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Abstract

Coded caching utilizes pre-fetching during off-peak hours and multi-casting for delivery in order to balance the traffic load in
communication networks. Several works have studied the achievable peak and average rates under different conditions: variable
file lengths or popularities, variable cache sizes, decentralized networks, etc. However, very few have considered the possibility of
heterogeneous user profiles, despite modern content providers are investing heavily in categorizing users according to their habits
and preferences.

This paper proposes three coded caching schemes with uncoded pre-fetching for scenarios where end users are grouped
into classes with different file demand sets (FDS). One scheme ignores the difference between the classes, another ignores the
intersection between them and the third decouples the delivery of files common to all FDS from those unique to a single class.
The transmission rates of the three schemes are compared with a lower bound to evaluate their gap to optimality, and with each
other to show that each scheme can outperform the other two when certain conditions are met.

I. INTRODUCTION

The recent information explosion is constantly pushing the limits of communication networks, users always want more

information at faster speeds and with minimal latency. Network operators hope to address this problem by pushing the content

and computation closer to the end users, in what is commonly known as fog networking [1]. Having multiple caches distributed

across the network helps balance the load over the internet backbone, but does not alleviate the congestion that often arises at

the edge of the network during peak hours. Coded caching was introduced as a powerful solution for solving this problem.

A coded caching scheme consists of a placement and a delivery phase. The placement phase takes place during off-peak

hours, when there are spare resources in the network. The server partitions all the files into segments and stores them in

the users’ caches. The delivery phase takes place during peak hours, when multiple (if not all) users have file requests. The

server attempts to fulfill all those requests with minimal information transmitted, by leveraging the segments cached during

the placement phase. It has long been known that proactively caching popular content during off-peak hours reduces the total

information to be transmitted when that content is requested. This gain depends on the hit rates on the local cache of the end

users, so it is known as local caching gain. However, Maddah-Ali and Niesen’s seminal paper [2] recently showed that the

overall transmission rate in point-to-multipoint links can be reduced further by carefully coordinating the cached segments and

using a coded delivery scheme. This gain depends on the segments shared by the different user subgroups and is therefore

known as global caching gain.

In [2], Maddah-Ali and Niesen proposed a coded caching scheme which maximizes multicasting opportunities for the worst

case user demands. Subsequent works focused on lowering the peak rate in different scenarios [3], [4]. However, these papers

adopted homogeneous models which do not fit most practical systems where coded caching could potentially be used. Some

recent works have analyzed the transmission rate of coded caching systems with full heterogeneity: [5] considered different

file sizes, cache sizes, and user dependent file popularity, but only for two users and two files. Centralized and decentralized

coded caching schemes with heterogeneous user cache sizes were studied in [6] and [7], respectively, but they ignored the

users’ diverse preference over files. The work in [8] provided an optimization theoretic analysis of coded caching systems with

various heterogeneities (cache size, file length, and file popularity) and demonstrated that Maddah-Ali and Niesen’s original

scheme from [2] is optimal for problems with uniform file size, popularity, and cache size. Unfortunately, the results in [8] are

derived numerically, without theoretical evidence. Furthermore, it does not address user heterogeneity, which is the focus of this

paper. A scenario with heterogeneous file popularities was addressed in [9] by partitioning files into groups such that, within

each group, the files have approximately equal popularities. However, it again assumed that the popularity of each file was

identical for every user. Additional research on coded caching has extended it to topics such as device-to-device caching [10],

hierarchical caching [11], and distinct file sizes [12].

Papers like [13]–[15] have addressed the significance of predicting users behavior according to their preferences. This mirrors

the current trend of online video streaming companies like Hulu and Netflix which spend a considerable amount of resources

investigating their customers’ habits and categorizing them according to their streaming preferences. The paper [16] utilized

game theory to analyze the transmission cost of a centralized coded caching system when the users present heterogeneous

preferences over the files requested, but it neglected the alternative of organizing the users into groups according to their
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preferences. The recent paper [17] categorized users into two groups: VIP and non-VIP. It proposed schemes so that the VIP

group obtains better experience (lower transmission rate) than the other group. However, it only considered the decentralized

coded caching system model and merely paid attention to specific users instead of the whole ensemble. Another coded caching

scheme with user grouping was proposed in [18] for wireless channels, and its results indicate that grouping users based on

their channel conditions is beneficial for reducing transmission time, especially for small cache sizes. Our prior conference

paper [19] addressed a system where the users are grouped into classes with similar file interests. It proposed three coded

caching schemes for this scenario and studied their peak rate, but it did not provide a comprehensive comparison between

them. This paper will do that and study the subject in more detail.

Most existing works have focused on studying the peak rather than the average rate of coded caching systems. This is

mainly due to the fact that the average rate is highly dependent on the distribution of the requests and that the peak rate is

an important factor in the design of small networks. When the number of files and users is large, however, the peak rate is

very rarely reached and the average rate is a better metric for performance evaluation. There have been works studying the

average rate, e.g., [20], [21], but they assumed the same distribution of requests for all users. The scenario with heterogeneous

user profiles was thoroughly analyzed in [22], but just for the case of two users. Our prior work [23] studied the average rate

resulting from the three schemes proposed in [19] and compared their asymptotic performance.

The main contributions of this paper include: 1) characterizing the peak and average rates of the three schemes proposed

in [19] for a coded caching system with heterogeneous user profiles; 2) deriving lower bounds for the peak rate of the three

schemes; 3) proposing a cache distribution method which results in minimal peak and average rate for one of the schemes

when the caches are relatively small compared with the size of the library; 4) comparing the peak rate of transmission of the

three schemes analytically to provide insights for deciding which scheme to choose given the system’s parameters.

