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Abstract—Communication systems for multicasting informa-
tion and energy simultaneously to more than one user are
investigated. In the system under study, a transmitter sends
the same message and signal to multiple receivers over distinct
and independent channels. The fundamental communication
limit under a received energy constraint, called the multicast
capacity-energy function, is studied and a single-letter expression
is derived. This is based on coding theorems for compound
channels. The problem of receiver segmentation, where receivers
are divided into related groups, is also considered.

I. INTRODUCTION

Over the last decade, energy harvesting communication
systems have not only been an attractive research topic,
but have also seen considerable progress towards practical
design and implementation. Wireless power delivery, rather
than supplying power via wire or battery, may save significant
cost, especially where battery replacement is difficult [1], [2].

The idea of simultaneous information/energy transmission
(SIET) to an energy harvesting receiver provides the pos-
sibility of trading between information transfer and energy
delivery [3], [4]. There is a fundamental limit for point-to-
point communication, when the transmitter must also transfer
some minimal amount of energy to a receiver, as characterized
by a capacity-energy function [5] e.g. for discrete memory-
less channels (DMCs) and Gaussian channels. This capacity-
energy function can also be computed for SIET over noisy
coupled-inductor circuits, modeled as a frequency-selective
channel with additive white Gaussian noise [6]. Subopti-
mal strategies such as time-switching, where the transmitter
switches between information delivery and energy delivery
phases, can also be characterized [7], [8]. In [9], the con-
strained capacity over DMCs was derived when each subblock
in a codeword must carry sufficient energy to avoid receiver
energy outage. These subblock energy-constrained codes were
generalized to skip-sliding window codes in [10].

There have been numerous multiterminal extensions to
the basic energy/information transmission problem [11], [12].
In [11], SIET over multiple access channels was analyzed,
whereas [12] studied broadcasting information/energy mes-
sages from a base station to energy-harvesting nodes and
information-retrieving nodes. Previous work has, however, not
studied the practically important multicast setting of Fig. 1,
where the same message is transmitted over distinct and
independent channels.

Fig. 1. The multicast setting: communicating the same signal over distinct
noisy channels to several energy-harvesting receivers.

Although the idea of multicasting PoWiFi has become
prominent in the communication systems literature [13] (lead-
ing to much public attention and even a start-up company),
these ideas have not previously been tied to fundamental
principles concerning physical layer capacity. Note that beacon
signals form a significant bulk of wireless protocols, and so
the multicast problem (as compared to the broadcast problem)
is often present.

Tree-structured multicast is simply a compound channel,
since requiring reliable communication over several channels
is equivalent to requiring reliable communication over an
unknown channel. Recall the capacity of a compound DMC
does not increase if the decoder (but not the encoder) knows
which channel is chosen from a given family of channels [14].
In defining compound capacity here, in addition to requiring
a small error probability over each channel, we also require a
certain minimum energy delivery.

In SIET communication systems, one may consider parti-
tioning receivers into groups, based on their distance from the
base-station [15] or energy requirements. Therefore, beyond
determining the compound capacity-power function, we also
consider receiver segmentation, where we group channels into
different categories, so the same signaling scheme is used for
members of the same category, as in Fig. 2. This is equivalent
to optimally quantizing the parameter space of the compound
channel under given information/energy requirements.

In summary, this work defines energy/information multicast
communication and derives a single-letter expression for its
capacity under a received energy constraint. In addition, a brief
discussion of the segmentation problem is presented.
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Fig. 2. Communicating the same message and a few signals over distinct noisy
channels to grouped energy harvesting receivers, the segmentation problem.

II. POINT-TO-POINT CAPACITY-ENERGY FUNCTION

Consider a DMC with transition probability pY |X(x|y), in
which x and y are drawn from the input alphabet X and the
output alphabet Y with distribution pX(x) and pY (y), respec-
tively. Let b(y) be an energy function that maps a channel
output y ∈ Y into a nonnegative real value. When channel in-
puts described by random variables Xn

1 = (X1, X2, . . . , Xn)
are transmitted through the channel, the corresponding channel
outputs described by random variables Y n1 = (Y1, Y2, . . . , Yn)
contain the average energy

E[b(Y n1 )] =
∑

yn1 =(y1,y2,...,yn)∈Yn

b(yn1 )pY n
1

(yn1 ), (1)

where b(yn1 ) ,
∑n
i=1 b(yi).

