fully recovered using their

MDS property as follows. Declare all positions i ∈ [M], where

there is not exactly one index present, i.e., i : |{j : I(j′) =
I(i)}| 6= 1 as erasures, and fill all remaining positions with the

corresponding anchors a′
i. Although some anchors might have

the wrong position, decoding the resulting vector of length M
with a unique decoding algorithm yields the correct anchors

a1, . . . ,aM (cf. [11, Con. 1]). Using the anchors, it is possible

to assign each sequence x
′
j to its correct position i by finding

the single sequence x
′
j ∈ S ′ with d(I(i), I(j′)) ≤ ǫ1 and

d(ai,a
′
j) ≤ ǫ2. There is exactly one sequence j = i with

that property. Assume on the contrary, there is more than

one sequence (apart from the correct sequence x
′
i), which

fulfills this property. Then, there would be a sequence x
′
j ,

j 6= i with d(I(i), I(j′)) ≤ ǫ1 and d(ai,a
′
j) ≤ ǫ2, which

implies that d(I(i), I(j)) ≤ 2ǫ1 and also d(ai,aj) ≤ 2ǫ2,

which contradicts the anchoring property. We therefore can

reconstruct the array ((a′
1,v

′
1), . . . , (a

′
M ,v′

M)) in the correct

order. Since each row (a′
1,v

′
1) has at most ǫ2 errors, these

errors can be corrected using the tensor-product code, which

completes the proof of the correctness of Construction 1.

The redundancy of Construction 1 can be decomposed into

the redundancy required for the anchoring property and the

redundancy of the tensor-product code and is given as follows.

Theorem 1. For any t, ǫ1, ǫ2 the redundancy of CA is

r(CA) = rA + r1r2,

where rA = 2tl−M log(1− 2−lB2ǫ1(logM)B2ǫ2(l)). There-

fore, for fixed t, ǫ1, ǫ2, and arbitrary small δ > 0, for M → ∞
there exists an explicit construction CA with redundancy

r(CA) ≤ (4t+ 2δ) logM + 2tǫ2⌈logLM⌉+ 1 + o(1).

Proof. From the cardinality of clustering-correcting codes [14]

and the fact that the MDS code with redundancy 2t has 22tl

cosets, there exists one coset of the MDS code with

|A(l, t, ǫ1, ǫ2)| ≥
1

22tl
(2l −B2ǫ1(logM)B2ǫ2(l))

M

by the pigeonhole principle. From this follows the redundancy

rA required for the anchoring property. Next, the redundancy

of the tensor-product codes is r1r2. Using alternant codes [13,

ch. 5] C1 and C2, we obtain redundancies r1 = ǫ2⌈logLM⌉
and r2 = 2t⌈ logM

r1
⌉, if r1 ≤ logM and r2 = 2t, otherwise.

Using l = (1 + δ) logM yields rA = 2t(1 + δ) logM + o(1)
and the asymptotic bound follows.

Note that for t = 1, the construction can be improved

by using a Hamming code for C2 and an MDS[M, 1] code

with redundancy 1 for the anchors is sufficient, which yields

a redundancy of approximately 2 logM + ǫ2 logLM + o(1).

IV. SPHERE PACKING BOUND

The derivation of the sphere packing bound is based on the

sets B(S) of possible outputs of the channel, when S ∈ IL
M

is the input. The bound is derived by using the fact that B(S)
must be distinct for different codewords S to guarantee unique

decoding to one codeword. In this and the following section,

we will abbreviate the size of the Hamming ball of radius r
by Br(n) ,

∑n

i=0

(

n
i

)

. The main result is as follows.

Theorem 2. The cardinality of any (t, ǫ1, ǫ2)-indexed-set code

C ⊆ IL
M is at most

|C| ≤
2MLM

(

M
t

)

(Bǫ2(LM)− 1)t
.

Therefore, the redundancy is at least

r(C) ≥ t logM + tǫ2 log(LM)− t log(tǫǫ22).