The paper will be organized as follows: Section II introduces our system model and the notation to be used throughout the

paper. Section III describes the three coded caching schemes being proposed and analyzed. Section IV derives a lower bound

for the peak rate of a coded caching scheme with heterogeneous user profiles and compares the peak rate of the three schemes

with that bound. Section V studies how to optimally distribute the cache among the different types of files and compares

the peak rate of the three schemes according to the cache size. Finally, Section VI provides numerical simulation results to

illustrate and support our derivations, and Section VII concludes the paper.

II. BACKGROUND

A. System Model

This paper considers a system with a single server storing N files of size F , which is connected through an error-free

broadcast link to K end users equipped with cache memories of size MF each. The K users are split into G classes according

to the files that they may request. Out of the N files, Nc are common files which may be requested by users in any class and

the rest are unique files which are only appealing to one class of users, such as cartoon or sci-fi movies. For simplicity, this

paper assumes that the number of users and unique files is the same for every class, and that they do not intersect. Therefore,

each class has K
G users and Nu unique files, where N = Nc + GNu. Furthermore, we assume that the number of users is

smaller than the number of common and unique files. The quantities K , G, Nc, and Nu are generally discrete in practice, but

this paper will often treat them as continuous to avoid integer effects during calculations. If their values are large enough, the

rounding errors can be neglected. This scenario is illustrated in Fig. 1 with only two classes.

In the placement phase, caches are populated with file segments. This paper only considers uncoded prefetching, which

means that segments are cached in plain form, not coded together. As asserted in [22], uncoded prefetching is suboptimal,

but it has many advantages: it allows for asynchronous transmissions, reduces latency, simplifies the bookeeping, etc. Since

file segments are cached in plain form, there will be a section of the cache storing segments from common files and another

storing segments from unique files, as shown in Fig. 1.

In the delivery phase, each user k requests a single random file dk from the server. We denote the probability mass function

(pmf) of the random request dk as p
[k]
dk

.

Definition 1. The demand set for user k is defined as Sk ,

{

n ∈ [1, Nc +GNu] : p
[k]
n > 0

}

, which represents the set of

distinct files that can be requested by user k with a positive probability.

It can be written that

dk ∈ Sk,
∑

∀d∈Sk

p
[k]
d = 1. (1)

Definition 2. The demand vector ~d = (d1, . . . , dK) is defined as the set of files requested by users in the delivery phase, and

N(~d) ∈ [1,min{K,N}] denotes the number of distinct files in ~d.

Our goal will be to minimize the data rate (traffic from the server to the users) required to satisfy the users’ requests. We

consider two different metrics for such rate:
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FIGURE 1: System Model with two distinct classes, A and B, each having two users. Each user’s cache is divided into a section

for common and another for unique files.

Definition 3. The peak and average rates of a coded caching scheme are respectively defined as

R∗(M) = max
∀~d:dk∈Sk

R~d, R̄ =
∑

∀~d,dk∈Sk

p~dR~d, (2)

where R~d denotes the number of bits transmitted to satisfy request vector ~d.

The average rate is highly dependent on the pmf of the requests p
[k]
n . In order to make the equations more tractable and

facilitate the comparison with other coded caching schemes, our simulations will focus on the uniform-average rate, defined

as follows.

Definition 4. The uniform-average-rate of a coded caching scheme is defined as

R̃ =
1

∏K
k=1 |Sk|

∑

∀~d,dk∈Sk

R~d. (3)

This definition of uniform-average-rate is different from that in [24], where the distribution is simply uniform over [N ]K .

It replaces the joint distribution p~d with a uniform distribution over the file demand set S1 × S2 × · · · × SK .

B. Maddah-Ali and Niesen’s scheme

This paper generalizes the centralized coded caching scheme with uncoded prefetching proposed by Maddah-Ali and

Niesen [2], from this point on referred to as MN’s scheme, to heterogeneous user profiles. It is therefore important to review

such scheme before we go any further.

In the placement phase, MN’s scheme splits each file into
(

K
t

)

non-overlapping segments, where t = KM
N . Each segment

is cached by a distinct set of t users, which results in each user caching
(

K−1
t−1

)

segments per file. Specifically, this scheme is

able to satisfy any vector of requests by transmitting at most
(

K
t+1

)

messages of size
(

K
t

)−1
F bits. The peak rate (normalized

by the file size F ) is written as

RMN (K, t) =

(

K
t+1

)

(

K
t

) (4)

=
K − t

t+ 1
. (5)

If the server only receives requests for m distinct files (e.g., only some of the users make a request, or their requests overlap),

then the transmission rate with MN’s scheme will become

R(K, ~d, t) =

(

K
t+1

)

−
(

K−N(~d)
t+1

)

(

K
t

) , (6)

as was shown in [20].

This paper will treat t as continuous, just like it did with K , G, Nc, and Nu, to avoid integer effects. The next subsection

explains how the combinatorial expressions in Eq. (6) can be extended to continuous arguments.
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C. Approximation of Transmission Rate for Simulation

This subsection shows how Eq. (6) can be extended into a continuous function over 0 ≤ t ≤ K .

When t ≤ 1, the overall size of all the caches is not enough to store the N files in full. It is therefore necessary to leave

a fraction of each file out of the coded caching scheme and transmit it uncoded whenever that file is requested. The minimal

such fraction can be found as p = 1− KM
N . Hence, according to [25], the overall transmission rate for demand vector ~d when

t ≤ 1 is

R = N(~d)p+ [Rate if t = 1](1− p), (7)

where N(~d) denotes the number of distinct files being requested.