Consider the point-to-point case: an n-letter transmission
which guarantees at least expected energy nB being received
can be evaluated by the nth capacity-energy function as

Cn(B) = max
Xn

1 :E[b(Y n
1 )]≥nB

I(Xn
1 ;Y n1 ). (2)

As mentioned in [5], the capacity of the channel under
constraint (b, B), denoted C(B), can be single-letterized as

C(B) = C1(B). (3)

III. MULTICASTING CAPACITY-ENERGY FUNCTION

Let us consider the multicast SIET setup in Fig. 1. The
message alphabet W is encoded by the function f , which
maps each message word w ∈ W into a codeword xn1 =
f(w) ∈ Xn. The source broadcasts the generated codeword
to L distinct receivers over independent DMCs and the `th
client receives y(`)n1 ∈ Y(`)n based on the transition prob-
ability pY (`)n1 |Xn

1
(y(`)n1 |xn1 ). Since the channel is memory-

less, pY (`)n1 |Xn
1

(y(`)n1 |xn1 ) =
∏n
i=1 pY (`)|X(y(`)i|xi). The `th

client decodes y(`)n1 into Ŵ` ∈ W by its own decoder g`(·)
and an error occurs when Ŵ` 6= W . Let Θ = {1, 2, . . . , L} be
the set of L receivers. The notion of error probability follows.

Definition 1: The error probability for the multicast channel,
denoted by η, is defined as the worst average error probability
over all channels:

η = max
`∈Θ

Pr[W 6= Ŵ`]. (4)

The `th client receives energy E[b`(Y (`)n1 )] on average,
where the energy harvesting function b`(·) may be different
for different receivers. The energy constraint vector ~B =

(B1, B2, . . . , BL) is an L-tuple vector, which defines the least
energy requirement for each channel, i.e.,

E[b`(Y (`)n1 )] ≥ nB`, ∀` ∈ Θ. (5)

An input that satisfies (5) is said to be ~B-admissible. Now
we define the operational compound capacity in terms of an
energy constraint vector ~B.

Definition 2: An encoder f maps a message w ∈ W into
a block of length n with a rate R = 1

n log |W|. Given 0 ≤
ε < 1, a non-negative rate R is said to be an ε-achievable rate
for multicast channels {pY (`)|X}`∈Θ with an energy constraint
vector ~B if there exists a block code with error probability
η < ε such that (5) holds and its rate exceeds R − δ for all
δ > 0 when n is sufficiently large. R is an achievable rate if it
is ε-achievable for all ε > 0. The supremum of the achievable
rate is called the operational capacity of the multicast channel,
denoted CO( ~B).

To evaluate the capacity, let us consider informational quan-
tities. Let all feasible channel input distributions of dimension
n with the `th energy constraint be Fn(`), i.e.,

Fn(`) =
{
FXn

1
: E[b`(Y (`)n1 )] ≥ nB`

}
, (6)

then the set all ~B-admissible inputs is Fn =
⋂
`∈Θ Fn(`). The

multicast capacity-energy function is then defined as follows.
Definition 3: Given a positive integer n and an energy

constraint vector ~B, the nth multicast capacity-energy function
Cn( ~B) is defined as

Cn( ~B) = max
Xn

1 ∈Fn

min
`∈Θ

I(Xn
1 ;Y (`)n1 ), (7)

where I(·; ·) is the mutual information. The domain B of
Cn( ~B) is all feasible energy constraints:

B ,

{
(B1, . . . , BL) : B` = ~q · [P (`)] ·~b` ∀` ∈ Θ

for all nonnegative ~q =
[
q1 · · · q|X |

]
s.t.

|X |∑
i=1

qi = 1

}
,

(8)

where ~b` is a column vector of the [b`(y)]y∈Y and [P (`)] is
the transition matrix [pY (`)|X(y|x)](x,y)∈X×Y . The supremum
rate of (7) defines the multicast capacity-energy function as

C( ~B) = sup
n

1

n
Cn( ~B). (9)

Now we have a coding theorem.
Theorem 1: CO( ~B) = C( ~B).