Proof. Let C ⊆ IL
M be a (t, ǫ1, ǫ2)-indexed-set code. We

consider first the case that ǫ1 = 0, i.e., there are only

errors outside the indices and therefore all erroneous out-

comes S ′ ∈ B(S) ∩ IL
M are again indexed sets. Due to

the distinctness of error balls, every code C ⊆ IL
M satisfies

|C| · minS∈IL
M
|B(S) ∩ IL

M | ≤ |IL
M |. Using this inequality

we bound the code size |C| from above. Specifically, for

all S ∈ IL
M , we bound the number of erroneous outcomes

|B(S)∩IL
M | which are again indexed sets from below. Distinct

elements S ′ ∈ B(S)∩IL
M are obtained as follows. For ǫ1 = 0

the indices of each sequence can be omitted and the stored set

can be viewed as a binary array of M rows and LM columns,

where each row corresponds to one sequence. The number of

possible error patterns is therefore

|B(S) ∩ IL
M | ≥

(

M

t

)

(Bǫ2(LM)− 1)t,

as there are
(

M
t

)

ways to choose the erroneous rows and

Bǫ2(LM) − 1 possible substitution patterns per row. Finally,

the case ǫ1 = 0 is a special case of ǫ1 > 0, as there are up

to ǫ1 errors inside the indices and thus the above bound also

holds for arbitrary ǫ1 > 0 which concludes the proof.

Note that by the definition of the channel it is possible that

errors occur in the index of a sequence. However considering

these errors for the sphere packing bound does not improve

the bound, as we will illustrate in the following. Let us for

simplicity assume that there has only been one error in the i-th
sequence, and compare the two cases, where first, the error is

in the data part, i.e., t = ǫ2 = 1 and ǫ1 = 0, and second, the

error is in the index, i.e., t = ǫ1 = 1 and ǫ2 = 0. In the first

case, it is sufficient to use a Hamming code of length MLM

and redundancy log(MLM), which is able to correct the

single substitution, as the receiver can correctly concatenate

the received sequences. On the other hand, when the error

occurs inside the index of sequence i, resulting in index j, the

receiver will see two sequences with the same index j and no

sequence with index i. In this case, the receiver only has to

decide which of the two sequences with the index j belongs

to the position i. As this is merely a binary decision, from a

sphere packing point of view, a redundancy of roughly a single

bit is sufficient to correct this error. This surprisingly indicates

that errors inside indices of sequences are less harmful than

those inside the data fields of sequences.

V. GILBERT-VARSHAMOV BOUND

In the last section we have derived upper bounds on the

cardinality of error-correcting codes for indexed-set codes. On

the other hand, we will now show how to find lower bounds on

the achievable size of such error-correcting indexed-set codes

based on Gilbert-Varshamov-like sphere covering arguments.

For convenience, in the following we denote by V (S) the set

of indexed sets S̃ ∈ IL
M which have intersecting errors ball

with S ∈ IL
M , i.e., B(S) ∩B(S̃) 6= ∅.

Theorem 3. There exists a (t, ǫ1, ǫ2)-indexed-set code C ⊆
IL
M with cardinality at least

|C| ≥
2MLM

(

M
t

)2
(Bǫ2(LM))2t(t!2 + t

M−t
(Bǫ1(logM))2t)

.

Therefore, for fixed t, ǫ1, ǫ2 and M → ∞, there exists a

(t, ǫ1, ǫ2)-indexed-set code C ⊆ IL
M with redundancy at most

r(C) ≤ 2t logM + 2tǫ2 logLM − 2t log ǫ2! + o(1).

Proof. Based on an iterative procedure, it can be shown

that there exists a (t, ǫ1, ǫ2)-indexed-set code C ⊆ IL
M with

|C| ·maxS∈IL
M
|V (S)| ≥ |IL

M |. Bounding |V (S)| from above

for all S ∈ IL
M will be the main task in the following. Let

BI(S) , B(S) ∩ IL
M be the set of erroneous sets which are

indexed sets and BN (S) , B(S)\BI(S). Further distinguish

between VI(S) , {S̃ ∈ IL
M : BI(S) ∩ B(S̃) 6= ∅} and

VN (S) , V (S) \ VI(S) and note that V (S) = VI(S) ∪
VN (S). We first count |VI(S)|. To begin with, |BI(S)| ≤
(

M
t

)

t!(Bǫ2(LM))t, as there are
(

M
t

)

ways to choose the

erroneous sequences F . For one fixed F , there are at most

t! error patterns for the errors in the indices e
(1)
f1

, . . . , e
(1)
ft

that

yield indexed sets, as any permutation of erroneous sequences

is potentially possible. For each such choice there are again

at most (Bǫ2(LM))t ways to distribute the errors in the data

fields of the t erroneous sequences. From each S ′ ∈ BI(S),
there are again at most |BI(S ′)| ways to arrive at a valid

set S̃ ∈ IL
M and thus |VI(S)| ≤ |BI(S)|2. Next we count

|VN (S)|. The number of elements in the error ball is at most

|BN (S)| ≤
(

M
t

)