When K − 1 < t ≤ K , the opposite happens. The caches are large enough that a fraction of each file needs to be cached

by every user, otherwise part of the caches would be left empty. It is therefore never necessary to transmit that fraction and

coded caching schemes can be used to transmit the rest when the file is requested. The minimal such fraction can be found as

γ = K − t. Hence, the overall transmission rate when t ∈ (K − 1,K] is

R = 0 · γ + [Rate if t = K − 1](1− γ). (8)

When 1 ≤ t ≤ K − 1 but it is not an integer, Eq. (6) is not well defined because the binomial coefficients require integer

and strictly non-negative arguments. In order to interpolate these coefficients continuously, we use the Gamma function, which

satisfies Γ(n) = (n− 1)! for every integer n and therefore
(

n

k

)

=
n!

k!(n− k)!
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
(9)

without error when n and k are integers.

III. PROPOSED SCHEMES

The schemes proposed and analyzed in this paper are variations of MN’s scheme and were first presented in our conference

paper [19].

A. Scheme 1: All common

The system behaves as if all files are common during the placement phase, sacrificing local caching gain in favor of global

caching gain. It ignores the distinction between all user profiles and requires every user to cache segments from every file,

even if it would never request some of them. MN’s scheme with N = Nc + GNu files is utilized for the placement and

delivery. When N ≤ KM ≤ (K− 1)N the peak and average rates can be derived from Eqs. (5) and (6), otherwise it becomes

necessary to adjust their values as shown in Eqs. (7) and (8).

• Peak rate: The peak rate is equivalent to that in MN’s scheme with N files and K users. According to Eq. (5) it can be

computed as:

R
(1)
peak =

K − t1
t1 + 1

, (10)

where t1 = KM
N .

• Average rate: The average rate is also equivalent to that in MN’s scheme with N files and K users. Taking the expectation

over the distribution of requests and using Eq. (6) to compute the rate associated with each individual request vector yields:

R(1)
avg =

∑

∀~d

p~d

(

K
t1+1

)

−
(

K−N1(~d)
t1+1

)

(

K
t1

) , (11)

where p~d denotes the probability associated to demand vector ~d and N1(~d) denotes the number of distinct files requested

by the K users according to ~d.

B. Scheme 2: Split

The system deals with common and unique files separately, decoupling their placement and delivery. A fraction x of each

user’s cache is devoted to storing segments from common files and the remaining (1−x) to store segments from unique files.

Segments from common files are distributed over all K users according to MN’s scheme with Nc files and MFx bits of cache

per user. Segments from unique files are only cached by the K/G users in their corresponding class, also following MN’s

scheme to fill the remaining MF (1− x) bits of cache capacity per user. The delivery phase is independent for common and

unique files, never encoding segments from different file types in the same message.



5

If α out of the K/G users in each class request unique files, the peak data rate for this scheme is given by

R(2)(x, α) = Rc(x, α) +GRu(x, α) (12)

=

(

K
tc+1

)

−
(

Gα
tc+1

)

(

K
tc

) +G

( K
G

tu+1

)

−
(K

G
−α

tu+1

)

(K
G
tu

)

,

where tc = KMx
Nc

and tu = K
G

M(1−x)
Nu

. The above expressions implicitly assume that tc and tu are both larger than 1 and

smaller than K−1 and K
G −1, respectively. Otherwise, they need to be adjusted according to Eqs. (7) or (8). The two terms in

Eq. (12) correspond to the rate required to deliver common files, Rc(x, α), and that required to deliver unique files, Ru(x, α),
for each class. Despite users are only caching the files in their demand set, x might favor unique files over common files (or

vice versa), so the local caching gain is still being sacrificed for the benefit of global caching gain.

• Peak rate: Theorem 8 will later prove that, when the number of users is sufficiently large, the peak rate is achieved when

the number of users requesting unique files is the same for every class. Hence, the peak rate can be found as

R
(2)
peak = min

x
max
α

R(2)(x, α), (13)

where the fraction x is being optimized to minimize the peak rate.

• Average rate: The average rate can be calculated as:

R(2)
avg = Rc +

G
∑

i=1

Rui
, (14)

consisting of the average transmission rate for common files Rc and that for unique files Ru in each class. Taking the

expectation over the distribution of requests and using Eq. (6) with a reduced memory Mx and number of files Nc to

compute the rate associated with each individual request vector yields:

Rc =
∑

∀~d

p~d

(

K
tc+1

)

−
(

K−Nc(~d)
tc+1

)

(

K
tc

) , (15)

where tc =
KMx
Nc

and Nc(~d) denotes the number of distinct common files requested by the K users. Similarly, the average

transmission rate for unique files in the i-th class can be found by using Eq. (6) with K/G users, Nu files, and capacity

for M(1− x) files in the cache:

Rui
=
∑

∀~d

p~d

( K
G

tu+1

)

−
(K

G
−Nui

(~d)
tu+1

)

(K
G
tu

)

, (16)

where tu = KM(1−x)
GNu

and Nui
(~d) denotes the number of distinct unique files requested by the K/G users in the i-th

class.

C. Scheme 3: All unique

The system behaves as if all files are unique, maximizing local caching gain in detriment of global caching gain. It disregards

the fact that common files can be requested by all user classes and independently applies MN’s scheme for placement and

delivery phases within each class of users. Instead of caching all Nc + GNu files, the users only cache the Nc + Nu files

corresponding to their class during the placement phase. When G(Nc+Nu) ≤ KM ≤ (K−G)(Nc+Nu) the peak and average

rates can be derived from Eqs. (5) and (6), otherwise it becomes necessary to adjust their values as shown in Eqs. (7) and (8).

• Peak rate: The peak rate for each class is equivalent to that in MN’s scheme with K
G users and Nc+Nu files. Multiplying

the rate in Eqs. (5) by the number of classes G gives:

R
(3)
peak = G

K
G − t3

t3 + 1
, (17)

where t3 = K
G

M
Nc+Nu

.