Proof: Multicast energy/information communication can
be treated as a compound channel with a constrained set of
possible input distributions Fn. Hence, the achievability and
converse can be derived from random coding arguments and
Fano’s inequality, respectively. See [16, Thm. 7.1 & Rem. 7.3].

Just as with traditional compound capacity, the compound
capacity-energy function is not generally equal to the min-
imum of the individual capacity-energy functions of the



channels constituting the set since different channels may
have different optimal input distributions. That minimum is,
however, an upper bound on the compound capacity-energy
function. Exchanging minimum and maximum operations is
possible when the optimal input distributions in the set are
identical.

Although the multicast capacity-energy function provides
an explicit form for capacity, finding the supremum of n-
dimensional mutual information is difficult. Here we aim to
provide a single-letter expression for the capacity.

For notational convenience, we consider the setting where
the energy harvesting functions b`(·) are all identically b(·)
and all receivers have the same energy constraint B: B =
B1 = B2 = · · · = BL ≤ Bmax, where Bmax is given as

Bmax = max
~q=[q1 ··· q|X|]

s.t. ∑|X|
i=1 qi=1 & qi≥0 ∀i

min
`
~q · [P (`)] ·~b. (10)

Then Cn(B) is a function of a scalar rather than a vector.
Extension to the general case follows directly.

It is trivial that Cn(B) is non-increasing along B. The
following theorem also shows that Cn(B) is concave.

Theorem 2: Cn(B) is a concave function of B for 0 ≤ B ≤
Bmax.

Proof: Let (Xi)
n
1 and {Yi(`)n1}`∈Θ be the channel input

of length n and the corresponding channel outputs which
achieves Cn(Bi) for i = {1, 2}. By definition, E[b(Yi(`)

n
1 )] ≥

nBi for every i and `. Let Xn
1 be the channel input with

the distribution αp(X1)n1
+ βp(X2)n1

and {Y (`)n1}`∈Θ be the
corresponding channel outputs for some α ∈ [0, 1] and
β = 1−α. The energy received from Y (`)n1 for the `th channel
can be lower-bounded as

E[b(Y (`)n1 )] = αE[b(Y1(`)n1 )] + βE[b(Y1(`)n1 )] (11)
≥ αnB1 + βnB2 = n(αB1 + βB2). (12)

Therefore, the channel input Xn
1 is (αB1 + βB2)-admissible.

By definition, we have the following inequalities for all ` ∈ Θ.

Cn(αB1 + βB2) ≥ min
`∈Θ

I(Xn
1 ;Y (`)n1 ). (13)

Since the mutual information is a concave function of the input
distribution,

I(Xn
1 ;Y (`)n1 ) ≥

αI((X1)n1 ;Y1(`)n1 ) + βI((X2)n1 ;Y2(`)n1 ) (14)

for all ` ∈ Θ. Combining (13) and (14) validates the concavity:

Cn(αB1 + βB2) (15)
≥ min

`∈Θ
{αI((X1)n1 ;Y1(`)n1 ) + βI((X2)n1 ;Y2(`)n1 )} (16)

≥ αmin
`∈Θ
{I((X1)n1 ;Y1(`)n1 )}+ βmin

`∈Θ
{I((X2)n1 ;Y2(`)n1 )}

(17)
= αCn(B1) + βCn(B2). (18)

The following theorem shows that the nth multicast
capacity-energy function can be evaluated as a single-letter
expression.

Theorem 3: For any DMC, Cn(B) = nC1(B) for all n ∈
Z+ and 0 ≤ B ≤ Bmax.

Proof: To prove the equality, we start with the case of
“≤”. Let Xn

1 be the channel input with the corresponding
outputs {Y (`)n1}`∈Θ which achieves Cn(B), then we have
E[b(Y (`)n1 )] ≥ nB for all ` ∈ Θ. We also let X∗ be the
channel input with the corresponding outputs {Y ∗(`)}`∈Θ

such that pX∗ =
∑n
i=1

1
npXi

. Due to the memoryless, We
have

E[b(Y ∗(`))] =
1

n

n∑
i=1

E[b(Y (`)i)] (19)

=
1

n
E[b(Y (`)n1 )] ≥ B (20)

and I(Xn
1 ;Y (`)n1 ) ≤

∑n
i=1 I(Xi;Y (`)i) for all ` ∈ Θ. Hence

Cn(B) = min
`∈Θ

I(Xn
1 ;Y (`)n1 ) (21)

≤ min
`

n∑
i=1

I(Xi;Y (`)i) (22)

= nmin
`

∑n
i=1 I(Xi;Y (`)i)

n
(23)

≤ nmin
`
I(X∗;Y ∗(`)) (24)

≤ nC1(B), (25)

where (24) follows from (14) and (25) follows from the
definition.