Bǫ1(logM)Bǫ2(LM), as this is the maximum

number of error patterns. Let S ′ ∈ BN (S) and denote by

tN (S ′) the number of indices that are not present in S ′. Then

the number of sets S̃ ∈ IL
M with S ′ ∈ B(S̃) is at most

(Bǫ1(logM))t
(

M
t−tN (S′)

)

(Bǫ2(LM))t, as tN (S ′) sequences

have to be distorted in a way such that their indices match

the missing indices. And thus, there are only Bǫ1(logM)
options per missing index in S ′. The remaining erroneous

sequences can be chosen arbitrarily. Using tN (S ′) ≥ 1 for

all S ′ ∈ BN (S) yields the theorem.

VI. CONCLUSION

In this paper, we have discussed codes, where each code-

word is an indexed set of several vectors. The proposed

construction significantly improves the redundancy 2tL from

[11, Con. 1] to 4t logM + 2tǫ2 logLM , and approaches the

sphere-packing bound t logM + tǫ2 logLM up to a factor of

4 and a factor of 2 for t = 1. Further, our results surprisingly

indicate that errors within the index of sequences seem to be

less harmful than errors in the data part of sequences. This

is in sharp contrast to current technologies that often rely on

extra codes, which only protect the index of sequences in order

to guarantee correct ordering of sequences.

REFERENCES

[1] E. B. Baum, “Building an associative memory vastly larger than the
brain,” Science, vol. 268, no. 5210, pp. 583–585, 1995.

[2] M. Blawat et al., “Forward error correction for DNA data storage,” in
Int. Conf. Computational Science, San Diego, Jun. 2016, pp. 1011–1022.

[3] Y. M. Chee, H. M. Kiah, and H. Wei, “Efficient and
explicit balanced primer codes,” 2019. [Online]. Available:
http://arxiv.org/abs/1901.01023

[4] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, no. 6102, pp. 1628–1628, Sep. 2012.

[5] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, no. 6328, pp. 950–954, Mar. 2017.

[6] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, no. 7435, pp. 77–80,
Jan. 2013.

[7] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie Int. Edition, no. 8, pp. 2552–
2555, Feb. 2015.

[8] R. Heckel, G. Mikutis, and R. Grass, “A characterization
of the DNA data storage channel,” 2018. [Online]. Available:
http://arxiv.org/abs/1803.03322

[9] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146, Jun.
2016.

[10] M. Kovačević and V. Y. F. Tan, “Codes in the space of multisets – coding
for permutation channels with impairments,” IEEE Trans. Inf. Theory,
no. 7, pp. 5156–5169, Jul. 2018.

[11] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” 2018, submitted to IEEE Trans. Inform. Theory.
[Online]. Available: https://arxiv.org/abs/1812.02936

[12] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature, pp. 242–248, Mar. 2018.

[13] R. M. Roth, Introduction to Coding Theory. New York: Cambridge
University Press, 2006.

[14] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, “Clustering-
correcting codes,” submitted to ISIT 2019.

[15] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced information,”
2018. [Online]. Available: http://arxiv.org/abs/1809.02716

[16] W. Song and K. Cai, “Sequence-subset distance and coding for
error control in DNA-based data storage,” 2018. [Online]. Available:
http://arxiv.org/abs/1809.05821

[17] J. K. Wolf, “An introduction to tensor product codes and applications to
digital storage systems,” in IEEE Inform. Theory Workshop, Chengdu,
China, Oct. 2006, pp. 6–10.

[18] S. M. H. T. Yazdi, H. M. Kiah, R. Gabrys, and O. Milenkovic, “Mutually
uncorrelated primes for DNA-based data storage,” IEEE Trans. Inf.

Theory, vol. 64, no. 9, pp. 6283–6296, Sep. 2018.
[19] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-ruiz, J. Ma, H. Zhao, and

O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans.

Mol. Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230–248, Sep. 2015.
[20] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A

rewritable, random-access DNA-based storage system,” Nature Scientific

Reports, no. 14138, Aug. 2015.

http://arxiv.org/abs/1901.01023
http://arxiv.org/abs/1803.03322
https://arxiv.org/abs/1812.02936
http://arxiv.org/abs/1809.02716
http://arxiv.org/abs/1809.05821

	I Introduction
	II Channel Model
	III Construction
	IV Sphere Packing Bound
	V Gilbert-Varshamov Bound
	VI Conclusion
	References