• Average rate: The average rate for this scheme can be computed as the sum of the expected rates within each class. Using

Eq. (6) with K
G users and Nc +Nu files to compute the expected rates results in:

R(3)
avg =

G
∑

i=1

∑

∀~d

p~d

( K
G

t3+1

)

−
(K

G
−N3i

(~d)
t3+1

)

(K
G
t3

)

, (18)

where t3 = K
G

M
Nc+Nu

and N3i(
~d) represents the number of distinct files requested by the K/G users in the i-th class.



6

FIGURE 2: Cut corresponding to parameter s = 2 in the proof of the converse. In the figure, Nc = 4, Nu = 2, G = 2,K = 8.

IV. LOWER BOUND OF PEAK RATE

This section derives a lower bound for the peak rate of a coded caching system with heterogeneous user profiles and compares

it with the peak rate of the three schemes from Section III.

Theorem 1. The peak rate of a coded caching scheme with G user classes, K
G users in each class, N = Nc + GNu total

files, and cache size of M files per user, can be bounded as

R∗(M) ≥ max
s∈{1,...,min(K,N)

G }

(

Gs−
GsM
⌊

N
Gs

⌋

)

. (19)

This result is based on a cut-set bound argument.

Proof. For simplicity, this proof assumes that Nc is divisible by G. If that were not the case, we could just discard a few

common files and prove the bound for a system with fewer files. Since the peak rate always increases with the size of the

library, the bound would still hold for the original system.

Let s ∈ {1, 2, . . . , min{K,N}
G } and consider the first s users from each class γ = 1, 2, . . . , G denoting their caches

Zγ
1 , Z

γ
2 , . . . , Z

γ
s . Divide the Nc common files into G sets so that each class has Nc

G + Nu files associated with it. Denote

them {W γ
1 ,W

γ
2 , . . . ,W

γ
N
G

}. Without loss of generality, we assume that the first s files are requested for every class and the

server fulfills those requests by transmitting X1. The first s users in each class must be able to recover W γ
1 ,W

γ
2 , . . . ,W

γ
s from

their caches Zγ
1 , Z

γ
2 , . . . , Z

γ
s and X1. Similarly, when the server sends X2, the users in each class γ are able to determine

W γ
s+1,W

γ
s+2, . . . ,W

γ
2s with their cache Zγ

1 , Z
γ
2 , . . . , Z

γ
s , γ = 1, 2, . . . , G. Continue in the same manner up to X⌊ N

Gs
⌋. We then

have that X1, X2, . . . , X⌊ N
Gs

⌋ and Zγ
1 , Z

γ
2 , . . . , Z

γ
s are enough to determine W γ

1 ,W
γ
2 , . . . ,W

s⌊
⌊N
G

⌋

s
⌋
, for γ = 1, 2, . . . , G. Fig. 2

illustrates this setting.

By the cut-set bound in [26], we can obtain that
⌊

N

Gs

⌋

R∗(M) +GsM ≥ Gs

⌊

N

Gs

⌋

. (20)

By solving for R∗(M) and optimizing over all possible choices of s, it can be written that

R∗(M) ≥ max
s∈{1,...,min(K,N)

G }

(

Gs−
GsM
⌊

N
Gs

⌋

)

, (21)

proving the theorem.

We use RCB(s) to denote the argument maximized in the bound:

RCB(s) = Gs−
GsM
⌊

N
Gs

⌋ . (22)

Remark. When M > N
G the above expression RCB(s) is negative for every s, and therefore the bound is trivial. Fortunately,

M ≤ N
G in most practical cases, or every user would be able to cache most of the files in its demand set.

Remark. When G = 1, this bound reduces to the one derived in Theorem 2 of [2].
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Theorem 2. For the heterogeneous user profile model with K users, a database of N = Nc +GNu files, and a local cache

size of M files at each user with N
K ≤M ≤ N

2G , it can be written that

R
(1)
peak

R∗(M)
≤ 8. (23)

The restriction N
K ≤M is imposed so that t1 ≥ 1 and M ≤ N

2G to ensure that RCB(s) is not negative.

Proof. Loosening the bound in Eq. (19) results in

R∗(M) ≥ max
s∈{1,...,min(K,N)

G }
RCB(s) (24)

≥ max
0≤s≤min(K,N)

G

(

Gs−
GsM
N
Gs − 1

)

(25)

≥
(

Gs0 −
Gs0M
N
Gs0

− 1

)

, (26)

where the last inequality holds for any 0 ≤ s0 ≤ min(K,N)
G .

We first consider the case when M ≥ 1.5. Let s0 = N
2GM and observe that 0 ≤ s0 ≤ min(K,N)

G as long as max(1.5, NK ) ≤
M ≤ N

2G . Hence

R∗(M) ≥
(

Gs0 −
Gs0M
N
Gs0

− 1

)

(27)

≥ N
M − 1

2M(2M − 1)
. (28)

Dividing Eq. (10) by Eq. (28) and imposing M ≥ 1.5 yields

R
(1)
peak

R∗(M)
≤
N −M

N
·

4KM

KM +N
·
M − 1

2

M − 1
(29)

≤ 1 · 4 · 2, (30)

which proves that R
(1)
peak is within a factor of 8 from the optimal when M ≥ 1.5.

Next consider the case when M ≤ 1.5. Let s1 = N
5G and assume for now that 0 ≤ s1 ≤ min(K,N)

G . Inserting this value in

Eq. (26) yields

R∗(M) ≥
(N

5
−
NM

20

)

(31)

and therefore

R
(1)
peak

R∗(M)
≤
N −M

N
·

K

N +KM
·

20

4−M
(32)

≤ 1 · 1 · 8, (33)

which proves that R
(1)
peak is within a factor of 8 from the optimal when M ≤ 1.5, as long as s1 ≤ min(K,N)

G .