For the case of “≥”, we let X be the channel input with
the distribution pX and the corresponding outputs {Y (`)}`∈Θ

achieving C1(B). A sequence of channel inputs Xn
1 =

(X1, X2, · · · , Xn) is created, in which each Xi is i.i.d. to
X . Let {Y (`)ni }`∈Θ be the corresponding channel outputs of
Xn
i . By definition, E[b(Y (`)n1 )] =

∑n
i=1E[b(Y (`))] ≥ nB.

Therefore

Cn(B) ≥ min
`∈Θ

I(Xn
1 ;Y (`)n1 ) (26)

= min
`∈Θ

n∑
i=1

I(X;Y (`)) (27)

= nC1(B). (28)

Combining Theorems 1 and 6 shows the capacity of the
multicast SIET as in Fig. 1 is single-letterized as

CO(B) = C1(B). (29)

Although single-letterization was shown for identical energy
harvesting functions and constraints, the derivations are still
valid for unequal constraints1.

1 The single-letterization for unequal constraints ~B and different energy
functions b` is given in Appendix A



Fig. 3. An example of two-receivers multicast communication. Two binary
channels were considered: a BSC with crossover probability 0.12 and a Z-
channel with a 1 to 0 probability 0.3.

A. Numerical Example

The multicast capacity-energy function is evaluated for an
example. Considering a case of L = 2, in which both channels
are binary, denoted by Θ = {BSC,Z}. The first channel is a
binary symmetric channel (BSC) with crossover probability ε;
the second channel is a Z-channel with a 1 to 0 probability
ε0. Let the energy function b(·) be identically defined as the
Hamming weight of the output and have common energy
delivery requirement B.

Let X∗(B) be the common capacity-achieving input dis-
tribution, whose computation is detailed elsewhere [17]. For
given values of ε and ε0, Fig. 3 individually plots the mutual
informations of both channels with input X∗(B). Since the
multicast capacity is dominated by the worst channel, CO(B)
is simply the minimum of the curves.

IV. GAUSSIAN CHANNELS

Now consider multicast over L discrete-time, continuous-
alphabet, memoryless channels. Given an input x, the received
energy at receiver ` is

ρ`(x) =

∫
Q`(y|x)b`(y)dy, (30)

where Q`(y|x) is the transition probability of the `th channel.
Let F (x) be the cumulative distribution function (cdf) of X;
the expectation of ρ`(X) is:

E[ρ`(X)] =

∫
ρ`(x)dF (x) (31)

=

∫ ∫
Q`(y|x)b`(y)dydF (x) (32)

=

∫ (∫
Q`(y|x)dF (x)

)
b`(y)dy (33)

= E[b`(Y (`))], (34)

which indicates that the output energy constraint can be
considered as the function of ρ`(x) at the input side. Theorem
6 can be modified for continuous-alphabet channels to:

C(B) = sup
X:E[ρ`(X)]≥B,

∀`∈Θ

min
`∈Θ

I(X;Y (`)). (35)

Consider all L channels having additive white Gaussian
noise N (0, σ2

` ) and the energy function b`(y) = y2. Then
the received energy at the `th receiver from input x is

ρ`(x) =

∫ ∞
−∞

y2

σ`
√

2π
exp

{
− (y − x)2

2σ2
`

}
dy = x2+σ2

` , (36)

and the expectation is

E[ρ`(X)] = E[X2 + σ2
` ] = ρ2

X + σ2
` , (37)

where ρ2
X , E[X2] =

∫
x2dF (x). We impose a peak power

constraint so the input alphabet is X = [−P, P ] ⊂ R and then
denote the multicast capacity-energy function as C(B,P ).