It only remains to show that the theorem holds when M ≤ 1.5 and s1 ≥ min(K,N)
G . This can only happen if K ≤ N

5 . Let

s2 = K
G , for which Eq. (26) becomes

R∗(M) ≥ K
N −K(M + 1)

N −K
. (34)

Therefore

R
(1)
peak

R∗(M)
≤

N −M

N +KM
·

N −K

N −K(M + 1)
(35)

≤ 1 ·
0.8 N

0.5 N
(36)

≤
8

5
, (37)

which proves that R
(1)
peak is within a factor of 1.6 from the optimal when M ≤ 2 and s1 ≥ min(K,N)

G .
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Theorem 3. For the heterogeneous user profile model with K users, a database of N = Nc +GNu files, and a local cache

size of M files at each user with G
K (Nc +Nu) ≤M ≤ N

2G , it can be written that

R
(3)
peak

R∗(M)
≤ 8

K

G
. (38)

The restriction G
K (Nc +Nu) ≤M is imposed so that t3 ≥ 1 and M ≤ N

2G to ensure that RCB(s) is not negative.

Proof. For M ≥ 1.5, Eq. (28) in the proof of Theorem 2 showed that

R∗(M) ≥ N
M − 1

2M(2M − 1)
. (39)

Dividing Eq. (17) by the above expression gives

R
(3)
peak

R∗(M)
≤

2KM

N
·
G(Nc +Nu −M)

G(Nc +Nu) +KM
·
2M − 1

M − 1
(40)

≤
K

G
· 1 · 4. (41)

For M ≤ 1.5, Eq. (31) in the proof of Theorem 2 showed that

R∗(M) ≥
(N

5
−
NM

20

)

(42)

as long as K ≥ N
5 . Dividing Eq. (17) by the above expression gives

R
(3)
peak

R∗(M)
≤
K

N
·
G(Nc +Nu −M)

G(Nc +Nu) +KM
·

20

4−M
(43)

≤
K

N
· 1 · 8 (44)

≤ 8
K

G
. (45)

Finally, for M ≤ 1.5 and K ≤ N
5 we can divide Eq. (17) by Eq. (34) to obtain

R
(3)
peak

R∗(M)
≤

N −K

N −K(M + 1)
·
G(Nc +Nu −M)

G(Nc +Nu) +KM
(46)

≤
N −K

N −K(2.5)
· 1 (47)

≤
8

5
. (48)

There must be more users K than classes G, so K
G ≥ 1 and the theorem is proved.

Theorem 4. For the heterogeneous user profile model with K users, a database of N = Nc +GNu files, and a local cache

size of M files at each user with G
K (Nc +Nu) ≤M ≤ N

2G , it can be written that

R
(2)
peak

R∗(M)
< 8 + 8

K

G
. (49)

The restriction G
K (Nc +Nu) ≤M is imposed so that t3 ≥ 1 and M ≤ N

2G to ensure that RCB(s) is not negative.

Proof. The peak rate of Scheme 2 can be bound as follows:

R
(2)
peak = min

x
max
α

R(2)(x, α) (50)

≤ max
α

R(2)

(

x =
Nc

N
,α

)

(51)

≤ Rc

(

x =
Nc

N
,α = 0

)

+Ru

(

x =
Nc

N
,α =

K

G

)

(52)

≤ R
(1)
peak +G

K
G − t1

t1 + 1
, (53)
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where N = Nc +GNu and t1 = KM
N . Since t3 ≤ t1 and R

(3)
peak decreases monotonically with t3 we can conclude that

R
(2)
peak ≤ R

(1)
peak +R

(3)
peak. (54)

Finally, we apply Theorems 2 and 3 to obtain Eq. (49).

We do not attempt to characterize a bound for average rate because it would depend on the popularity distribution of the

files. A bound for uniform-average rate could be derived, but we believe that it would not provide valuable insights for the

general case.

V. RESULTS

This first part of this section studies how to optimize the distribution of cache between common and unique files in Scheme

2 so that the peak rate and uniform-average rate are minimized. We discover that when users’ cache storage is small, devoting

all the cache to common files will minimize both the peak and the average rate of transmission. The second part of the section

provides detailed comparisons between the peak rates of the three schemes proposed in Section III and analyzes which scheme

offers the best performance for each value of M . A partial summary of results can be found in Table I.

Our previous conference paper [23] provided some partial and asymptotic results for uniform-average rate, but we have

decided not to include those here, postponing them to future work on a separate paper.

A. Optimizing x for Scheme 2

When M is large, users are able to cache most of the files and the choice of x is less relevant. Furthermore, scenarios where

caches are almost as large as the whole library rarely come up in practical applications. Hence, we will focus our analysis on

the case with relatively small M compared with the size of the library N .

Theorem 5. When M ≤ Nc

K

[√

Nu(K+1)

Nc(
K
G
+1)

− 1
]

, the peak rate of Scheme 2 is minimized by devoting all the cache to common

files (x = 1).

Proof. See Appendix.

Theorem 6. When the number of users K is large and M ≤ 1
K min(Nc, GNu), the uniform-average rate of Scheme 2 is

minimized by devoting all the cache to either common or unique files. Specifically, it should all be devoted to common files

(x = 1) when

Nu

Nc
> G ·

E
2[Nu(~d)] + E[Nu(~d)]

E2[Nc(~d)] + E[Nc(~d)]
, (55)

otherwise it should all be devoted to unique files (x = 0). In Eq. (55),

E[Nc(~d)] = Nc

[

1−

(

Nc +Nu − 1

Nc +Nu

)K
]

, (56)

E[Nu(~d)] = Nu

[

1−

(

Nc +Nu − 1

Nc +Nu

)K/G
]

. (57)

Proof. See Appendix.

Theorem 6 generalizes Prop. 3 from paper [22], where there exist two classes with one user each. When the number of

common files is large and the cache size is below half of the common files, the users should only cache common files.