Let F` be the space of all cdfs on the finite interval [−P, P ]
such that, for any F` ∈ F`,

EF`
[ρ`(X)] ,

∫ P

−P
x2dF`(x) + σ2

` ≥ B. (38)

Since F` ⊂ F`′ if σ2
` ≤ σ2

`′ , the multicast energy
constraint (5) is equivalent to E[ρ`min(X)] ≥ B, where
`min = arg min` σ

2
` . Also, since mutual information of a

Gaussian channel decreases as the channel’s variance in-
creases, min` I(X;Y (`)) = I(X;Y (`max)) where `max =
arg max` σ

2
` . Therefore, the multicast capacity-energy func-

tion can be rewritten as

C(B,P ) = sup
X∼F∈F`min

I(X;Y (`max)). (39)

From [5, Theorem 7], the optimization problem (39) can be
solved by the following theorem.

Theorem 4: There exists a unique capacity-energy achieving
input X0 ∼ F0 and a constant λ ≥ 0 such that

C(B,P ) = max
X∼F∈F`min

I(X;Y (`max))− λJ(F ) (40)

= I(X0;Y (`max))− λJ(F0), (41)

where

J(F ) , B − σ2
`min
−
∫ P

−P
x2dF (x). (42)

Moreover, a necessary and sufficient condition for F0 to
achieve capacity-energy is∫ P

−P
[i(x;F0) + λx2]dF (x)

≤ I(X0;Y (`max)) + λ

∫ P

−P
x2dF0(x) (43)

for all F ∈ F`min
, where

i(x;F ) =

∫
Q`max(y|x) log

Q`max(y|x)

p(y;F )
dy (44)

is the marginal information density [18] and p(y;F ) is the
output density function based on the input distribution F .



Fig. 4. An example of measurement (46) for the three-receivers multicast
communication (L = 3) with two segmentations (K = 2). Three binary
channels were considered: a BSC with crossover probability 0.3 denoted by
BSC(0.3), a Z-channel with a 1 to 0 probability 0.6 denoted by Z(0.6) and
a Z-channel with a 1 to 0 probability 0.65 denoted by Z(0.65).

V. SEGMENTATION PROBLEM

Let us consider the L-receivers segmentation problem in
Fig. 2. Here, the receivers are partitioned into K sub-
sets, denoted as a segmentation Q = {Θ(k)}Kk=1 with⋃
k∈{1,··· ,K}Θ(k) = Θ, and the same signal is transmitted

to all receivers in the same group. As discussed in previous
sections, the capacity of the kth group can be treated as a
multicast system with |Θ(k)| receivers; hence (29) applies to
the multicast capacity for each group.

Given an energy constraint vector ~B for all L receivers.
Let the set of all ~B-admissible inputs for the kth group be
FΘ(k) =

⋂
`∈Θ(k) F1(`), then the corresponding capacity is

CΘ(k) = max
X∈FΘ(k)

min
`∈Θ(k)

I(X;Y (`)). (45)

A trivial performance characterization of a segmentation Q is
the worst capacity over all groups:

CQ = min
k∈{1,...,K}

CΘ(k). (46)

Our objective is to find the segmentation Q∗ which maximizes
(46), i.e., Q∗ = arg maxQ CQ. This is a k-partition problem
[19], solvable by dynamic programming.

A more interesting performance characterization is as fol-
lows. Since the constraint of sending the same signal to the
group reduces the capacity and the capacity is upper-bounded
by removing this constraint (see discussion after Theorem 1),
the segmentation loss for kth group can be defined as follows.

∆Θ(k) =

∣∣∣∣CΘ(k) − min
m∈Θ(k)

max
W∈FΘ(k)

I(W ;Y (m))

∣∣∣∣ . (47)

It is clear that ∆Θ(k) is zero when |Θ(k)| = 1. Then the
objective is to find the segmentation Q∗ which minimizes the
maximum ∆Θ(k) of all groups, i.e.,

Q∗ = arg min
Q

max
k∈{1,...,K}

∆Θ(k), (48)

which is also a minimax quantizer design problem [20].
An example of clustering three receivers into two groups is

given in Figs. 4 and 5, in which a BSC(ε = 0.3) and two Z-
channels with ε0 = {0.6, 0.65} were considered. Fig. 4 shows
(46) for every segmentation, indicating that grouping two Z-
channels yields the optimal capacity. However Fig. 5 shows

Fig. 5. An example of measurement (47) for the same multicast communi-
cation in Fig. 4. Since ∆Θ = 0 when |Θ| = 1, we only consider the group
of size 2.

the opposite, when using segmentation loss (47), grouping the
BSC with any other Z-channel yields zero segmentation loss.
Hence, in this example, the grouping with the optimal capacity
is not best when segmentation loss is the main concern.