Corollary 1. If the users’ devices have relatively small storage and the number of common files is not too large, it is

recommended for the users to devote all their cache to common files and transmit the unique files uncoded.

B. Peak Rate Comparison

First, we compare the peak rate of Schemes 1 and 3, since they have the simplest expressions.

Theorem 7. When M is large enough, Scheme 3 offers lower peak rate than Scheme 1, and vice versa. Specifically,

R
(3)
peak ≤ R

(1)
peak ⇔ M ≥ Nc −

GNu

K
. (58)

Proof. This theorem can be proved by simple manipulation of Eqs (10) and (17).

Corollary 2. When M is small, it is often beneficial for users to cache segments from undesired files, to increase multicasting

opportunities. The loss in local caching gain is more than compensated by the gain in global caching gain [27].
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In Schemes 1 and 3, the number of users requesting common versus unique files is irrelevant, since segments from both

files can be encoded together. In Scheme 2, however, it plays a major role. We now intend to show that in order to compute

the peak rate, we only need to consider the case where the subdivision is the same for all user classes.

Theorem 8. There exists a number α ∈ (0, KG ) such that the peak rate for Scheme 2 is achieved when every class has α users

requesting unique files.

Proof. Let αi represent the number of users from class i requesting unique files, and assume that α = (α1, . . . , αG) maximizes

the rate, given by

R(α) = Rc

(

1

G

G
∑

i=1

αi

)

+

G
∑

i=1

Ru(αi), (59)

where Rc and Ru have been defined by Eq. (12) and we omit x for simplicity.

Without loss of generality, assume α1 > α2 and let β = (α1 − 1, α2 + 1, α3, . . . , αG). Then

R(β)−R(α) = Ru(α1 − 1)−Ru(α1) +Ru(α2 + 1)−Ru(α2). (60)

We now prove that

Ru(α2 + 1)−Ru(α2) ≥ Ru(α1)−Ru(α1 − 1). (61)

This result follows from the fact that the rate is submodular in the number of requests, but we prove it anyway. With α1 > α2,

Eq. (61) can be written as
(K

G
−α2

tu+1

)

−
(K

G
−α2−1
tu+1

)

(K
G
tu

)

≥

(K
G
−α1+1
tu+1

)

−
(K

G
−α1

tu+1

)

(K
G
tu

)

(62)

(K
G − (α2 + 1)

tu

)

≥

(K
G − α1

tu

)

, (63)

which is true, since binomial coefficients increase monotonically with the number of elements.

Therefore, β achieves a rate at least as high as α with less variance across the coefficients. For large enough K (i.e. using

the continuous relaxation of the problem), we can conclude that a uniform set of coefficients would achieve the peak rate.

We are now ready to compare the peak rate of Scheme 2 with that for the other two.

Theorem 9. When M is large enough, Scheme 2 offers lower peak rate than Scheme 3. Specifically,

R
(2)
peak ≤ R

(3)
peak ⇐ M ≥

G

G− 1

K + 1

K
Nu. (64)

Proof. If x = 1− Nu

M , each user stores all the unique files that it might request. The worst case α is therefore α = 0. Observe

that

min
x

max
α

R(2)(x, α) ≤ max
α

R
(2)
peak

(

1−
Nu

M
,α

)

(65)

= R
(2)
peak(1−

Nu

M
, 0) (66)

= K
Nu +Nc −M

K(M −Nu) +Nc
. (67)

After some rearrangement, Eq. (17) can be written as

R
(3)
peak = KG

Nc +Nu −M

KM +G(Nc +Nu)
. (68)

A simple comparison of the last two equations yields Eq. (64).

Theorem 10. When M is large enough, Scheme 2 provides lower peak rate than Scheme 1. Specifically,

R
(2)
peak ≤ R

(1)
peak ⇐ M ≥

Nc

G
+Nu. (69)

Proof. From Eq. (67) we can observe that

R
(2)
peak ≤ K

Nu +Nc −M

K(M −Nu) +Nc
, (70)

and Eq. (10) can be rearranged as

R
(1)
peak =

K − KM
Nc+GNu

KM
Nc+GNu

+ 1
. (71)
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By comparing these two equations, we are able to generate Eq. (69).

Corollary 3. Scheme 2 provides the lowest peak rate of the three when M ≥ max
(

G
G−1

K+1
K Nu,

Nc

G +Nu

)

.

Proof. This corollary can be simply proven by combining Theorem 9 and Theorem 10, setting M to be the larger value

between the two.

Theorem 11. When M is small enough, Scheme 1 offers lower peak rate than Scheme 2. Specifically,

R
(1)
peak ≤ R

(2)
peak ⇐ M ≤

min(Nc, GNu)

K
. (72)

Proof. If M ≤ min(Nc,GNu)
K then t1 ≤ 1 and we can combine Eqs. (10) and (7) to obtain

R
(1)
peak = K −

M

2

K(K + 1)

Nc +GNu
(73)

≤ K − γ
K + 1

4
, (74)

where γ = KM
max(Nc,GNu)

.

As for R
(2)
peak, it is defined as the highest rate experienced for any number of unique requests α:

R
(2)
peak = min

x
max
α

R(2) (x, α) . (75)

If M ≤ min(Nc,GNu)
K then tc ≤ x and tu ≤ 1− x. Combining Eqs. (12) and (7) then yields

R(2) (x, α) =

(

K
2

)

−
(

Gα
2

)

(

K
1

) tc + (K −Gα)(1 − tc) +G

(K
G

2

)

−
(K

G
−α
2

)

(K
G

1

)

tu +Gα(1 − tu), (76)

where tc = KMx
Nc

and tu = KM(1−x)
GNu

. It can be shown that R(2) (x, α) is monotonically increasing with Nc and Nu or,

equivalently, monotonically decreasing with tc and tu. Replacing tc and tu with γx and γ(1−x), respectively, should therefore

reduce the value of R(2)(x, α):

R(2) (x, α) ≥ K − γ

(

K + 1

2
x +

Gα[Gα +G− (2K +G+ 1)x]

2K

)

. (77)

This is a quadratic equation with respect to α, which attains its maximum value at α⋆ = Gx+2Kx−G+x
2G . Similarly, R(2) (x, α⋆)

is a quadratic equation of x which can be minimized to obtain

R
(2)
peak = min

x
max
α

R(2)(x, α)

≥ min
x
R(2)(x, α⋆) (78)

≥ K − γ
K + 1

2

(

(G+K + 1)(G+K)

(G+ 2K + 1)2

)

(79)

≥ K − γ
K + 1

2

(

1

2
−
K2 + (K + 1)2 −G2

2(G+ 2K + 1)2

)

(80)

≥ R
(1)
peak, (81)

where the last inequality results from comparing Eq. (79) with Eq. (74) while keeping in mind that G ≤ K .

Corollary 4. For small enough M , Scheme 1 yields lower peak rate than Schemes 2 and 3. For large enough M , Scheme 2

offers the lowest rate of the three. In some cases, there is a range of intermediate M values for which Scheme 3 has lower

rate than the other two.

VI. NUMERICAL SIMULATIONS

This section provides simulations illustrating the peak and uniform-average rates of the three proposed schemes, as well as

lower bounds to provide a framework for comparison. To the extent of our knowledge, there are no schemes in the literature

which could be suitable for our scenario with heterogeneous user profiles. The best performing schemes for homogeneous

users are those found by solving combinatorial optimization problems as described in in [28] and [8]. However, with uniform

file popularities, cache capacities and file sizes, those schemes are equivalent to Maddah-Ali and Niesen’s scheme. Solving

the optimization problems while ignoring user classes results in Scheme 1 and doing it independently for each class results in

Scheme 3.
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M range Result

M ≤ min
(

Nc −
GNu

K
, Nc

K
, GNu

K

)

R
(1)
peak best

M ≥ max
(

G

G−1
K+1
K

Nu,
Nc

G
+Nu

)

R
(2)
peak best

N

K
≤ M ≤

N

2G
R

(1)
peak/R

∗(M) ≤ 8
G

K
(Nc +Nu) ≤ M ≤

N

2G
R

(2)
peak/R

∗(M) < 8 + 8K

G

G

K
(Nc +Nu) ≤ M ≤

N

2G
R

(3)
peak/R

∗(M) ≤ 8K

G

TABLE I: Summary of peak rate results

Fig. 3 illustrates the peak rate of the three schemes and the cut set bound, for different cache sizes M and number of classes

G. The number of users per class is set as K/G = 8 in all cases. The results match the statement in Corollary 4: it is better

to use Scheme 1 (all common) for small cache sizes and Scheme 2 (split) for large ones, regardless of the number of classes.

This result seems counter-intuitive, since it suggests that every user should cache segments from every file when the caches

are small, even as the number of unique files scales with the number of classes. However, it turns out that the multicasting

gain more than compensates for the loss in local caching.

The peak rate values increase with the number of classes due mainly to the increase in the number of files and users. It can

be seen that the peak rate of Scheme 3 (all unique) increases above the others, reaching a point when it is never the preferred

option. Again, this is somewhat counter-intuitive; it seems like a good idea to deal with each class independently when the

number of classes is large, but it is not.

Fig. 4 shows the uniform-average rates of the three schemes in the same scenario. The minimal uniform-average rate in

scenarios with heterogeneous user profiles is unknown, so we define a new scheme "MN with oracle" to provide an approximate

lower bound. In this scheme the system knows in advance which users will request common and unique files, and it populates

their caches using MN’s scheme for common and unique files separately. This results in the following uniform-average rate:

Rorc =

K
∑

kc=0

pkc

(

E [R(kc,m, toc)] +G ·E

[

R

(

K − kc
G

,m, tou

)]

)

,

where kc represents the number of users that request common files, E[R(K,m, t)] is the expectation of the rate defined in

Eq. (6) over the number of distinct files requested m, toc =
kcM
Nc

, tou = (K−kc)M
GNu

, and

pkc
=

(

K

kc

)

( Nc

Nc +Nu

)kc
( Nu

Nc +Nu

)K−kc

(82)

is the probability that kc users request common files.

The results suggest that Scheme 2, which splits the placement and delivery of common and unique files, is highly suboptimal

when the number of classes is small, unless the cache memory is very small or very large. However, when the number of

classes increases, Scheme 2 achieves the lowest average rate among all three of the schemes. This result aligns with Prop. 3

in [23].

It is worth noting that these results are different from those previously observed for the peak rate: for small M , Scheme

2 presents the lowest uniform-average rate and the highest peak rate among the three schemes, regardless of the number of

classes.

Fig. 5 investigates the performance of the three schemes as the number of classes grows. In this scenario, Nc = Nu = 256,

there are 8 users in each class and we set M = 256 to provide enough storage for each user to cache half of the files it

could request. The top plot stands for the comparison of the peak rates of three schemes, and the bottom plot compares the

average rates of three schemes. As the number of classes increases, so does the number of total users. This results in the

degeneration of the performance of three schemes. Schemes 1 (all common) and 3 (all unique) suffer nearly linear degradation,

while Scheme 2 (split) scales better. This is because Scheme 2 (split) is able to adjust its cache distribution as the number of

classes increases so that both peak and average rate are minimized. Therefore, when there are more classes of users joining the

computer communication network, Scheme 2 (split) is able to provide better video streaming service than other schemes and

its performance is scarcely effected. Similar results for Nc = 64, Nu = 64 and M = 64 can be found in papers [19] and [23].