VI. CONCLUSION

This paper discussed the simultaneous multicast of energy
and information, where the effective channel is equivalent to
a constrained compound channel. We studied the capacity for
this channel, and derived a single-letter capacity expression
under a received energy constraint. The segmentation problem
was also discussed to analyze the situation where receivers
are partitioned into related groups. An interesting avenue for
future work is to extend the code constructions in [9] and [10]
to provide explicit constrained codes for multicast SIET.

APPENDIX A
UNEQUAL ENERGY CONSTRAINTS

To show that the single-letter form can be also derived for
unequal energy constraints ~B = (B1, . . . , BL) and harvest
functions ~b = (b1, . . . , bL), we first prove the domain B in (8)
is convex.

Theorem 5: If ~B1 = ((B1)1, (B1)2, . . . , (B1)L) and ~B2 =
((B2)1, (B2)2, . . . , (B2)L) are both in B, then (α~B1+β ~B2) ∈
B for all α ∈ [0, 1] and β = 1− α.

Proof: Let ~q1 =
(
(q1)1, (q1)2, . . . , (q1)|X |

)
and ~q2 =(

(q2)1, (q2)2, . . . , (q2)|X |
)

be nonnegative row vectors such
that

∑|X |
i=1(qj)i = 1 and ~qj · [P (`)] · ~b` = (Bj)` for all

j ∈ {1, 2} and ` ∈ Θ. We have (α~q1 + β~q2) · [P (`)] · ~b` =

(B1)` + (B2)` for all ` ∈ Θ. Since
∑|X |
i=1(α(q1)i + β(q2)i) =

α+ β = 1, we conclude that B is convex.
The following theorem that the nth multicast capacity-

energy function for unequal constraints can be evaluated as
a single-letter expression in a similar way.

Theorem 6: For any DMC, Cn( ~B) = nC1( ~B) for all n ∈
Z+ and ~B ∈ B.

Proof: To prove the equality, we start with the case of
“≤”. Let Xn

1 be the channel input with the corresponding
outputs {Y (`)n1}`∈Θ which achieves Cn( ~B), then we have
E[b`(Y (`)n1 )] ≥ nB` for all ` ∈ Θ. We also let X∗ be
the channel input with the corresponding outputs {Y ∗(`)}`∈Θ



such that pX∗ =
∑n
i=1

1
npXi

. Due to the memoryless, We
have

E[b`(Y
∗(`))] =

1

n

n∑
i=1

E[b`(Y (`)i)] (49)

=
1

n
E[b`(Y (`)n1 )] ≥ B` (50)

and I(Xn
1 ;Y (`)n1 ) ≤

∑n
i=1 I(Xi;Y (`)i) for all ` ∈ Θ. Hence

Cn( ~B) = min
`∈Θ

I(Xn
1 ;Y (`)n1 ) (51)

≤ min
`

n∑
i=1

I(Xi;Y (`)i) (52)

= nmin
`

∑n
i=1 I(Xi;Y (`)i)

n
(53)

≤ nmin
`
I(X∗;Y ∗(`)) (54)

≤ nC1( ~B). (55)

For the case of “≥”, we let X be the channel input with
the distribution pX and the corresponding outputs {Y (`)}`∈Θ

achieving C1( ~B). A sequence of channel inputs Xn
1 =

(X1, X2, · · · , Xn) is created, in which each Xi is i.i.d. to
X . Let {Y (`)ni }`∈Θ be the corresponding channel outputs of
Xn
i . By definition, E[b`(Y (`)n1 )] = nE[b`(Y (`))] ≥ nB` for

all ` ∈ Θ. Therefore

Cn( ~B) ≥ min
`∈Θ

I(Xn
1 ;Y (`)n1 ) (56)

= min
`∈Θ

n∑
i=1

I(X;Y (`)) (57)

= nC1( ~B). (58)
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