VII. CONCLUSION

This paper proposes three coded caching schemes with uncoded pre-fetching which are suitable for a system where end

users are categorized into classes according to their demand distributions. It is assumed that the files are either common, which

means that they can be requested by any user in any class, or unique, meaning that only users in a specific class are likely to

request them. The first scheme treats all files as if they were common, the second one decouples the delivery of common and

unique files, and the third treats all files as if they were unique.

The peak and uniform-average rates of the three schemes are derived and compared with each other, showing that there

exist conditions under which each scheme outperforms the other two. Specifically, Scheme 1 provides the lowest peak rate
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FIGURE 3: Peak rates and cut-set bound vs cache size (M ) for Nc = 256, Nu = 256, and 8 users per class.

when the caches are small and Scheme 2 when the caches are large. Scheme 3 is best for intermediate cache sizes when the

number of classes is small and the number of users is large. Their peak rates are also compared with a cut-set lower bound

on the achievable rate to obtain bounds on the gap to optimality for each scheme.

In future work, we plan to study the uniform-average rate of the three schemes in more detail, seeking lower bounds on the

minimal rates achievable and attempting to characterize the capacity region of coded caching with heterogeneous user profiles.
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APPENDIX

A. Proof of Theorem 5

Proof. First observe that, according to the continuous relaxation of binomial coefficients in Eq. (9),

∂

∂b

(

a

b

)

=

(

a

b

)

· [ψ(a− b+ 1)− ψ(b + 1)], (83)
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where ψ(x) denotes the digamma function. This formula will significantly simplify the calculations throughout the proof.

The partial derivative of R
(2)
peak with respect to x is,

∂R
(2)
peak

∂x
=
∂Rc(x, α)

∂x
+
∂(GRu(x, α))

∂x
, (84)

where

∂Rc(x, α)

∂x
=

1
(

K
tc

)

KM

Nc

{

[

ψ(tc + 1)− ψ(tc + 2)
]

·

[(

K

tc + 1

)

−

(

Gα

tc + 1

)]

+

(

K

tc + 1

)

·
[

ψ(K − tc)− ψ(K − tc + 1)
]

+

(

Gα

tc + 1

)

·
[

ψ(K − tc + 1)− ψ(Gα− tc)
]

}

and

∂(GRu(x, α))

∂x
=

1
(K

G
tu

)

KM

Nu

{

[

ψ(tu + 2)− ψ(tu + 1)
]

·

[( K
G

tu + 1

)

−

(K
G − α

tu + 1

)]

+

( K
G

tu + 1

)

·
[

ψ
(K

G
− tu + 1

)

− ψ
(K

G
− tu

)]

+

(K
G − α

tu + 1

)

[

ψ
(K

G
− tu − α

)

− ψ
(K

G
− tu + 1

)]

}

.

The digamma function has an interesting relationship with harmonic numbers. Specifically, ψ(z + 1) − ψ(z) = 1
z for all

positive z. As a consequence, it can be derived that

∂Rc(x, α)

∂x
≥ Y1 (85)

∂(GRu(x, α))

∂x
≤ Y2, (86)

where

Y1 = −
KM

Nc

(

K
tc+1

)

(

K
tc

)

( 1

tc + 1
+

1

K − tc

)

, (87)

Y2 =
KM

Nu

( K
G

tu+1

)

(K
G
tu

)

( 1

tu + 1
+

1
K
G − tu

)

. (88)

It can be seen that Y1 < 0 < Y2, ∀x ∈ [0, 1]. |Y1| is minimal when x = 1, |Y2| reaches maximum when x = 1. Hence, we

merely need to prove that |Y1| ≥ |Y2| when x = 1, so that
∂R(2)

avg

∂x ≤ 0, ∀x ∈ [0, 1]. The inequality can be written as

M ≤
Nc

K

[√

Nu(K + 1)

Nc(
K
G + 1)

− 1

]

. (89)

B. Proof of Theorem 6

Proof. When M ≤ 1
K min(Nc, GNu), we are assured that both tc and tu in Eqs. (15) and (16) will be smaller than 1. As a

consequence, the uniform-average rate must be adjusted according to Eq. (7) and R
(2)
avg becomes a linear function of x (Eq. (7)

is a linear function of p and p is a linear function of x). Since it is only defined over 0 ≤ x ≤ 1, R
(2)
avg must be minimized by

either x = 0 or x = 1, depending on the sign of its partial derivative respect to x.

The law of large numbers tells us that when the number of files K is large, the number of distinct files requested will be

very close to its expected value for almost every demand vector ~d. If we approximate Nc(~d) and Nu(~d) with their expected

values, we have

∂R
(2)
avg

∂x
≃
∂Rc

∂tc

∂tc
∂x

+G
∂Ru

∂tu

∂tu
∂x

(90)

≃
KM

Nc

{

−E[Nc(~d)] +

(

K
2

)

−
(

K−E[Nc(~d)]
2

)

K

}

+
KM

Nu

{

E[Nu(~d)]−

(K
G

2

)

−
(K

G
−E[Nu(~d)]

2

)

K
G

}

. (91)
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After expanding Eq. (91) and cancelling out terms we find that
∂R(2)

avg

∂x is negative (i.e. , x = 1 minimizes R
(2)
avg) when

Nu

Nc
> G ·

E
2[Nu(~d)] + E[Nu(~d)]

E2[Nc(~d)] + E[Nc(~d)]
, (92)

and positive otherwise (i.e. , x = 0 minimizes R
(2)
avg).

The expected number of distinct common and unique files requested can be computed using the method of indicators:

E[Nc(~d)] = Nc

[

1−

(

Nc +Nu − 1

Nc +Nu

)K
]

, (93)

E[Nu(~d)] = Nu

[

1−

(

Nc +Nu − 1

Nc +Nu

)K/G
]

. (94)
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